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Introduction

Recently, nonlinear phenomena in various media (crys-

tals, graphene, various mixtures, composites, weakly ionized

gases, suspensions etc.) are being actively studied; they

are related to nonlinear interaction of electromagnetic (EM)

waves (see, for instance, [1-4]). At the same time, less atten-

tion has been paid to nonlinear phenomena in dense charged

systems (Coulombic systems and plasma), caused by a

quadratic response to an electromagnetic field — second

harmonic generation (SHG), parametric generation of radi-

ation (PGR) (see [5] and references therein), or by thermal

perturbations — multiplicity of thermal conditions in media

with volumetric heat release [6,7]. SHG and PGR in dense

plasma in laboratory conditions can be implemented in the

presence of stationary relatively strong magnetic fields [5].

Studied have shown (see, for instance, [5,7,8–11]) that

successive analytic calculation of precise formal expressions

(obtained according to the response theory [12,13]) for

quadratic response functions (QRF) of dense charged media

with a strong interparticle interaction under perturbations

is impossible, computer modeling of precise expressions

for QRFs even for model Coulombic systems is difficult,

therefore, model approaches should be used to determine

these functions. One of the model variants can be

the application (for the response function) of an explicit

approximation with adjustment parameters determined from

precise frequency moments of QRF and the corresponding

correlators [5–7]. In the present paper we will consider

the quadratic fluctuation-dissipative theorem and frequency

moments of quadratic response functions under the action

of an electromagnetic field of dense charged media in a

constant magnetic field, on which the suggested model is

based.

1. Quadratic fluctuation-dissipative
theorem

Let us define precise expressions for the quadratic

response function of a charged medium (dense plasma) in a

constant magnetic field with vector potential A(r) under the
action of an electromagnetic field according to the nonlinear

response theory. In doing so, we will use the complete

Hamiltonians of the system (Ĥ), medium (H0) and the

perturbation Hamiltonian Hext related to exposure of the

medium to an external field D(r, t), in the known form

(exclusive of the particle spin; see, for instance, [12]).

Ĥ = H0 + Hext,

H0 = 6µ6i
1

2mi

[
pµi −

ei

c
Aµ(ri)

]2
+ U{ri},

Hext = −6i eiri · D(r, t)eηt . (1)

Here c , mi , ei , pµi , Aµ, U{ri} are respectively the speed

of light, mass, charge, µ-component of impulse of the i-th
particle, µ — component of the vector potential of the

constant external magnetic field and energy of interaction

of the medium (plasma) particles with each other, 6i eiri —
dipole moment of the medium, η — small positive quantity

that ensures adiabaticity of inclusion of perturbation (and
causality — see [13]). Let us write Hext for generality as

Hext = −
∑

j

∫
drB j(r)b

ext
j (r, t). (2)
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Here B(r) is a certain observable system property

(e.g., space charge density, electric current density, dipole

moment), bext(r, t) is the corresponding generalized force

(e.g., external electric field). Let us write out an expression

for response of a certain observable system property B(r)
to perturbation (1) [13]

〈B〉 = 〈B〉0 +
∞∑

n=1

1

(i~)n

t∫

−∞

t1∫

−∞

. . .

tn−1∫

−∞

S p{B(r)
[
Hext(t1)

× [Hext(t2) . . . [H
ext(tn), ρe ] . . .]}dt1 . . . dtn. (3)

Here 〈. . .〉, 〈. . .〉0 denotes averaging by ρ and ρe (equi-

librium matrix of density) respectively, [..,..] — commutator.

The quadratic response has the form

〈B〉(2) =
1

(i~)2

t∫

−∞

t1∫

−∞

S p
{

B(r)
[
Hext(t1)[H

ext(t2, ρe)]
]}

dt1dt2,

〈B i〉
(2) =

∑

j,k

t∫

−∞

t1∫

−∞

χ̂
(2)
i jk(t − t1, t − t2; r− r1, r− r2)

× bext
j (r1, t1)b

ext
k (r2, t2)dt1dt2dr1dr2, (4)

B(r, t), Hext(t) in these expressions are operators in

Heisenberg representation (Hext(t) = eiH0tHexte−iH0t , here

H0 is the Hamiltonian of an unperturbed system, {b j, bk

are perturbations. Let us write out, having introduced

the θ-functions, the second-order response function in a

symmetrized form (according to the last two indices) (see,
for instance, [7]; V is system volume):

