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Nuclear spin dynamics and noise in anisotropic large box model∗
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We consider the central spin model in the box approximation taking into account external magnetic field and

anisotropy of the hyperfine interaction. From the exact Hamiltonian diagonalization we obtain analytical expressions

for the nuclear spin dynamics in the limit of many nuclear spins. We predict the nuclear spin precession in zero

magnetic field for the case of anisotropic interaction between electron and nuclear spins. We calculate and describe
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of the nuclear spin induced current fluctuations in organic semiconductors.
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1. Introduction

Charge carriers in semiconductors can be localized in

many ways: at impurities, at defects, in quantum dots,

at roughnessies of the quantum well interfaces, at organic

semiconducting molecules [1]. The most interesting case is

the localization in quantum dots, when the parameters of

localizing potential can be tuned over the wide range.

The first quantum dots (nanocrystals) were synthesized

by Ekimov and Onushchenko in 1981 by colloidal synthe-

sis [2]. Theoretically the optical interband transitions in

them were described by Efros [3]. A decade later in the

pioneering work [4] the GaAs-based quantum dots were

obtain by Stranski–Krastanov method, which demonstrated

narrow luminescence lines.

The interest in the investigation of the quantum dots in

the XXIst century is related mainly to the spin effects [5,6].
The spin dynamics of electrons in quantum dots in small

magnetic fields is determined, as it was shown by Merkulov,

Efros, and Rosen, by the hyperfine interaction with a

large number of the host lattice nuclear spins [7]. This

interaction leads to a number of bright spin phenomena such

as Hanle effect [8], polarization recovery [9], resonance spin

amplification [10], mode locking [11], spin inertia [12,13],
low frequency spin noise [124,15], dynamic polarization of

electron spins [16,17] e. t. c.
In the past few years the interest in the investigation of

spins in quantum dots has shifted from electrons and holes

to the nuclei of the host lattice [18–21]. This is related

with their longer spin relaxation and dephasing times, which

allows one to talk about nuclear spins as a platform for the

storage and processing of the quantum information [22].
The simplest exactly solvable model for the description

of the nuclear spin dynamics is the box model [23]. In

∗ This is a translation of the original manuscript in Russian available in

the supplementary files at arXiv and at URL.

the framework of this model, we have obtained transparent

analytical expressions for the nuclear spin dynamics and

have calculated analytically their spin noise spectra [24],
which agree with the previous numeric calculations [25].

In this work, we rederive the previous results by a new

method, and also generalize them for the case of the

anisotropic hyperfine interaction. An important result is

the prediction of the nuclear spin dynamics for anisotropic

hyperfine interaction in zero magnetic field. In particular,

this prediction opens the way for the efficient detection

of the current noise induced by the nuclear spin noise in

organic semiconductors.

2. Exact solution of box model

The general Hamiltonian of the central spin model in an

external magnetic field has the form

H =

N
∑

k=1

SÂkIk + ~�BS +

N
∑

k=1

~ω
(k)
B Ik . (1)

Here S is the central spin, k enumerates N nuclear spins Ik ,

Âk are the corresponding tensors of the hyperfine interac-

tion, �B and ω
(k)
B are the Larmor precession frequencies

of electron and nuclear spins in the external magnetic field,

respectively. We consider, as usual, all nuclear and electron

spins equal to 1/2.

In this work, we consider the box model, where all

the hyperfine interaction tensors and all the nuclear spin

precession frequencies are equal: Âk = Â and ω
(k)
B = ωB .

In this case, the Hamiltonian can be written it terms of the

total nuclear spin

I =

N
∑

k=1

Ik : (2)
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H = SÂI + ~�BS + ~ωB I. (3)

We consider the case, when the hyperfine interaction tensor

has the nonzero components Az z ≡ A‖ and Axx = Ayy = A⊥,

and the external magnetic field is applied along the z axis,

so �B and ωB are parallel to this axis. The spectrum of

this Hamiltonian was found by Kozlov [23], and below we

reproduce his result.

