00

Кооперативные эффекты при стационарной генерации сверхизлучательного рамановского лазера

© К.С. Тихонов¹, А. Рот²

 ¹ Санкт-Петербургский государственный университет, 199034 Санкт-Петербург, Россия,
 ² Ганноверский университет им. Лейбница, 30167, Ганновер, Германия
 e-mail: tikhonov.kyril@gmail.com

Поступила в редакцию 08.05.2022 г. В окончательной редакции 08.05.2022 г. Принята к публикации 12.05.2022 г.

Рассмотрен стационарной режим генерации для обобщенной модели сверхизлучательного рамановского лазера. Модель включает в себя конкурирующие индивидуальные и кооперативные атомные процессы, возникающие при взаимодействии атомов с внешними световыми полями. Получены средние значения поляризации атомной среды и двухатомных корреляций. Найден диапазон значений параметров задачи, при котором в атомном ансамбле возникают кооперативные эффекты. С помощью квантовой теоремы регрессии определены спектральные характеристики генерируемого излучения. С помощью разложения по кумулянтам оценено наличие корреляций старших порядков между атомами.

Ключевые слова: сверхизлучательный лазер, коррелированные состояния атомов, кооперативные эффекты, кумулянтный анализ.

1. Введение

В основе работы сверхизлучательного лазера [1] лежит явление кооперативного спонтанного излучения (или сверхизлучения Дике) [2]. В отличие от обычных лазеров, активная среда которых находится в высокодобротном, "хорошем" резонаторе, сверхизлучательный лазер работает в режиме так называемого "плохого" резонатора [3]. В таком режиме фотоны генерируемого света покидают резонатор практически мгновенно, но этого оказывается достаточно для согласования фаз отдельных излучающих атомов друг с другом, что приводит к формированию долгоживущей коллективной когерентности в атомной среде. Со временем корреляции между атомами накапливаются и вдоль оси резонатора ансамбль атомов излучает как целое с шириной линии излучения, сравнимой с шириной атомного лазерного перехода. В теории сверхизлучательный лазер, работающий на часовом переходе, может достигать ширины линии излучения порядка 1 mHz [4]. Кроме того, поскольку когерентность излучаемого света определяется атомной средой, а не резонатором, сверхизлучательный лазер оказывается почти нечувствительным как к тепловым, так и к техническим вибрациям зеркал, которые накладывают фундаментальное ограничение стабильности для лазерных источников с пассивными оптическими резонаторами [5,6]. Таким образом, благодаря высокой стабильности и узкости спектральной линии, сверхизлучательные лазеры часто рассматриваются в контексте нового поколения атомных часов и стандартов частоты [7]. Однако это вовсе не означает, что сверхизлучательные источники когерентного излучения не востребованы в

других областях. В частности, усиление спонтанного излучения за счет эффекта сверхизлучения может происходить в том числе и на двухфотонных рамановских переходах, что уже было показано в экспериментальных работах [8,9]. Такие источники излучения интересны для ряда важных задач магнитометрии [10], а также для генерации неклассических состояний света [11].

Простейшая модель сверхизлучательного лазера, описывающая динамику двухуровневой атомной системы в присутствии внешних электромагнитных полей, включает в себя индивидуальную накачку атомов из основного состояния в возбужденное и их коллективный распад на обратном переходе [4,12]. В настоящей работе мы рассмотрим обобщенную модель сверхизлучательного рамановского лазера, которая (кроме индивидуальных накачки и распада атомов) будет включать в себя также два конкурирующих кооперативных процесса, действующих на переходе между основным и возбуженным состояниями и обратном ему в эффективной двухуровневой схеме. Такие процессы характерны для атомов, имеющих сложную многоуровневую энергетическую структуру, как, например, рубидий и цезий, которые часто используются в оптических экспериментах. Отметим, что даже в случае простой модели сверхизлучательного лазера кооперативный режим генерации возникает только при определенном выборе ее параметров. В частности, скорость индивидуальной накачки атомов внешним лазерным полем должна превосходить скорость распада возбужденного состояния атома, чтобы создать инверсию населенности в атомной среде, но при этом она не должна быть слишком большой, чтобы не разрушить фазовые соотношения, возникающие между отдельными излучателями. В рассматриваемой обобщенной модели из-за наличия нескольких конкурирующих процессов баланс между параметрами примет значительно более сложный вид. В работе мы найдём диапазон значений параметров модели, при которых возникает кооперативное излучение атомов среды, и определим спектральные характеристики света на выходе резонатора в стационарном режиме генерации.