χ̂
(2)
i jk(r − r1, t − t1, r− r2, t − t2) = −

θ(t − t1)θ(t − t2)
2~2V

× {θ(t1 − t2)
〈[

[B i(r, t), B j(r1, t)1], Bk(r2, t2)
]〉

0

+ θ(t2 − t1)
〈[

[B i(r, t), Bk(r2, t2)], B j(r1, t1)
]〉

0
}. (5)

Thanks to this definition of QRF, the time integration

limits in (4) can be extended to infinity. Let us substitute (5)

in (4) and go to a Fourier representation

〈B i(k, ω)〉(2) =
1

V (2π)2

∑

k1,k2

∫
dω1dω2χ̂

(2)
i jk(k1, ω1; k2, ω2)

× bext
j (k1, ω1)b

ext
k (k2, ω2). (6)

The expressions for χ̂
(2)
i jk(k1, ω1; k2, ω2) and

〈B i(−k,−ω)B j(k1, ω1)Bk(k2, ω2)〉0 are

χ̂
(2)
i jk(k1, ω1; k2, ω2) = −

N
2~2V

{∫
dω′

1

2π

∫
dω′

2

2π

× [1/i(ω′
1 − ω1)] [1/i(ω′

1 + ω′
2 − ω1 − ω2)]

× [S(012) + S(210) − S(102) − S(201)]

+

∫
dω′

1

2π

∫
dω′

2

2π
[1/i(ω′

2 − ω2)][1/i(ω′
1+ω′

2−ω1 − ω2)]

× [S(021) + S(120) − S(201) − S(102)]

}
, (7)

〈B i(−k,−ω)B j(k1, ω1)Bk(k2, ω2)〉0

= 2πNδ(ω − ω1 − ω2)δ(k − k1 − k2)S(012). (8)

Set {a, b, c} in correlator S(abc) denotes combination

k, ω with the corresponding indices. Symmetry of response

function χ̂
(2)
i jk in relation to the two last indices is evident

from definition (5). For the Fourier transform of response

function χ̂
(2)
i jk(k1, ω1; k2, ω2) the ratios are

χ̂
(2)
ik j(k1, ω1; k2, ω2) = χ̂

(2)
i jk(k2, ω2; k1, ω1),

χ̂
(2)
i jk(k1, ω1; k2, ω2) = χ̂

(2)∗

i jk (−k1,−ω1;−k2,−ω2), (9)

since χ̂
(2)
i jk(r1, τ1; r2, τ2) is a real function, which follows

from its phenomenological definition. The real and imag-

inary parts χ̂
(2)
i jk(k1, ω1; k2, ω2) are interrelated similarly to

the Kramers−Kronig relations for linear response func-

tions [6,7]. It should be noted than (5), (7) can be

considered as one of the simplest forms of the non-linear

fluctuation-dissipative theorem (NFDT). By applying the

Sokhotski formula (1/(x ± iδ) = P(1/x) ∓ iπδ(x)) [13],
we find relations between the real and imaginary parts

of the response function and S(abc) correlators. By

making combinations from Re χ̂
(2)
i jk(k1, ω1; k2, ω2) and by

considering the properties of a cyclic rearrangement of

operators in S(abc) (exp(−βωa~)S(abc) = S(bca)), we

obtain the ratios between Re χ̂
(2)
i jk and the S(abc) correlators,

which represent one of the variants of a non-linear FDT

(see [7] and references therein):

−
Re χ̂

(2)
i jk(k1, ω1; k2, ω2)

ω1ω2

−
Re χ̂

(2)
i jk(k2, ω2; k, ω)

ωω2

−
Re χ̂

(2)
i jk(k, ω; k1, ω1)

ω1ω
=

−n
4~2

{
S(102) + S(201)

ω1ω2

−
S(012) + S(210)

ωω2

−
S(021) + S(120)

ω1ω

}
. (10)