The Hamiltonian of the box model conserves the absolute

value of the total nuclear angular momentum, so the

eigenstates can be parameterized by the quantity I , which

takes the values from (N mod 2)/2 to N/2 with the

step 1. For the given value of I , the system has 2(2I + 1)P
eigenstates, where the multiplier 2 describes the number of

electron spin states, 2I + 1 is the number of the total nuclear

spin projections, and

P = CN/2+I
N −CN/2+I−1

N (4)

is the number of the realizations of the given nuclear spin I
expressed as the difference of the binomial coefficients [26].

In the system, the projection of the total angular

momentum Fz = Sz + Iz is conserved. It takes the values

from −I − 1/2 to I + 1/2 with the step 1. For each of

the values except for the largest and the smallest, there are

two eigenstates, which are the linear combinations of the

functions |Fz − 1/2, ↑〉 and |Fz + 1/2, ↓〉, where |Iz , ↑ / ↓〉
are the wave functions with the nuclear spin projection Iz

along the z axis and the electron spin parallel/antiparallel to

the z axis. In the basis of this pair of states, the Hamiltonian

can be written as

H(Fz ) = ~ωBFz −
A‖

4
+ ~�eS, (5)

where

�e,x =
A⊥

~

√

I(I + 1) − F2
z + 1/4, (6a)

�e,y = 0, �e,z = �B − ωB +
A‖

~
Fz . (6b)

The quantity �e depends on Fz , but hereafter we omit this

argument for brevity. Eigenenergies have the form

E±(Fz ) = ~ωB Fz −
A‖

4
± ~�e/2, (7)

where

�e = |�e |

=
1

~

√

A2
⊥I(I + 1) + ~

2(�B − ωB)2 +

+ 2A‖Fz ~(�B − ωB) + (A2
‖ − A2

⊥)F2
z + A2

⊥/4
,

and the corresponding wave functions are

9±(Fz ) = A±(Fz )|Fz + 1/2, ↓〉 + B±(Fz )|Fz − 1/2, ↑〉,
(8)

with

A+(Fz ) = −B−(Fz ) =
�e,x

√

2�e(�e + �e,z )
,

B+(Fz ) = A−(Fz ) =

√

�e + �e,z

2�e
. (9)

Moreover, there are two extreme eigenstates |N/2, ↑〉 and

| − N/2, ↓〉 with the energies A‖N/4± ~(�B + ωBN)/2,
respectively.

For the description of the nuclear spin dynamics, let us

consider the linear combinations of the wave functions

9±(t) = α±(t)9±(Iz + 1/2) + β±(t)9±(Iz − 1/2) (10)

for the given value of Iz . Time evolution of this combination

is described by

α±(t) = α±(0) exp[−iE±(Iz + 1/2)t/~],

β±(t) = β±(0) exp[−iE±(Iz − 1/2)t/~]. (11)

The average transverse components of the nuclear spin

are given by the expression 〈Ix ,y (t)〉 = 〈9±(t)|Ix ,y |9±(t)〉.
Explicitly, they are equal to

〈Ix (t) + i Iy(t)〉 = α∗
±(t)β±(t)

×
[

A(Iz + 1/2)A(Iz − 1/2)
√

(I − Iz )(I + Iz + 1)

+ B(Iz + 1/2)B(Iz − 1/2)
√

(I − Iz + 1)(I + Iz )
]

.

(12)
From Eq. (11) we obtain

〈Ix (t) + i Iy (t)〉 = 〈Ix (0) + i Iy(0)〉ei ω±t, (13)

where

ω± =
E±(Iz + 1/2) − E±(Iz − 1/2)

~
. (14)

Thus, the average nuclear spin in the (xy) plane for the lin-

ear combinations of the wave functions under consideration

precesses about the z axis with the frequency ω±.

3. Large box limit

In the limit of the large nuclear spin, I ≫ 1, from Eq. (14)
we obtain

ω± = ωB ±
A‖~�B + (A2

‖ − A2
⊥)Iz

2~2�e
, (15)

where we neglect ωB in comparison with �B because of

the large difference between electron and nuclear g-factors.
Moreover, in this limit, from Eq. (6) we obtain

�e = �B +
Â

~
I. (16)
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Figure 1. The numeric calculation of 〈Ix (t)〉 for the cases of

A‖ = 0 (blue solid curve) and A⊥ = 0 (red dashed curve) and for

the parameters given in the main text. The period of oscillations is

determined from Eq. (15) as T = 2π/|ω±|.

