14

Кластерная структура ориентированных пленок полиэтилентерефталата

© Д.В. Новиков¹, А.Н. Красовский², Н.А. Осмоловская²

¹ Санкт-Петербургский государственный университет телекоммуникаций им. проф. М.А. Бонч-Бруевича, Санкт-Петербург, Россия

Санкт-Петербург, Россия

E-mail: dvnovikov65@mail.ru, alex-krasovski@yandex.ru

(Поступила в Редакцию 14 июня 2011 г.)

Методами электронной микроскопии и IR-спектроскопии поглощения и отражения изучена поверхность пленок полиэтилентерефталата (степень кристалличности 0.12-0.18), подвергнутых одноосной вытяжке вблизи температуры стеклования, равной $353\,\mathrm{K}$. Установлено формирование в пленках каркаса перколяционного кластера плотноупакованных частиц, который деформируется как единое целое. Объемная доля кластера ($\Omega\approx0.5$) и степень разворачивания цепей ($\beta\approx0.7$) при $343\,\mathrm{K}$ не зависят от кратности вытяжки в области $1.1\leq\lambda\leq3$, а вблизи $\lambda=2.5$ обнаружена плоскостная ориентация цепей, при которой радиус частиц в "аморфной фазе" близок к радиусу невозмущенного клубка. При $363\,\mathrm{K}$ формирование каркаса кластера ($\Omega\approx0.6,\,\beta\approx1$) завершается вблизи $\lambda=2.5$. Кратности вытяжки $\lambda\geq4$ соответствуют микрофибриллы цепей с параметрами $\Omega\approx0.15,\,\beta\approx1$ и фрактальной размерностью $D\approx1$.

1. Введение

Одноосная вытяжка пленок аморфного полиэтилентерефталата (PET) сопровождается процессами ориентации и кристаллизации цепей, зависящими от условий и кратности λ вытяжки пленок [1]. Деформация образца происходит неоднородно с образованием областей, различающихся по плотности упаковки цепей и степени β превращения клубок \rightarrow развернутая цепь [1,2]. Такие области могут быть рассмотрены в качестве фрактальных кластеров частиц [3,4], для которых по данным электронной микроскопии (EM) может быть рассчитан параметр β при вариации λ .

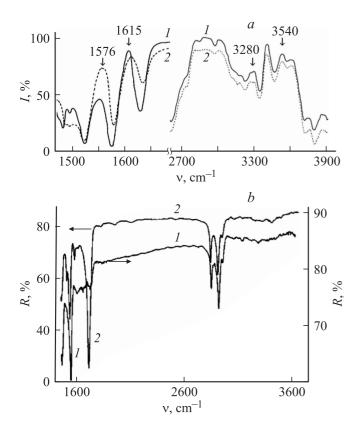
Ранее [4] при изучении флуктуаций плотности на поверхности пленок атактического полистирола нами была применена модель фрактальных кластеров для анализа ЕМ-изображений декорирующих наночастиц золота. В результате был обнаружен переход клубок \rightarrow блоб [5], приводящий к росту флуктуаций плотности в пленках.

В настоящей работе методами EM, IR-спектроскопии поглощения и отражения (ATR) изучена поверхность пленок РЕТ, подвергнутых одноосной вытяжке ниже и выше температуры стеклования $T_g=353\,\mathrm{K}$. В рамках модели фрактальных кластеров [3] в работе предложен способ описания структуры пленок РЕТ с кратностью вытяжки $\lambda=1-5$.

Цель работы — установление закономерностей изменения фрактальной кластерной структуры, степени разворачивания цепей РЕТ и эволюции ориентационного порядка в пленках в зависимости от температуры и кратности λ одноосной вятяжки образцов.