These expressions can be in principle applied to calculate

frequency moments of the real part of quadratic response
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functions, since they relate frequency moments of response

functions to frequency moments of correlators. Calculation

of frequency moments of correlators is described in the

next section. By setting a QRF, according to the suggested

model (see Introduction), as an explicit approximation with

adjustment parameters, we can determine these parameters

by comparing the frequency moments in the right and left

members (10). Adjustment parameters for QRF depend

on thermophysical characteristics of the charged medium

(dense plasma, Coulombic system) and magnetic field. It

should be noted that correlators in the linear case are related

to the imaginary part of the response function and the FDT

contains one response function and one correlator (see,
for instance, [6]). The quadratic FDT looks the simplest

in the classical limit. Taking into account ~ → 0, (10) is

substituted by

− ωRe χ̂
(2)
i jk(k1, ω1; k2, ω2) − ω1Re χ̂

(2)
i jk(k2, ω2; k, ω)

− ω2Re χ̂
(2)
i jk(k, ω; k1, ω1) =

nβ2

8

[
S(210)ω2ω1(ω1 + ω2)

+ S(201)ω2ω1(ω2 + ω1)
]

=
nβ2

4
S(012)ωω1ω2, (11)

since correlators in the classical limit are invariant in relation

to the rearrangement of arguments. Formula (11) is

used below since laboratory dense plasma is often non-

degenerate [5].

Let us consider QRF χ̂
(2)
p,i jk(k1, ω1; k2, ω2) and the

corresponding correlators. These QRFs determine the

quadratic contribution to polarization of charged media P(2)

(P = 6i eiri/V ), i.e. SHG and PGR (see, for instance, [7]
and references therein). From the ratio (see, for in-

stance, [14])
Ṗ = 4πj (12)

QRF χ̂
(2)
J,i jk(k1, ω1; k2, ω2), related to χ̂

(2)
p,i jk(k1, ω1; k2, ω2),

can be assigned in a form similar to (7). Tensor

χ̂
(2)
J,i jk describes the quadratic contribution j (2)

i (k, ω) to the

electric current density of the charged medium under the

EM-field action and, naturally, determines the quadratic

electrical conductivity σ̂
(2)
i jk (k1, ω1; k2, ω2) (cf. [7]). In χ̂

(2)
J,i jk

(and σ̂
(2)
i jk ), S j(abc) corresponds to the correlator of current

densities.

At the same time, the NDFT in form (11) is inconvenient
in implementation of a model approach that consists in

the application of an explicit approximation for response

functions χ̂
(2)
p,i jk (e.g., in the form from [5]) or χ̂

(2)
J,i jk with

adjustment parameters and precise values of frequency

moments of the corresponding correlators, because tensors

in (11) in this case have 18 components each and are

not invariant in relation to the representations. Therefore,

we will perform a convolution (according to wave vectors

(k, k1, k2)) for χ̂
(2)
J,i jk and the correlator in the right member

of (11) and use the charge conservation equation (13) (see,
for instance, [6])

∂ρ/∂t = −div J. (13)

In other words, by making a longitudinal projection of

tensors χ̂
(2)
J,i jk and correlator in (11), we get an NFDT in the

form of an invariant ratio for scalars: QRF χ̂(2) of plasma in

a constant magnetic field to a longitudinal field in form (11),
which describes the contribution of ρ(2)(k, ω) to the total

charge density, and a correlator of charge densities. Let us

write out the longitudinal NFDT

− ωRe χ̂(2)(12) − ω1Re χ̂
(2)(20) − ω2Re χ̂

(2)(01)

=
nβ2

4
Sρ(012)ωω1ω2. (14)

In (14) χ̂(2) is the QRF of charges [7] to an external field,

set (a, b) denotes kω combination with the corresponding

indices.

Thus, (14) can be used to determine the
”
scalar“

adjustment parameters for the χ̂(2) assigned according to the

suggested model in the form of an explicit approximation

with adjustment parameters — see Introduction), which

depend on thermophysical characteristics of a charged

medium (dense plasma, Coulombic system) and magnetic

field. These parameters should be used for the whole range

of QRFs (χ̂
(2)
p,i jk , χ̂

(2)
J,i jk , χ̂

(2)) interrelated with each other.