These expressions can be also obtained from the follo-

wing qualitative considerations. Let us consider I and S as

classical three-dimensional vectors. Then, as one can see

from the Hamiltonian (3), �e from Eq. (16) is indeed the

electron spin precession frequency for the given I. Further,

as one can see from Eq. (7), the eigenstates with the

subscripts ± correspond to the electron spin parallel and

antiparallel to �e . In these states,

S = ± �e

2�e
. (17)

In the same time, the nuclear spin precession frequency,

as it also follows from the Hamiltonian (3), equals to

ωn = ωB +
Â

~
S. (18)

For the states with the subscripts ±, from Eq. (17) we

obtain

ωn = ωB ± Â�e

2~�e
. (19)

Now, we substitute here Eq. (16) and use the fact that

one can subtract from the precession frequency of I a vector

A2
⊥I/(2~

2�e), which is parallel to I. As a result, we obtain

d I

d t
= ω±ez × I, (20)

where ω± is given by Eq. (15). In this expression, the

precession frequency ω± does not depend on time.

Fig. 1 shows the exact calculation of the oscillations of

〈Ix (t)〉 in zero magnetic field, �B = ωB = 0, for the cases

of anisotropic hyperfine interaction A⊥ = 0 and A‖ = 0. As

an initial condition we chose the orientation of the total

nuclear spin I = 50 in the (xz ) plane with the angle π/4

to the axes and unpolarized electron spin. One can see that

the nuclear spin indeed precesses with the frequency (15).
For the limit A‖ = 0 one can see also the decay of the

oscillations, which disappears in the limit of large I .

4. Nuclear spin noise

One of the most powerful methods to investigate

the nuclear spin dynamics is the spin noise spectrosco-

py [14,27–30]. The nuclear spin noise spectrum is defined

as

(I2α)ω =

∞
∫

−∞

〈Iα(0)Iα(τ )〉ei ωτ d τ , (21)

where α = x , y, z and the angular brackets denote the

quantum statistical averaging. We consider the experimen-

tally relevant case of high temperatures, when the nuclear

polarization is negligible, so the distribution function of the

total nuclear spin has the form [14]

F(I) =

(

2

πN

)3/2

exp

(

−2I2

N

)

. (22)

The dynamics of the nuclear spin z component is absent

in our model, while for the two other components from the

axial symmetry one has

(I2x)ω = (I2y )ω. (23)

So in the following we consider the spectrum (I2x)ω .
Moreover, we neglect the Zeeman splitting of the nuclear

spin sublevels ωB , because it leads to the splitting of the

spectrum into the two equivalent components only [24].

In this limit, it follows from the equation of motion (13)
that

〈Ix (0)Ix (τ )〉 = 〈I2x (0) cos(ωnτ )〉, (24)

where

ωn =

∣

∣

∣

∣

∣

∣

A‖~�B + (A2
‖ − A2

⊥)Iz

2~

√

(~�B + A‖Iz )2 + A2
⊥(I2x + I2y )

∣

∣

∣

∣

∣

∣

(25)

is derived from Eq. (15). Further, from the definition (21)
we obtain the general expression for the spectrum at

positive frequencies

(I2x )ω = π〈I2xδ(ω − ωn)〉, (26)

where the averaging should be performed with the distribu-

tion function (22).

We could not derive a general analytical expression for

the spin noise spectrum. Therefore in what follows we

consider a number of particular cases.

The most interesting case is the limit of zero magnetic

field, �B = 0. In this limit, the nuclear spin precession

frequency (25) does not depend on the absolute value of

the nuclear spin:

ωn =

∣

∣(A2
‖ − A2

⊥)Iz

∣

∣

2~

√

A2
‖I2z + A2

⊥(I2x + I2y )
. (27)
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Figure 2. The spin noise spectra in zero magnetic field, �B = 0, for the different anisotropies of the hyperfine interaction indicated in

the legends, calculated after Eq. (28).