2. Методика эксперимента

В работе изучен промышленный образец пленки РЕТ (краевой угол смачивания водой — 44°, характеристическая вязкость в растворе, в мета-крезоле [6] — 0.36 dL/g, средневязкостная молекулярная масса — $M_{\eta}=21.7\cdot 10^3$) толщиной 40 \pm 3 μ m, полученной путем быстрого охлаждения расплава полимера (533 K) на поверхности барабана.


Одноосная вытяжка пленок проводилась при температуре $343\pm1\,\mathrm{K}$ и $363\pm1\,\mathrm{K}$ со скоростью $0.1\,\mathrm{mm\cdot s^{-1}}.$ Из-за образования трещин и разрушения пленок при $343\,\mathrm{K}$ кратность λ вытяжки образцов была ограничена величиной $\leq 3.$ При $363\,\mathrm{K}$ кратность λ вытяжки пленок составляла 1-5.

С ростом кратности λ вытяжки пленок РЕТ в области 1-5 степень кристалличности k, рассчитанная из плотности пленок в смеси гептан—CCl₄ (293 K), возрастает незначительно от 0.12 до 0.17.

Поляризованные IR-спектры поглощения и ATR ориентированных пленок регистрировали на Фурье-спектрометре "Perkin Elmer 1720X" в области 1500—3900 ст⁻¹ (рис. 1). IR-спектры нарушенного полного внутреннего отражения были получены с помощью трехзеркальной приставки ATR путем прижима пленок к элементу ATR из стекла KRS-5 ($n_D=2.1$, угол падения 45°, число отражений 10) [7] (в координатах коэффициент отражения R, %—волновое число ν (ст⁻¹) с погрешностью $R \leq 0.05$ %). В качестве поляризатора применялась реплика РПИ-4 [7].

Из IR-спектров поглощения (в параллельной \parallel и перпендикулярной \perp поляризациях падающего света) и отражения пленок (в p- и s-поляризациях) определяли

² Санкт-Петербургский государственный университет кино и телевидения,

Рис. 1. Поляризованные IR-спектры поглощения (a) и ATR (b) пленок PET в областях 1450–1800, 2700–3900 cm $^{-1}$ (a) и 1450–3600 cm $^{-1}$ (b) в \parallel , p-поляризации (I) и \perp , s-поляризации падающего света (2). Координаты: коэффициент поглощения I,%; коэффициент отражения R,%; волнове число ν , cm $^{-1}$. Ось вытяжки пленок совпадает с параллельной поляризацией падающего света. Кратность вытяжки пленок: $\lambda = 2$, 343 K (a) и 2.5, 363 K (b).

дихроичные отношения $D_{\parallel,\perp}$ и $D_{p,s}$ полос 1576, 1615 и 1724 сm $^{-1}$, отнесенных соответственно к валентным колебаниям $\nu(C-C)$ двойных связей бензольного кольца с различным вкладом угловых деформационных колебаний $\delta(C-C-C)$ и валентным колебаниям $\nu(C-O)$ карбонильных групп PET [8,9] (рис. 1).

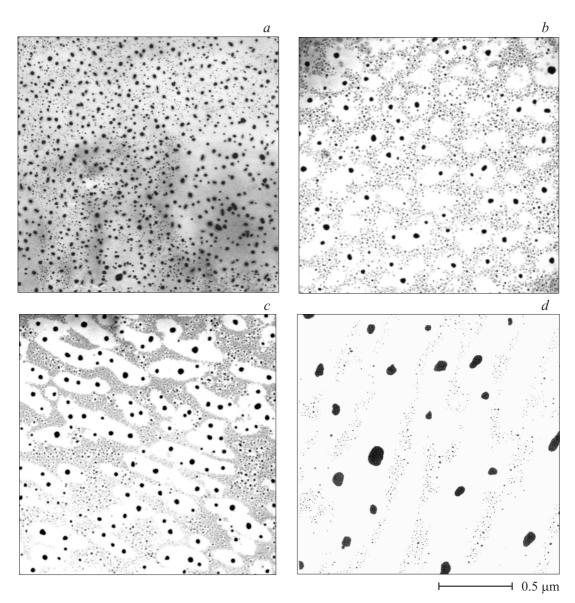
Препарирование образцов для ЕМ проводилось по методике [4] путем предварительной активации "воздушной" поверхности пленок бромной водой с последующим вакуумным термическим напылением золота и получением опорной угольной реплики.