Статья организована следующим образом. В разд. 2 мы рассмотрим простейшую модель сверхизлучательного лазера, с помощью которой опишем наиболее важные его характеристики в стационарном режиме генерации. В частности, нас будут интересовать средняя поляризация атомов (инверсия населенностей атомной среды) и двухатомные корреляции, наличие которых, как мы увидим, будет свидетельствовать о возникновении в среде кооперативных эффектов. Полученные результаты помогут при анализе решений для обобщенной модели сверхизлучательного лазера в разд. 3, в котором мы найдём спектр излучения и определим его характеристики. В частности, мы покажем, что при оптимальных условиях генерации ширина спектральной линии излучения окажется сравнимой с шириной атомного перехода. В разд. 4 с помощью разложения по кумулянтам оценим наличие корреляций старших порядков между атомами в стационарном режиме генерации сверхизлучательного лазера. Кроме того, в работе уделим особое внимание ряду теоретических методов, которые часто применяют при исследовании сверхизлучательного лазера: квантовой теореме регрессии, с помощью которой мы найдем спектр излучения, и кумулянтному анализу, который позволит определить наличие межатомных корреляций в системе.

2. Модель сверхизлучательного лазера

Вначале рассмотрим простейшую модель сверхизлучательного лазера, которая позволит описать основные происходящие в нем физические процессы, приводящие к кооперативному излучению атомов. Её общий вид схематически представлен на рис. 1, а. Ансамбль из N двухуровневых атомов помещён внутри одномодового резонатора с шириной линии к. Резонатор подобран так, что частота ω_c поддерживаемой им моды \hat{a} совпадает с частотой ω_{eg} перехода между основным $|g\rangle$ и возбужденным $|e\rangle$ уровнями атома, т.е. $\omega_c = \omega_{eg}$. Взаимодействие между полем резонатора и атомами опишем с использованием дипольного приближения, при этом будем считать, что поле взаимодействует с каждым атомом одинаково и сила взаимодействия определяется однофотонной частотой Раби $\Omega/2$ (рис. 1, *b*). Временная эволюция состояния такой системы будет подчиняться К.С. Тихонов, А. Рот

уравнению Линдблада:

$$\frac{d}{dt}\rho = -i\frac{\omega_{eg}}{2}[J^{z} + \hat{a}^{\dagger}\hat{a},\rho] - i\frac{\Omega}{2}[J^{+}\hat{a} + J^{-}\hat{a}^{\dagger},\rho]
+ w\sum_{i}\mathscr{D}\left[\sigma_{i}^{+}\right]\rho + \kappa\mathscr{D}\left[\hat{a}\right]\rho,$$
(1)

где с помощью $\mathscr{D}\left[A
ight]
ho=A
ho A^{\dagger}-1/2A^{\dagger}A
ho-1/2
ho A^{\dagger}A$ обозначены супероператоры Линдблада, а $J^z = \sum_{i=1}^N \sigma_i^z$ и $J^{\pm} = \sum_{i=1}^{N} \sigma_i^{\pm}$ – коллективные операторы углового момента, записанные через матрицу Паули σ_i^z и лестничные (повышающие и понижающие) операторы σ_i^{\pm} *і*-го атома. Кроме когерентного взаимодействия атомов ансамбля с внутрирезонаторным полем мы также включили в уравнение (1) уход фотонов из резонатора со скоростью к и индивидуальную накачку атомов со скоростью w, которая переводит атомы из основного состояния $|g\rangle$ в возбужденное $|e\rangle$. Отметим, что индивидуальная природа накачки важна по двум причинам. Во-первых, как было показано в работах [12,13], только в этом случае происходит формирование коллективного дипольного момента ансамбля атомов, т.е. ансамбль будет излучать как целое. Во-вторых, индивидуальная накачка может сбалансировать другие некогерентные процессы, такие как индивидуальный спонтанный распад атомов ансамбля. Для простоты анализа индивидуальный спонтанный распад не был включен в уравнение (1), однако его вклад будет оценен в дальнейшем при рассмотрении обобщенной модели сверхизлучательного лазера в разд. 3.