2. Frequency moments of correlators for
a charged medium in a constant
magnetic field

Let us consider a procedure for calculation of frequency

moments of density correlator Sρ(abc) for equilibrium

dense plasma in a constant magnetic field, taking into

account the parity of density operators in relation to time

reversal. Frequency moments Sρ(012) in the classical

limit are determined according to the relation (see, for

instance, [6,7])

Sr 1,r 2
ρ (012) =

∞∫

−∞

dω1

∞∫

−∞

dω2ω
r 1
1 ωr 2

2 Scl(012) = (i)r 1+r 2

×
∂r 1+r 2Scl(012)

∂tr 1
1 ∂tr 2

2

∣∣∣∣∣
t1−t2=0

= (i)r 1+r 2 ∂r 1

∂tr 1
1

∂r 2

∂tr 2
2

×
1

N
〈ρ(k, 0)ρ(k1, t1)ρ(k2, t2)〉0

∣∣
t1=t2=0

. (15)

Densities in Sr 1,r 2
ρ (012) (k ‖ z) have the form

ρ(k, 0) =
N∑

t=1

ez i e
−ikz i ,

ρ(k1, t1) =
N∑

j=1

ez je
−i

(
kz
1
z j(t1)+kx

1x j(t1)
)
,

ρ(k2, t2) =

N∑

k=1

ez ke−i
(

kz
2
z k(t2)+kx

2x k(t2)
)
. (16)
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N in (16) is the total number of particles in the system.

We can consider moments Sr 1,r 2
ρ (012) at r1, r2 = 0.0; 0.2;

2.2; 1.3 etc. according to (15), (16). Let us write out the

first time derivatives from densities (vz
j is the z -coordinate

of speed of the j-th particle)

ρ̇ j(k1, t1) =

N∑

j=1

ez j

[
−ikz

1v
z
j(t1) − ikx

1v
x
j (t1)

]

× e−i
(

kz
1
z j (t1)+kx

1x j (t1)
)
,

ρ̇k(k2, t2) =
N∑

k=1

ez k
[
−ikz

2v
z
k(t2) − ikx

2v
x
k (t2)

]

× e−i
(

kz
2
z k(t2)+kx

2x k(t2)
)
,

ρ̈ j(k1, t1) =

N∑

j=1

ez j
[
−ikz

1v̇
z
j(t1) − ikx

1 v̇
x
j (t1)

]

× e−i
(

kz
1
z j (t1)+kx

1x j (t1)
)

+
N∑

j=1

ez j
[
−ikx

1v
x
j (t1) − ikz

1v
z
j(t1)

]2

× e−i
(

kz
1
z j (t1)+kx

1x j (t1)
)
,

ρ̈k(k2, t2) =

N∑

k=1

ez k
[
−ikz

2v̇
z
k(t2) − ikx

2v̇
x
k(t2)

]

× e−i
(

kz
2
z k(t2)+kx

2x k(t2)
)

+

N∑

k=1

ez k
[
−ikx

2v
x
k(t2) − ikz

2v
z
k(t2)

]2

× e−i
(

kz
2
z k(t2)+kx

2x k(t2)
)
.

Let us write an expression which is a frequency integral

Sr 1,r 2
ρ (012) (see (14)) at r1, r2 = 2.2:

(i)r 1+r 2 ∂r 1

∂tr 1
1

∂r 2

∂tr 2
2

1

N
〈ρ(k, 0)ρ(k1, t1)ρ(k2, t2)〉0

∣∣
t1−t2=0

= (i)4
1

N
〈ρ(k, 0)ρ̈(k1, t1)ρ̈(k2, t2)〉0

∣∣
t1−t2=0

= (i4/N)

×
〈 N∑

i=1

ez i e
−ikz i

{ N∑

j=1

ez j
[
−ikz

1v̇
z
j(t1) − ikx

1v̇
x
j (t1)

]

× e−i
(

kz
1
z j(t1)+kx

1x j(t1)
)

+

N∑

j=1

ez j
[
−ikx

1v
x
j (t1) − ikz

1v
z
j(t1)

]2

× e−i
(

kz
1
z j(t1)+kx

1x j(t1)
)}{ N∑

k=1

ez k

[
−ikz

2v̇
z
k(t2) − ikx

2v̇
x
k(t2)

]

× e−i
(

kz
2
z k(t2)+kx

2x k(t2)
)

+

N∑

k=1

ez k
[
−ikx

2v
x
k(t2) − ikz

2v
z
k(t2)

]2

× e−i
(

kz
2
z k(t2)+kx

2x k(t2)
)}〉

0
. (17a)

Calculations as per (15)−(17a) are performed using the

following definitions for the averaging of sums and products

(see [6] and references therein, V is system volume, Fs is

s -partial correlation function):

Ms =
N(N − 1) . . . (N − s + 1)

s !V s

∫

V

. . .