Микрофотографии (рис. 2) показывают, что наночастицы золота размером $5-10\,\mathrm{nm}$ локализованы в виде скоплений, отображающих кластеры с повышенной плотностью упаковки цепей РЕТ. В пространстве между этими кластерами находятся более крупные частицы золота размером $50-100\,\mathrm{nm}$, маркирующие менее плотные участки поверхности пленок РЕТ или кластеры "аморфной фазы".

Для расчета доли поверхности Ω , приходящейся на кластеры плотноупакованных цепей, и вероятности протекания P была применена модель перколяции по

связанным окружностям с центрами в наночастицах золота [10]. Параметр Ω определялся как относительная площадь, занятая окружностями радиуса $r_s/2$, где r_s — радиус "координационной сферы", ограниченной первым пиком радиальной функции распределения g(R) декорирующих наночастиц. Две ближайшие друг к другу частицы относятся к одному кластеру, если находятся на расстоянии $\leq r$. Вероятность P протекания по кластерам из связанных окружностей определяется отношением числа окружностей в кластере максимального размера к числу наночастиц.

Радиальная функция распеределения плотности кластеров цепей РЕТ g(R) была рассчитана при сканировании микрофотографии с шагом, равным наиболее вероятному расстоянию r между наночастицами золота. На масштабе корреляционного радиуса ξ для функции g(R) выполняется степенной закон [4]: $g(R) \approx (D/2\Omega)(R/R_0)^{D-2}$, где R_0 — радиус "простой" частицы и D — фрактальная размерность кластера. Из графика функции g(R) были рассчитаны значения R_0 , D и определена величина ξ при условии $g(\xi)=1$. Плотность ω упаковки "простых" частиц в кластере определена по выражению: $\omega=\rho_0\pi R_0^2/n\Omega$, где n — среднее число наночастиц в "координационной сфере" радиуса R_0 .


Для описания кластеров цепей в "аморфной фазе" использовалась наложенная на микрофотографию плоская решетка, учитывались только узлы решетки, находящиеся от скоплений мелких наночастиц золота на расстоянии $\geq r_s/2$. Функция g(R) рассчитана с помощью решеточной модели на основе представлений о перколяции по связанным окружностям с центрами в узлах решетки.

Степень β разворачивания цепей определена по соотношению $\beta=R_0/R_Z$, где R_Z — радиус инерции полностью развернутой цепи, рассчитанный в приближении тонкого цилиндра как $R_Z\approx L/\sqrt{12}$ [11] с помощью контурной длины L плоской цепи: $L=aM/M_0$, где a — длина $(a=1.09\,\mathrm{nm}$ [12]), M_0 — молекулярная масса мономерного звена.

3. Результаты и их обсуждение

Поверхность исходной пленки РЕТ неоднородна: имеются протяженные области случайного распределения наночастиц золота (аморфные области), а также частично-кристаллические области, характеризующиеся фрактальной кластерной структурой (рис. 2, a).

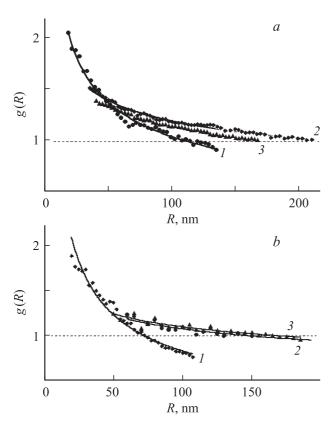
Фрактальные кластеры отображаются скоплениями наночастиц золота. На масштабе корреляционного радиуса $\xi \approx 110\,\mathrm{nm}$ функция g(R) распределения плотности кластеров с ростом R уменьшается по степенному закону (рис. 3,a, кривая I), отвечающему фрактальной размерности $D\approx 1.6$. Вероятность протекания P меньше порогового значения $P^*=0.2$ [3] и отвечает дискретным кластерам, заполняющим 20% поверхности.