В отличие от обычных лазеров, когерентность излучения которых зависит от свойств резонатора, когерентность излучения сверхизлучательного лазера определяется кооперативными эффектами в атомной среде. Эти эффекты возникают в режиме "плохого резонатора", когда уход фотонов из резонатора оказывается быстрее других процессов, входящих в (1), т.е. $\kappa \gg w$, Ω . Это позволяет адиабатически исключить поле \hat{a} из уравнения Линдблада и рассмотреть динамику состояния атомов среды отдельно [12]. Для этого мы использовали метод проекторов, описанный в [14]. В результате после адиабатического исключения моды резонатора было получено управляющее уравнение, описывающее эволюцию матрицы плотности ρ_{at} атомной системы:

$$\frac{d}{dt}\rho_{\rm at} = w \sum_{i} \mathscr{D}\left[\sigma_{i}^{+}\right]\rho_{\rm at} + \gamma \mathscr{D}\left[J^{-}\right]\rho_{\rm at}, \qquad (2)$$

в котором с помощью $\gamma = \Omega^2 / \kappa$ обозначена эффективная скорость распада атома из возбужденного состояния $|e\rangle$ в основное состояние $|g\rangle$.

Из (2) выведем систему уравнений, описывающую временную эволюцию средних значений для поляризации (инверсии населенностей) $\langle \sigma_1^z \rangle$ и двухатомных корреляций $\langle \sigma_1^+ \sigma_2^- \rangle$, содержащих относительную фазу

Рис. 1. (*a*) Сверхизлучательный лазер на основе ансамбля из N атомов, помещенных в резонатор с шириной линии κ ; (*b*) эффективная двухуровневая энергетическая схема атомов внутри резонатора, которая на практике может быть реализована через процессы, показанные в (*c*) и (*d*). *w* — эффективная скорость накачки атомов, $\Omega/2$ — эффективная однофотонная частота Раби, (*c*) оптическая накачка атома с λ -схемой уровней, (*d*) двухфотонный рамановский переход, индуцированный внешним полем в атоме с λ -схемой уровней.

между двумя излучателями:

$$\frac{d}{dt} \langle \sigma_1^z \rangle = w(1 - \langle \sigma_1^z \rangle) - \gamma(1 + \langle \sigma_1^z \rangle) - 2(N - 1)\gamma \langle \sigma_1^+ \sigma_2^- \rangle,$$
$$\frac{d}{dt} \langle \sigma_1^+ \sigma_2^- \rangle = \left\{ (N - 2)\gamma \langle \sigma_1^z \rangle - (w + \gamma) \right\} \langle \sigma_1^+ \sigma_2^- \rangle + \frac{\gamma}{2} \left(\langle \sigma_1^z \rangle + 1 \right) \langle \sigma_1^z \rangle.$$
(3)

Нижними индексами обозначены номера атомов. При этом в силу того, что атомы взаимодействуют с модой резонатора и внешней накачкой одинаково, между ними существует перестановочная симметрия, которая позволяет выбрать атомы из ансамбля произвольным образом. Кроме того, при записи системы уравнений (3) было использовано разложение по кумулянтам, в котором мы пренебрегли корреляциями третьего порядка и произвели факторизацию момента $\langle \sigma_1^+ \sigma_2^- \sigma_3^z \rangle = \langle \sigma_1^+ \sigma_2^- \rangle \langle \sigma_1^z \rangle$, а также учли, что $\langle \sigma_1^z \rangle \langle \sigma_2^z \rangle = \langle \sigma_1^z \rangle^2$ [15]. Наличие корреляций старших порядков будет оценено в разд. 4.

Чтобы найти средние значения поляризации $\langle \sigma_1^z \rangle$ и двухатомных корреляций $\langle \sigma_1^+ \sigma_2^- \rangle$, установившихся в стационарном режиме генерации сверхизлучательного лазера, нужно левую часть (3) приравнять нулю и затем решить получившуюся однородную систему уравнений. На рис. 2 представлены зависимости этих наблюдаемых от безразмерной индивидуальной скорости накачки атомов $w/N\gamma$. Из рисунка видно, что при увеличении скорости накачки поляризация растет линейно, тогда как

Рис. 2. Средняя поляризация $\langle \sigma_1^z \rangle$ (тёмно-фиолетовая сплошная линия), двухатомные корреляции $\langle \sigma_1^+ \sigma_2^- \rangle$ (оранжевая штриховая линия) и спектральная ширина линии Г, выраженная в единицах эффективной скорости распада атома γ из возбужденного состояния $|e\rangle$ в основное $|g\rangle$ (желтая пунктирная линия) в стационарном режиме генерации сверхизлучательного лазера. Количество атомов $N = 10^6$.