∫

V

f (r1 . . . r s )

× Fs(r1 . . . r s )dr1 . . . dr s ,

Ms =
∑

1≤i1...is≤N

f (r i1 . . . r is ),

〈
∂U
∂x i

F(r1 . . . rN)

〉

0

= β−1〈∂F(r1 . . . rN)/∂x i〉0. (17b)

Similarly to [6], we find the following for S2,2
ρ (012) (signs

of exponent sums and averaging are omitted in formulas

1−4 for brevity — cf. (17a); H — magnetic field):

1. [−ikz
1v̇

z
j − ikx

1v̇
x
j ] [−ikz

2v̇
z
k − ikx

2 v̇
x
k ] = −kz

1v̇
z
j k

z
2v̇

z
k

− kx
1 v̇

x
j k

z
2v̇

z
k − kz

1v̇
z
j k

x
2v̇

x
k − kx

1v̇
x
j k

x
2v̇

x
k = −kz

1kz
2

1

m j mk

∂U
∂z j

∂U
∂z k

+ kx
1kz

2

(
−

1

m j

∂U
∂x j

+
ez j

cm j

(
v

y
j H

)x
)

1

mk

∂U
∂z k

+ kz
1kx

2

1

m j

∂U
∂z j

(
−

1

mk

∂U
∂x k

+
ez k

cmk

(
v

y
k H

)x
)

×−kx
2

(
−

1

m j

∂U
∂x j

+
ez j

cm j

(
v

y
j H

)x
)

× kx
1

(
−

1

mk

∂U
∂x k

+
ez k

cmk

(
v

y
k H

)x
)
;

2. [−ikz
1v̇

z
j − ikx

1v̇
x
j ] [−ikx

2v
x
k − ikz

2v
z
k ]
2 =

[
ikz

1

×

(
1

m j

∂U
∂z j

)
− ikx

1

(
−

1

m j

∂U
∂x j

+
ez j

cm j

(
v

y
j H

)x
)]

× [−(kx
2v

x
k)

2 − (kz
2v

z
k)

2 − 2kx
2v

x
k kz

2v
z
k ] = −ikz

1

(
1

m j

∂U
∂z j

)

× [(kx
2v

x
k)

2 + (kz
2v

z
k)

2 + 2kx
2v

x
k kz

2v
z
k ] − ikx

1

(
−

1

m j

∂U
∂x j

+
ez j

cm j

(
v

y
j H

)x
)

][−(kx
2v

x
k)

2 − (kz
2v

z
k)

2 − 2kx
2v

x
k kz

2v
z
k ];

3. [−ikx
1v

x
j − ikz

1v
z
j ]
2[−ikz

2v̇
z
k − ikx

2 v̇
x
k ] = −[(kx

1v
x
j )
2

+ (kz
2v

z
j)
2 + 2(kx

1v
x
j )(k

z
1v

z
j ]

[
ikz

2

(
1

mk

∂U
∂z k

)

− ikx
2

(
−

1

mk

∂U
∂x k

+
ez k

cmk
(vy

k H)x

)]
;
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4. [−ikx
1v

x
j − ikz

1v
z
j ]
2[−ikx

2v̇
x
k − ikz

2v̇
z
k ]
2 = [(kx

1v
x
j )
2

+ (kz
1v

z
j)
2 + 2(kx

1v
x
j )(k

z
1v

z
j ] [(k

x
2v

x
k)

2 + (kz
2v

z
k)

2

+ 2kx
2v

x
k kz

2v
z
k ].

Averaging is performed according to the Gibbs distribu-

tion (in the classical limit of Hamiltonian H0) in (17a),
using expressions 1−4. After the selection according to

the speed integration results, the term with H remains only

in item 1, the other summands in moment S2,2
ρ (012) do not

depend on magnetic field. Let us write out the expressions

corresponding to items 1−4:

1. − kz
1kz

2

1

m j mk

∂U
∂z j

∂U
∂z k

+ kx
1kz

2

(
−

1

m j

∂U
∂x j

+
ez j

cm j

(
v

y
j H

)x
)

1

mk

∂U
∂z k

+ kz
1kx

2

1

m j

∂U
∂z j

(
−

1

mk

∂U
∂x k

+
ez k

cmk

(
v

y
k H

)x
)
− kx

2

(
−

1

m j

∂U
∂x j

+
ez j

cm j

(
v

y
j H

)x
)