Рис. 2. Электронные микрофотографии декорирующих наночастиц золота на поверхности пленок РЕТ в исходной пленке (a) с кратностью вытяжки: $\lambda = 2.5, 343$ K (b); $\lambda = 3, 343$ K (c) и $\lambda = 5, 363$ K (d).

Радиус R_0 "простых" частиц кластеров равен 3.5 nm (табл. 1, 2), что меньше радиуса R_g невозмущенного клубка ($R_g=5.7\,\mathrm{nm}$), рассчитанного из вязкости раствора и с помощью малоуглового рассеяния нейтронов в аморфных пленках РЕТ [13]. В свою очередь, величина R_0 близка к радиусу инерции рассеивающих частиц (4.8 nm) в аморфно-кристаллических пленках РЕТ (k=0.4), рассчитанному по данным [13], что позволяет отнести значение $R_0=3.5\,\mathrm{nm}$ ($M_\eta=21700$) к кристаллитам [1]. Поэтому плотность ω упаковки частиц в кластерах ниже пороговой величины $\omega^*=0.45\,\mathrm{дл}$ я перколяции на масштабе ξ [10].

Распределение плотности кластеров в исходной пленке РЕТ анизотропно, об этом свидетельствует зависимость плотности частиц золота от угла ориентации θ (рис. 4, кривая I). Анизотропия связана с деформацией

расплава и "замораживанием" ориентации цепей при охлаждении расплава и формировании пленки [14].


При $T < T_g$ вытяжка РЕТ сопровождается ориентацией цепей [12] и повышением прочностных свойств пленок [15]. В области 333—353 К под действием механического напряжения РЕТ кристаллизуется [16].

Микрофотографии наночастиц золота на поверхности одноосноориентированных пленок РЕТ демонстрируют (рис. 2,b,c), что в областях с повышенной плотностью упаковки цепей формируется перколяционный кластер. На масштабе корреляционного радиуса ξ кластер имеет фрактальную структуру (рис. 3,a, кривые 2,3).

Данные табл. 1 показывают, что при незначительной кратности вытяжки ($\lambda=1.1$) по сравнению с исходной пленкой резко возрастают вероятность P протекания по кластерам, а также доля Ω занимаемого ими простран-

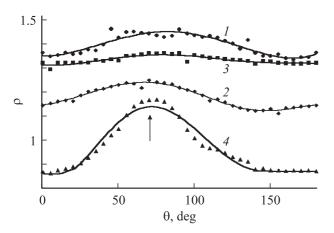
Пленка	λ	Ω ±0.05	P	ξ, nm ±10%	ξ∥	ξ_{\perp}	$D \\ (R \le \xi)$	D_{\parallel}	D_{\perp}
					nm		± 0.02		
а	1	0.2	0.1	110	_	ı	1.6	_	_
b	1.1	0.54 0.43*	0.8 0.1*	92 73*	102 95*	75 60*	1.65 1.37*	1.72 1.55*	1.62 1.38*
	1.5	0.41 0.62*	0.2 0.4*	125 97*	175 100*	105 110*	1.59 1.81*	1.71 1.74	1.61 1.69
	2	0.55 0.45*	0.3 0.3*	158 175*	210 300*	144 135*	1.77 1.76*	1.84 1.83*	1.79 1.74*
	2.5	0.54 0.49*	03 0.3*	220 160*	238 300*	200 244*	1.78 1.81*	1.82 1.93*	1.8 1.88*
	3	0.54 0.5*	0.8 0.5*	202 175*	312 260*	138 120*	1.74 1.82*	1.77 1.81*	1.68 1.71*
	2	0.27 0.73*	0.1 0.8*	167 140*	215 120*	142 110*	1.36 1.87*	1.52 1.64*	1.4 1.58*
c	2.5	0.6 0.44*	0.7 0.2*	165 165*	275 150*	125 105*	1.77 1.69*	1.86 1.74*	1.74 1.67*
	5	0.16 0.74*	0.1 0.8*	142 120*	375** 185*	87 85*	1.16 1.86*	1.74 1.84*	1.13 1.56*