The averaging over the directions of I gives

(I2x )ω =
3

4
πN~A⊥

A4
⊥ + A4

‖ − 2A2
‖

[

A2
⊥ + 2 (~ω)

2]

√

∣

∣A2
‖ − A2

⊥

∣

∣

∣

∣A2
‖ − A2

⊥ − (2~ω)2
∣

∣

5/2
.

(28)
Here, the spectrum is limited by the frequency

|A2
‖ − A2

⊥|/(2~A‖).
If the longitudinal component of the hyperfine interaction

tensor is zero, A‖ = 0, then this expression simplifies to

(I2x )ω =
3π~N

4A⊥

[

(2~ω/A⊥)2 + 1
]5/2

. (29)

Here the spectrum extends to all frequencies.

In Fig. 2 we show the spin noise spectra for the different

degrees of the anisotropy. For convenience, the frequency

is normalized by A⊥/~ in the case of A⊥ > A‖ [panel (a)]
and by A‖/~ in the case of A⊥ < A‖ [panel (b)]. In the

limit of the hyperfine interaction in (xy) plane, A‖ = 0,

the spectrum is centered at zero frequency and has the

width of the order of A⊥/~ in agreement with Eq. (29).
With decrease of the anisotropy, the spectrum narrows

remaining centered at zero frequency until A‖ = A⊥, when

the spectrum becomes singular.

Further, with increase of the ratio A‖/A⊥ the maximum

in the spectrum appears at a finite frequency, which shifts

towards ω = A‖/(2~) in the limit of A‖ ≫ A⊥. In the same

time, the width of the spectrum first increases and then

decrease and eventually vanishes. This is related to the

fact that the nuclear spin precession frequency equals to

A‖/(2~), as it follows from Eq. (25), and it does not depend

on the direction of the nuclear spin I.

Let us turn to the analysis of the role of the magnetic

field.

First, if the hyperfine interaction is predominantly along

the z axis, A‖ ≫ A⊥, then the spin precession frequency

remains equal to A‖/(2~) and the spin noise spectrum does

not get modified.

Second, in the case of the isotropic hyperfine interaction,

A‖ = A⊥, we have shown previously that the spectrum

shifts from the zero frequency to A/(2~) with increase

of the magnetic field [24]. In the same time, its width

changes nonmonotonously and tends to zero in the limit of

�B → ∞.

Finally, in the limit of the hyperfine interaction predomi-

nantly in the (xy) plane, A‖ = 0, one can perform averaging

in the general Eq. (26) analytically, first over Iz with the

help of the δ-function, and then over the components Ix

and Iy . The answer for the spin noise spectrum in this limit

has the form

(I2x )ω =

√
π~N

4A⊥(1 + ν2)5/2

[

6b
√

1 + ν2e−ν2b2

+
√
π

(

3− 2b2 − 2b2ν2
)

Erfc (b
√

1 + ν2)eb2
]

,

(30)

where for the brevity we introduce the dimensionless

frequency ν = 2~ω/A⊥ and the dimensionless magnetic

field b = (~�B/A⊥)
√
2/N, and Erfc(x) = 1− Erf(x) being

the complementary error function. In the limit of zero

magnetic field, �B → 0, this expression transforms into

previously derived answer (29).

The dependence of the spectra on the magnetic field

in this limit is illustrated in Fig. 3. With increase of the

magnetic field, the spectrum narrows, but remains centered

at zero frequency.

Generally, the spin noise spectra can be calculated

numerically after Eq. 26. In Fig. 4 we show the results

of the numeric calculations with the averaging over 107

random initial nuclear spin states. The three values of the

magnetic field are shown: ~�B = 0.2A‖

√
N/2, when the

Zeeman energy is smaller than the hyperfine interaction

energy; ~�B = A‖

√
N/2 when they are comparable; and

~�B = 10A‖

√
N/2, when the former dominates the latter.

For each value of the field the three degrees of the

anisotropy are considered: A‖/A⊥ = 2, 1 and 1/2.
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Figure 3. Nuclear spin noise spectra for the hyperfine interaction

in the (xy) plane, A‖ = 0, for the different magnetic fields

indicated in the legend, calculated after Eq. (30).