× kx
1

(
−

1

mk

∂U
∂x k

+
ez k

cmk

(
v

y
k H

)x
)

→ (i4/N)

×
〈 N∑

i=1

ez i e
−ikz i

N∑

j=1

ez je
−i(kz

1
z j +kx

1x j )
N∑

k=1

ez ke−i(kz
2
z k+kx

2x k)

×

{
−kz

1kz
2

1

m j mk

∂U
∂z j

∂U
∂z k

+ kx
1kz

2

(
−

1

m j

∂U
∂x j

)
1

mk

∂U
∂z k

+ kz
1kx

2

1

m j

∂U
∂z j

(
−

1

mk

∂U
∂x k

)
− kx

1kx
2

1

m j

∂U
∂x j

1

mk

∂U
∂x k

− kx
1kx

2

ez j

cm j
(vy

j H)x ez k

cmk
(vy

k H)x

}〉

0
;

2. (i4/N)
〈 N∑

i=1

ez i e
−ikz i

N∑

j=1

ez j e
−i(kz

1
z j +kx

1x j)

×
N∑

k=1

ez ke−i(kz
2
z k+kx

2x k)

[
−ikz

1

(
1

m j

∂U
∂z j

)

− ikx
1

(
1

m j

∂U
∂x j

)]
[(kx

2v
x
k )

2 + (kz
2v

z
k)

2]
〉

0
;

3. (i4/N)
〈 N∑

i=1

ez i e
−ikz i

N∑

j=1

ez j e
−i(kz

1
z j +kx

1x j)

×

N∑

k=1

ez ke−i(kz
2
z k+kx

2x k)[−(kx
1v

x
j )
2 − (kz

1v
z
j)
2]

×

[
−ikz

2

(
1

mk

∂U
∂z k

)
− ikx

2

(
1

mk

∂U
∂x k

)]〉

0
;

4. [(kx
1v

x
j )
2 + (kz

1v
z
j)
2 + 2(kx

1v
x
j )(k

z
1v

z
j ] [(k

x
2v

x
k)

2

+ (kz
2v

z
k)

2 + 2kx
2v

x
k kz

2v
z
k ] → (i4N)

〈 N∑

i=1

ez i e
−ikz i

×
N∑

j=1

ez je
−i(kz

1
z j +kx

1x j )
N∑

k=1

ez ke−i(kz
2
z k+kx

2x k){(kx
1v

x
j )
2

× (kx
2v

x
k)

2 + (kx
1v

x
j )
2(kz

2v
z
k)

2 + (kz
1v

z
j)
2(kx

2v
x
k)

2

+ (kz
1v

z
j)
2(kz

2v
z
k)

2 + 4kx
1v

x
j k

z
1v

z
j k

x
2v

x
k kz

2v
z
k}

〉

0
. (18a)

Let us perform averaging in the expression for S2,2
ρ ,

using (17b), for two-component fully ionized hydrogen

plasma with the classical statistics. Let us consider the

summands from items 1-4 term by term. The first summand

from item 1. has the form

1.1. (i4/N)
〈 N∑

i,k, j=1

e3z i z j z ke−ikz i e−i(kz
1
z j+kx

1x j )e−i(kz
2
z k+kx

2x k)

(−)kz
1kz

2

1

m j mk

∂U
∂z j

∂U
∂z k

〉

0
= β−1

N∑

i,k, j=1

e3z i z j z k(−)kz
1kz

2

×
1

m j mk

[
∂U
∂z j

(−ikz
2)+

∂2U
∂z j∂z k

]
e−i(kz i+kz

1
z j +kx

1x j +kz
2
z k+kx

2x k )

= (i4/N)β−1
〈 N∑

i,k, j=1

e3z i z j z k(−)kz
1kz

2

1

m j mk

∂2U
∂z j∂z k

×e−i(kz i+kz
1
z j+kx

1x j +kz
2
z k+kx

2x k)
〉

0
+(i4/N)β−2

〈 N∑

i,k, j=1

e3z i z jz k

× (kz
1kz

2)
2 1

m j mk
e−i(kz i+kz

1
z j+kx

1x j +kz
2
z k+kx

2x k)
〉

0
. (18b)

In the thermodynamic limit, we define

U =
∑

1≤ j≤k≤N/2

ui j +
∑

1≤ j′≤k′≤N/2

ui′ j′

+
∑

1≤ j′≤k≤N/2

u j′k +
∑

1≤ j≤k′≤N/2

u jk′ .