Таблица 1. Параметры фрактальной кластерной структуры РЕТ в исходной (a) и ориентированных пленках при 343 (b) и 363 К (с)

Рис. 3. a — функции g(R) распределения кластеров плотноупакованных частиц в пленках РЕТ в исходной (1), с кратностью вытяжки $\lambda = 2.5$, 343 K (2) и $\lambda = 2.5$, 363 K (3). b — функции g(R) распределения кластеров в "аморфной фазе" пленок РЕТ в исходной (1) с кратностью вытяжки: $\lambda = 2.5, 343 \,\mathrm{K}$ (2) и $\lambda = 3, 343 \,\mathrm{K}$ (3).

ства, причем величина ξ практически не изменяется. Рост фрактальной размерности D и локальной плотности ω свидетельствует о трансформации структуры кластеров и формировании перколяционного кластера в результате перехода "беспорядок — порядок" на масштабе ξ (табл. 2). Такой переход подтверждается снижением флуктуаций δm [17] координационного числа

Таблица 2. Параметры пространственного распределения декорирующих наночастиц золота и ближнего порядка в РЕТ в исходной (а) и ориентированных пленках при 343 (b) и 363 К (с)


Пленка	λ	r, nm	r _s ,	m	δm	R ₀ ,	β	ω	<i>R</i> ₀ *, nm	β^*
а	1	13	22	2.2	0.82	3.5	0.1	0.16	_	_
b	1.1	14	20	4.6	0.39	26	0.74	1.08	35	1
	1.5	21	30	3	0.53	26	0.74	1.1	13	0.37
	2	30	41	3.9	0.44	22	0.63	1.04	10	0.28
	2.5	17	25	3.7	0.62	25	0.71	0.97	6	0.17
	3	18	35	4.5	0.54	23	0.66	0.87	6	0.17
c	2	21	29	2.7	0.57	34	0.97	1.22	22	0.63
	2.5	22	34	3.7	0.44	32	0.94	1.1	20	0.57
	5	20	35	5.3	0.45	32	0.94	1.25**	22	0.63

 Примечение: m — среднее координационное число (с. п.) квазирешетки наночастиц золота [4]; δm — флуктуация с. п. [16]. R_0^* и β^* — радиус и степень разворачивания цепей в "аморфной фазе". ** Значение ω рассчитано по моголу дологи.

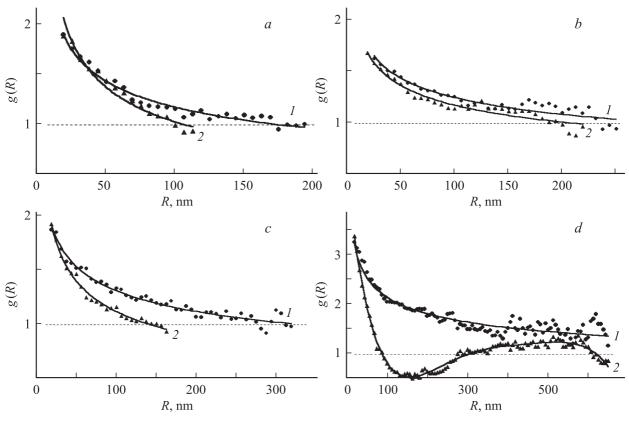
^{*} Значения для кластеров "аморфной фазы".

^{**}Значение ξ соответствует асимптоте функции g(R) при $g(\xi) > 1$ (рис. 5, d).