In particular, Fig. 4, a confirms the nuclear spin precession

in small magnetic field. Here in agreement with the limiting

cases described above, the peak in the spectrum is narrow

and is located at a low frequency, while for the cases of

A‖/A⊥ = 2 and 1/2 the peak is broad and is located at

finite and zero frequencies, respectively.
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and 10 (c) for the anisotropies of the hyperfine interaction given in the legends.

It follows from Fig. 4, c that in the large magnetic fields

the spectrum, in agreement with the previous analysis,

is centered at the frequency A‖/(2~) and its width is

determined by A⊥. Panel (b) in Fig. 4 shows the transition

between the two limiting cases.

5. Discussion and conclusion

The description of the nuclear spin dynamics from the

exact Hamiltonian diagonalization was performed in this

work for the states, which are coherent superpositions

of two eigenfunctions. In reality, the nuclear spin state

with the given average value of I typically is a coherent

collective nuclear spin state, i.e. a superposition of ∼
√

I
eigenfunctions. However, for the large I ,

√
I is relatively

small, so the results derived above are valid.

Moreover, in the framework of this model one can

consider also coherent superpositions of the states with

the different orientations of the electron spin. However,

since the nuclear spin dynamics is slow, the electron spin

coherence in realistic systems at the corresponding time

scales, would not be preserved, probably. Nevertheless,

this does not affect the applicability of our theory to the

description of the nuclear spin dynamics, nuclear spin noise,

and also generation of the entangled and squeezed nuclear
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spin states [24] at the time scales up to the longitudinal

electron spin relaxation time. In the quantum dots of the

A3B5 type, these times are typically of the order of a few

microseconds.

A significant disadvantage of the considered model is the

approximation of the homogeneous hyperfine interaction,

which is typically not fulfilled. Nevertheless, the previous

investigations point out that the box model is qualitatively

correct [25,31–34], in particular, for the subensemble of

the nuclei in the vicinity of the center of the electron

wave function, the constants of the hyperfine interaction

are close to each other. Also, an interesting generalization

of the model would be the consideration of the different

orientations of the principal axis of the hyperfine interaction

and external magnetic field.

One of the interesting applications of the developed

theory is the description of the electric properties of organic

semiconductors. It turns out that in many of them, the

hyperfine interaction between the electron spins and the

nuclei of the molecules significantly affects the conductivity

even at the room temperature [35]. Previously, we have

shown that the nuclear spin noise in these materials leads

to the current noise [36]. Its measurement would give an

important information about the details of the hyperfine

interaction in organic semiconductors.

Such a measurement, however, is spoiled by other sources

of the low frequency noise such as, for example, the

broad distribution of the probabilities of the electron hops

between the molecules [37]. We believe that it is easier

to separate the contribution related to the nuclear spin

fluctuations in the case when it represents a peak at the

finite frequency, which is larger than its width. Previously,

we have shown that this situation is realized for the isotropic

hyperfine interaction in the strong enough magnetic field,

~�B &
√

NA. In this case, however, the influence of the

nuclear spins on the conductivity is suppressed and the

amplitude of the current fluctuations, induced by the nuclear

spin noise, is small.

But the result of this work stands that the spin noise

spectrum has a peak at a finite frequency even in zero

magnetic field, if the hyperfine interaction is more efficient

along the z axis, A‖ > A⊥. This regime, as we think, is

the most perspective for the experimental observation of

the current noise, induced by the nuclear spin noise. In

the same time, this very regime is expected because of

the mostly p-type of the electronic states in the organic

molecules. For these states, the contribution of the dipole-

dipole hyperfine interaction turns out to be comparable to

the contribution from the isotropic contact interaction [38].
The specific form of the interaction tensor along with the

possibility to apply the box model are defined by the

configuration of molecules and should be studied separately

for each organic semiconductor.

In conclusion, in this work from the exact diagonalization

of the Hamiltonian of the box model we obtained the

analytic expressions for the nuclear spin dynamics for

many nuclear spins accounting for the anisotropy of the

hyperfine interaction. These expressions allowed us to

calculate the nuclear spin noise spectra and to obtain for

them the analytical expressions in the number of limiting

cases. The key result is the prediction of the nuclear spin

precession in zero magnetic field, which can be used for

the detection of the nuclear induced current noise in organic

semiconductors.
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