Here (i, j), (i ′ j ′) correspond to electrons and ions, u is

Coulombic energy of interaction of particle pairs. After

averaging of the sums by (17b) (see [6] and references

therein) we obtain the following, by selecting the principal

terms with m j , mk = me (k̂z
1 — component of a unit vector,

N′ = N/2), for different ratios between indices i, j, k :
i 6= j 6= k ; j = k ; i = j , i = k ; i = j = k (at that, the free
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index can be located in electron or ion subsystems)

(i4/N)β−1
〈 N′∑

i,k, j=1

e3z i z j z k(−)(kz
1kz

2)
1

m jmk

∂2U
∂z j∂z k

× e−i(kri +k1r j +k2rk )
〉

0
=

e3

β

kz
1kz

2

m2
e

N′(N′ − 1)

V 3

∫
(k̂z

1 · ∇1)

× (k̂z
2 · ∇2)uee(|r1 − r2|)e

−i(kr+k1r1+k2r2)

× g3e(r, r1, r2)drdr1dr2 +
e3

β

kz
1kz

2

m2
e

N′(N′ − 1)

V 3

×

∫
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2uee(|r1 − r2|)e

−i
(
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)
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e3

β

kz
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2
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e
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×

∫
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−i
(
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)

× geei(r, r1, r2)drdr1dr2 + 2
e3

β

kz
1kz

2

m2
e

N′

V 2

∫
(k̂z

1 · ∇1)

× (k̂z
2 · ∇2)uee(|r1 − r2|)e

−i
(
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)
gee(r, r1)drdr1

+
e3

β

kz
1kz

2

m2
e

N′

V 2

∫
(k̂z

1 · ∇1)
2uee(|r1 − r2|)e

−i
(
kr+(k1+k2)r1

)

× gee(r, r1)drdr1 + 2
e3

β

kz
1kz

2

m2
e

N′

V 2

∫
(k̂z

1 · ∇1)
2uei

× (|r1 − r2|)e
−i

(
kr+(k1+k2)r1

)
gei(r, r1)drdr1.

(i4/N)β−2
〈 N∑

i,k, j=1

e3z i z j z k(k
z
1kz

2)
1

m j mk
e−i(kri +k1r j +k2rk )

〉

0

= (−)
e3

β2

kz
1kz

2

m2
e

N′(N′ − 1)

V 3

∫
e−i(kr+k1r1+k2r2)

× g3e(r, r1, r2)drdr1dr2 + (−)
e3

β2

(kz
1kz

2)
2

m2
e

N′

V 2

×

∫
e−i

(
kr+(k1+k2)r1

)
gee(r, r1)drdr1+(−)2

e3

β2

(kz
1kz

2)
2

m2
e

N′

V 2

×

∫
e−i(k+k1)r+k2r1gee(r, r1)drdr1 + (−)

e3
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(kz
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2
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e

×
N′

V 2
δk+k1+k2

. (19)

The second equality in (19) corresponds to the second

expression in the right member of 1.1 (see (18b)).

The second, third and fourth summands from item 1

(1.2.−1.4., see (18a)) after averaging have a form similar

to (19). Let us consider the main contribution to the last

summand from item 1. (1.5.) which includes the magnetic

field. This contribution is different from zero at j = k .

(i4N)
〈 N′∑

i=1

ez i e
−ikz i

N′∑

j=1

ez je
−i(kz

1
z j +kx

1x j )

×

N′∑

k=1

ez k e−i(kz
2
z k+kx

2x k)

{
−kx

1kx
2

ez j

cm j
(vy

j H)x ez k

cmk
(vy

k H)x

}〉

0

=
H2N′

V 2
kx
1kx

2

e5

c2

1

βm3
e

∫
e−i

(
kr+(k1+k2)r1

)
gee(r, r1)drdr1

+
H2N′

V 2
kx
1kx

2

e5

c2

1

βm3
e
δk+k1+k2

. (20)

The averaged expressions in items 2, 3 represent a sum

of four summands whose form coincides with the right

member of the second equality in (19) at the values of the

products of the vectors before the summands respectively

−(kx
1kx

2)
2, −(kz

1kz
2)

2, −(kz
1kx

2)
2, −(kx

1kz
2)

2.