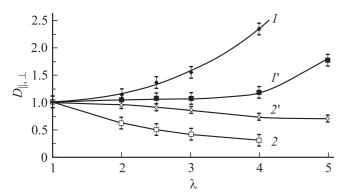
Значение ω рассчитано по модели твердых сфер [10].

Рис. 4. Зависимость средней относительной плотности ρ наночастиц золота в прямоугольнике размером $2(r_s \cdot \xi)$, с центром в частице, от угла ориентации θ (deg). Стрелкой указано направление вытяжки пленок. Образцы: исходный (1), с кратностью вытяжки: $\lambda=1.5,\ 343\ \mathrm{K}$ (2), $\lambda=2.5,\ 343\ \mathrm{K}$ (3), $\lambda=3,\ 343\ \mathrm{K}$ (4).

квазирешетки наночастиц золота и ростом степени β разворачивания цепей РЕТ.


Одноосная вытяжка пленок приводит к формированию каркаса — перколяционного фрактального кластера частично развернутых клубков с плотностью упаковки

частиц, близкой к 1. Внутренняя структура каркаса при 343 К неизменна: объемная доля $\Omega\approx 0.5$ кластера и степень $\beta\approx 0.7$ разворачивания цепей в области $\lambda=1-3$ практически не зависят от кратности вытяжки пленок, что подтверждается рентгено-структурными данными [12]. При $T< T_g$ и скорости вытяжки $\leq 1~{\rm mm\cdot s^{-1}}$ величина k для пленок PET, согласно [12], изменяется несущественно.


Перколяционный кластер плотноупакованных цепей РЕТ деформируется как единое целое. В общем случае значения ξ и D вдоль оси вытяжки пленок и в перпендикулярном направлении не совпадают (рис. 5, табл. 1). В области $\lambda=1-2.5$ выполняется закон двухосной деформации: $\xi_{\parallel}\sim\lambda$, $\xi_{\perp}\sim\lambda$, что связано с возникновением двухосного напряженного состояния цепей и образованием "шейки" [18].

Степень ориентации цепей в объемной фазе пленок, по данным IR-спектроскопии, увеличивается с ростом кратности λ вытяжки (рис. 6). При $\lambda=3$ дихроичные отношения $D_{\parallel,\perp}$ полос 1615 и 1576 cm $^{-1}$, поляризованных соответственно параллельно и перпендикулярно оси цепи РЕТ, составляют 2.3 и 0.35, а параметр ориентации второго порядка Σ , полученный в приближении осевой ориентации цепей [8,9], равен 0.4.

Вытяжка пленок при $\lambda = 2.5$ приводит к наиболее изотропному распределению плотности перколяционно-

Рис. 5. Функции g(R) распределения плотности кластеров плотноупакованных частиц по направлениям (1 — вдоль оси вытяжки, 2 — в перпендикулярном направлении) для пленок с кратностью вытяжки: $\lambda = 1.5$, 343 K (a); $\lambda = 2.5$, 343 K (b); $\lambda = 3$, 343 K (c); $\lambda = 5$, 363 K (d).

Рис. 6. Зависимости дихроичных отношений $D_{\parallel,\perp}$ для полос 1615 (I,I') и 1576 cm⁻¹ (2,2') от кратности λ вытяжки пленок при 343 K (I,2) и 363 K (I',2').

го кластера. В этом случае плотность распределения наночастиц золота практически постоянна для всех возможных направлений ориентации цепей (рис. 3, кривая 3), причем выполняются условия: $\xi_{\parallel}\cong \xi_{\perp}$, $D_{\parallel}\cong D_{\perp}$ (рис. 5, b, табл. 1).