кривая для двухатомных корреляций описывает перевернутую параболу, нарастающую от нуля при $w/N\gamma = 0$ до максимального значения при $w/N\gamma = 0.5$ и затем спадающую до нуля при $w/N\gamma = 1$. Наличие ненулевых значений двухатомных корреляций, как мы увидим из расчета ширины спектральной линии излучения, свидетельствует о возникновении сверхизлучения, при котором скорость перехода атома γ из возбужденного состояния $|e\rangle$ в основное $|g\rangle$ оказывается усилена в зависимости от числа атомов в возбужденном состоя-

нии. Из графиков видно, что для этого скорость накачки атомов w должна удовлетворять следующим граничным условиям:

$$\gamma < w < N\gamma. \tag{4}$$

Здесь нижняя граница $w_{\min} = \gamma$ отвечает возникновению в атомной среде инверсии населенностей, необходимой для лазерной генерации. Это существенно отличается от обычного лазера, в котором нижний порог генерации достигается тогда, когда накачка превышает потери резонатора. Верхняя граница $w_{\max} = N\gamma$ отвечает ситуации, когда кооперативное излучение атомов исчезнет из-за наличия шума, вызванного самой накачкой.

Для вычисления спектра излучения мы использовали квантовую теорему регрессии (разд. 3) и получили, что его величина будет определяться преобразованием Фурье, взятом от двухвременной корреляционной функции коллективных атомных операторов:

$$S(\omega) = \mathscr{F}[\langle \hat{a}^{\dagger}(t)\hat{a}(0)\rangle](\omega) = \frac{\Omega^2}{\kappa^2} \mathscr{F}[\langle J^+(t)J^-(0)\rangle](\omega),$$
(5)

которая в свою очередь может быть найдена из уравнения

$$\frac{d}{dt}\left\langle J^{+}(t)J^{-}(0)\right\rangle = \left(i\omega_{eg} - \frac{\Gamma}{2}\right)\left\langle J^{+}(t)J^{-}(0)\right\rangle.$$
 (6)

Как мы увидим далее, спектр излучения будет иметь лоренцев профиль с шириной линии $\Gamma = w + \gamma - -(N-1)\gamma \langle \sigma_1^z \rangle$, которая при оптимальном выборе скорости накачки w, соответствующему максимуму двухатомных корреляций $\langle \sigma_1^+ \sigma_2^- \rangle$, оказывается сравнимой с γ (рис. 2).

Приведенная модель сверхизлучательного лазера базируется на использовании ансамбля двухуровневых атомов, и, как было показано в работах [4,12], такой модели оказаывается достаточно для описания основных свойств возникающего кооперативного излучения. На практике такая модель может быть реализована, в частности, с помощью индуцированных внешними полями двухфотонных рамановских переходов в атомах с Λ -конфигурацией энергетических уровней (рис. 1, *c*, *d*). Верхний уровень при этом из-за наличия отстройки от резонанса может быть адиабатически исключен, т.е. атомы могут быть описаны с помощью эффективной двухуровневой схемы. Однако в реальных атомах со сложной энергетической структурой уровней нерезонансные двухфотонные рамановские переходы приведут к тому, что в уравнении для матрицы плотности появятся дополнительные кооперативные и индивидуальные члены, которые будут конкурировать между собой, что приведет к совершенно новым условиям возникновения в среде сверхизлучательного лазерного перехода (или даже нескольких таких переходов).

Рис. 3. (*a*) Энергетическая схема уровней атома, в которой обозначены процессы индивидуальной накачки, действующей с эффективной скоростью w_+ на переходе $|g\rangle \rightarrow |e\rangle$, индивидуальной накачки, действующей с эффективной скоростью w_- на переходе $|e\rangle \rightarrow |g\rangle$, а также индуцированные внешними полями двухфотонные рамановские переходы, происходящие с эффективной однофотонной частотой Раби $\Omega/2$; (*b*) упрощенная эффективная схема уровней атома, включающая в себя только актуальные при решении задачи процессы.