The averaged expression in item 4 consists of five terms,

the form of four of which matches the right member of

the second equality in (19) at the values of products of the

vectors before the terms: (kx
1kx

2)
2, (kz

1kz
2)

2, (kz
1kx

2)
2, (kx

1kz
2)

2,

the fifth term is equal to the integral in (20) with coefficient

4kx
1kx

2kz
1kz

2
N′

V 2
e3

β2m2
e
.

At z i = 1 (which corresponds to singly charged ions),
it is necessary to write out the formulas similar to (19)
and (20), which contain correlation functions geei , geii , gei

instead of g3e , geei , gee and the sign before the expression

in the right member changes. Thus, the main contribution to

S2,2
ρ (∼ 1/m2

e , ∼ 1/m3
e) is equal to the sum of all five terms

from items 1−4 determined above. The estimates show a

considerable contribution (20) to correlator S2,2
ρ at the inten-

sities of a constant magnetic field achievable in laboratory

experiments (plasma parameters: ne = 1017−1021 cm−3,

T = 1−10 eV, B = 104−105 Gs, at which PGR and SHG

should be studied) [5]. Let us compare for estimation the

terms (the equal multiplicands are omitted) in sums (19)

(2-th sum) and (20) ( e3

β2
(kz

1
kz
2
)2

m2
e

and
H2

βm3
e
(kx

1kx
2)

e5

c2 ); their

ratio is ∼ k2

β
/H2e2

mec2 . By expressing the wave vector through

the cut-off frequency and by selecting parameter values from

the above-mentioned ranges, we can estimate the parameter

regions where the contribution of (20) to the frequency

moment of correlator S2,2
ρ is insigniciant, considerable or

prevailing.

The above-mentioned procedure can be used to calculate

other frequency Sr 1,r 2
ρ moments of dense charged media.

Conclusion

Frequency moment S2,2
ρ has been analyzed as applied to

the conditions in laboratory dense plasma. Evidently, a

specific calculation of the main contribution to frequency
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moment S2,2
ρ according to (19), (20) (or other frequency

moments according to the corresponding relations found

using the suggested procedure in this paper) for two-

component fully ionized hydrogen plasma with the classical

statistics is a separate problem related to the setting of

an interparticle interaction potential (see, for instance, [8–
11,16–19]), correlation functions of the 2-nd and 3-rd

orders: geei , geii , gei and g3e, geei , gee at certain values

of thermodynamic parameters: temperature and pressure.

The correlations functions from (19), (20) were studied in

a large number of papers (see, for instance, [8–11,16–19]).

In their turn, explicit approximations of quadratic re-

sponse functions should be performed using expressions

which have the correct asymptotics in the limit cases, e.g.,

for rarefied plasma (see [5,14]). The use of values of

one correlator (e.g., S2,2
ρ ) at certain (P, T, H) presupposes

a one-parameter approximation for the QRF. In order to

determine the adjustment parameters, numeric values of

correlators must be compared (see (14)) with moments of

convolute approximations for tensors χ̂
(2)
p,i jk or χ̂

(2)
J,i jk .

It should be noted that we have discussed the model

approach to determination of quadratic response functions

under the action of an external field, which is based, in

particular, on calculation of their frequency moments. In

doing so, we used ratio (10) obtained within the framework

of the nonlinear theory of response to external perturba-

tion [12,13]. At the same time, nonlinear phenomena (e.g.,
PGR and SHG) in plasma are studied using an equation

in relation to polarization of the medium and electric field

E(r, t)) (see, for instance, [5,14]), with a QRF under the

action of a mean field in the given medium (they will be

denoted as χ
(2)
p,i jk etc). Therefore, construction of a model

for χ
(2)
p,i jk according to χ̂

(2)
p,i jk requires a clarification related to

substitution of the known relation D = ε̂E (ε̂ is permittivity

of the medium) into an equation similar to (6).

Thus, in this paper we have justified a model for

calculation of quadratic response functions which deter-

mine nonlinear phenomena caused by quadratic interaction

of electromagnetic waves in a dense charged medium

(Coulombic systems, plasma) in a constant magnetic field.

This approach uses the rather well-known thermodynamic

information about dense charged media and does not

require significant computer capacities as compared to

implementation of direct numerical modeling of quadratic

response functions, which is in principle possible for model

systems.
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