Согласно данным IR-спектроскопии ATR, в поверхностном слое пленок эффективной толщиной $\sim 1\,\mu\mathrm{m}$ [7] дихроичные отношения $D_{p,s}$ полос 1615 и 1724 сm⁻¹ изменяются немонотонно с ростом кратности λ вытяжки. Для полосы 1724 сm⁻¹, поляризованной перпендикулярно оси цепи [9], обнаружена инверсия величины $D_{p,s}$: в p-поляризации при $\lambda=2$ ее интенсивность максимальна $(D_{p,s}>1)$, а при $\lambda=2.5$ она близка к нулю $(D_{p,s}\approx0)$ и $D_{p,s}(1615\,\mathrm{cm}^{-1})=1.6$, что обусловлено плоскостной ориентацией [8] частично-развернутых цепей в поверхностном слое PET (рис. 1, b).

При $\lambda=3$ значения $D_{p,s}(1724\,\mathrm{cm}^{-1})$ и $D_{p,s}(1615\,\mathrm{cm}^{-1})$ соответственно равны 0.19 и 0.5, а при $\lambda=4$ составляют 0.25 и 0.6, что отличается от объемной фазы пленок РЕТ — $D_{\parallel,\perp}(1576\,\mathrm{cm}^{-1})=0.7$ и $D_{\parallel,\perp}(1615\,\mathrm{cm}^{-1})=1.2$. Поэтому можно предположить [8], что в поверхностном слое пленок с кратностью вытяжки $\lambda=2.5$ ориентация цепей близка к плоскостной.

Состояние макромолекул в менее плотных участках поверхности пленок, полученных при 343 K, существенно зависит от кратности λ вытяжки (табл. 2). Незначительная вытяжка ($\lambda=1.1$) приводит к деформации клубков: радиус частиц существенно превышает радиус клубка R_g и с ростом λ приближается к радиусу R_g клубка.

По данным ЕМ при $\lambda=2.5-3$ в "аморфной фазе" пленок РЕТ-цепи полностью разориентированы. Этот вывод подтверждается данными IR-спектроскопии пленок, согласно которым дихроичные отношения $D_{\parallel,\perp}$ для полос 3280 и 3540 cm $^{-1}$, отнесенных к концевым карбоксильным и гидроксильным группам цепей РЕТ [6,8], близки к 1 (рис. 1).

Вытяжка пленок при 363 К происходит по закону аффинной одноосной деформации и корреляционные радиусы кластеров плотно упакованных цепей изменяются

по закону $\xi_{\parallel}\sim\lambda$, $\xi_{\perp}\sim\lambda^{-1/2}$ [17]. Параметр Ω изменяется экстремально с ростом λ . Максимальной величине $\Omega\approx0.6$ ($\lambda=2.5$) отвечает анизотропное распределение плотности кластеров ($\xi_{\parallel}\neq\xi_{\perp},D_{\parallel}\neq D_{\perp}$) и в результате разворачивания цепей радиус частиц в "аморфной фазе" пленок превышает радиус клубка R_g (табл. 2).

При достижении критической степени ориентации $\Sigma\approx 0.4$ и разворачивания $\beta\approx 0.4$ цепей в области кратности вытяжки пленок PET $\lambda=4-5$ при 363 К происходит переход клубок — развернутая цепь ($\beta\approx 1$) [1], приводящий к фибриллизации пленок. Такой переход сопровождается появлением в направлении, перпендикулярном оси вытяжки пленок, дальнего порядка чередования плотности распределения цепей и снижением объемной доли Ω перколяционного кластера (рис. 5, d).

Микрофибриллам отвечает перколяционный кластер с $\Omega \approx 0.15$, $\xi_{\perp} \approx 80$ nm и $D_{\perp} \approx 1$. Протекание сохраняется только вдоль фибрилл (оси вытяжки). Усредненная по направлениям вероятность протекания P меньше критической $P^*=0.2$. Отметим, что в "аморфной фазе" между микрофибриллами цепи частично разориентированы $(2R_0 < L)$ (табл. 1).

4. Заключение

При одноосной вытяжке пленок РЕТ механическое напряжение распределяется по образцу неоднородно. Каркас перколяционного кластера состоит из плотноупакованных ориентированных цепей.

Степень ориентации Σ и разворачивания β -цепей, а также закон деформации каркаса зависят от сегментальной подвижности цепей и условий вытяжки пленок. При $T>T_g$ величина β выше, а параметр Σ ниже, чем при $T<T_g$, причем выполняется закон аффинной одноосной деформации. При $\lambda=2.5$ ($T<T_g$) двухосная деформация образца с образованием в "шейке" напряженного состояния цепей приводит к плоскостной ориентации макромолекул в пленке и изотропному распределению плотности каркаса перколяционного кластера.

Переход типа беспорядок \to порядок по шкале λ предшествует превращению клубок \to развернутая цепь. В области $\lambda \geq 4$ ($T > T_g$) при образовании микрофибрилл в пленках РЕТ снижаются объемная доля Ω и фрактальная размерность ($D_\perp \approx 1$) перколяционного кластера ориентированных цепей. В этом случае в направлениях, не совпадающих с осью вытяжки пленок, полностью отсутствует протекание.

Список литературы

- 1Г.М. Бартенев, С.Я. Френкель. Физика полимеров. Химия, Л. (1990).
- [2] Г.А. Патрикеев. Механика полимеров 2, 221 (1971).
- [3] Е. Федер. Фракталы. Пер. с англ. Ю.А. Данилова и А.М. Шукурова. Мир, М. (1991). [J. Feder. Fractals. Plenum Press, N. Y., London (1988)].

- [4] Д.В. Новиков, А.Н. Красовский, Н.А. Осмоловская, В.И. Ефремов. ФТТ **49**, 363 (2007).
- [5] А.Н. Красовский, В.К. Лаврентьев, Д.В. Новиков, Н.А. Осмоловская. ФТТ 52, 806 (2010).
- [6] I.V. Vasiljeva, S.V. Mjakin, A.V. Makarov, A.N. Krasovsky, A.V. Varlamov. Appl. Surf. Sci. 252, 24, 8768 (2006).
- [7] Н. Харрик. Спектроскопия внутреннего отражения / Пер. с англ. В.А. Бернштейна, В.М. Золотарева. Мир, М. (1970). 336 с.
- [8] Р. Збинден. Инфракрасная спектроскопия высокополимеров / Пер. с англ. под ред. Л.А. Блюменфельда. Мир, М. (1966). 355 с.
- [9] П. Пейнтер, М. Коулмен, Дж. Кёниг. Теория колебательной спектроскопии. Приложение к полимерным материалам / Пер. с англ. под ред. Э.Ф. Олейника и Н.С. Ениколопова. Мир, М. (1986).
- [10] Дж. Займан. Модели беспорядка. Мир, М. (1982). 592 с. [J.M. Ziman. Models of Disorder. Cambridge Univ. Press, London (1979)].
- [11] Д.И. Свергун, Л.А. Фейгин. Рентгеновское и нейтронное малоугловое рассеяние. Наука, М. (1986). 280 с.
- [12] Г.Л. Берестнева, Д.Я. Цванкин, П.В. Козлов. Высокомолек. соед. **3**, *12*, 1787 (1961).
- [13] K.P. McAlea, J.M. Schultz, K.H. Gardner, G.D. Wignall. J. Polym. Sci. Part B: Polymer Physics. 25, 3, 651 (1987).
- [14] А.Я. Малкин. Механика полимеров. 1, 173 (1975).
- [15] П.В. Козлов, Г.Л. Берестнева. Высокомолекуляр. соединения **2**, *4*, 590 (1960).
- [16] Л.З. Роговина, Г.Л. Слонимский. Высокомолекуляр. соединения 8, 219 (1966).
- [17] А.Ф. Скрышевский. Структурный анализ жидкостей и аморфных тел. Наука, М. (1980). 328 с.
- [18] И. Нарисава. Прочность полимерных материалов. Химия, М. (1987). 283 с.