Обобщенная модель сверхизлучательного рамановского лазера

3.1. Управляющее уравнение

Как было показано в предыдущем разделе, даже в упрощенной модели сверхизлучательный режим генерации атомов ансамбля требует соблюдения определенного баланса между скоростью индивидуальной накачки и скоростью кооперативного распада. В этом разделе мы рассмотрим обобщенную модель рамановского сверхизлучательного лазера, которая включает в себя дополнительные конкурирующие кооперативные и индивидуальные процессы, возникающие в эффективной двухуровневой схеме атома вследствие нерезонансных двухфотонных рамановских переходов (рис. 3). Эти дополнительные процессы приведут к возникновению нового, более тонкого баланса между параметрами модели, соблюдение которого необходимо для сверихзлучательного режима генерации.

Динамику состояния рассматриваемой атомнополевой системы после адиабатического исключения нерезонансных уровней энергии опишем с помощью следующего управляющего уравнения, полученного с использованием приближения вращающихся координат [16]:

$$\frac{d}{dt}\rho = -i\frac{\omega_{eg}}{2} \left[J^{z}, \rho \right] - i \left[\left(\frac{\Omega_{-}}{2} J^{+} + \frac{\Omega_{+}}{2} J^{-} \right) \hat{a} + h.c., \rho \right]
+ w_{+} \sum_{i} \mathscr{D} \left[\sigma_{i}^{+} \right] \rho + w_{-} \sum_{i} \mathscr{D} \left[\sigma_{i}^{-} \right] \rho + \kappa \mathscr{D} \left[\hat{a} \right] \rho,$$
(7)

где ω_{eg} — разность частот между двумя подуровнями основного состояния атома $|g\rangle$ и $|e\rangle$. В данное уравнение в соответствии с моделью Джейнса-Каммингса включен кооперативный член, пропорциональный эффективной частоте Раби Ω_, описывающий переход атомов ансамбля с уровня $|g\rangle$ на уровень $|e\rangle$ в результате взаимодействия с модой резонатора â и внешним классическим полем (на рис. 3, а показано левой прямой вертикальной стрелкой), а также кооперативный член, пропорциональный эффективной частоте Ω_+ , действующий на обратном переходе, т.е. с уровня $|e\rangle$ на уровень $|g\rangle$, и индуцированной другим классическим полем (на рис. 3, а показано правой прямой вертикальной стрелкой). Отметим, что если энергетический зазор ω_{eg} между уровнями мал по сравнению с частотой внешних классических полей, то они будут действовать как на одном, так на другом переходе (рис. 3, a). Кроме того, мы также включили в модель процесс индивидуальной накачки с эффективной скоростью w_+ на переходе $\ket{g}
ightarrow \ket{e}$ и процесс индивидуальной накачки с эффективной скоростью w_{-} , действующей на переходе $|e\rangle \rightarrow |g\rangle$, а также уход фотонов из резонатора со скоростью к.

Как и раньше, будем считать, что уход фотонов из резонатора происходит гораздо быстрее всех остальных процессов, входящих в (7), т.е. $\kappa \gg \Omega_{\pm}, w_{\pm}$. После адиабатического исключения поля резонатора с помощью метода проекторов получим управляющее уравнение для матрицы плотности, описывающее временную динамику состояния только атомной системы:

$$\frac{d}{dt}\rho_{at} = -i\frac{\omega_{eg}}{2} \left[J^{z}, \rho_{at} \right] + w_{+} \sum_{i} \mathscr{D} \left[\sigma_{i}^{+} \right] \rho_{at}
+ \gamma_{-} \mathscr{D} \left[J^{-} \right] \rho_{at} + w_{-} \sum_{i} \mathscr{D} \left[\sigma_{i}^{-} \right] \rho_{at} + \gamma_{+} \mathscr{D} \left[J^{+} \right] \rho_{at},$$
(8)

в котором $\gamma_{-} = \Omega_{-}^2/\kappa$ — эффективная скорость распада атома из возбужденного состояния $|e\rangle$ в основное состояние $|g\rangle$, а $\gamma_{+} = \Omega_{+}^2/\kappa$ — эффективная скорость обратного ему перехода.

В полученном уравнении первые два члена, отвечающие индивидуальной накачке на переходе $|g\rangle \rightarrow |e\rangle$ и кооперативному распаду на переходе $|e\rangle \rightarrow |g\rangle$, совпадают с правой частью уравнения (3). В то же время третий и четвертый члены представляют собой индивидуальную "накачку" и кооперативный "распад" в обратную сторону, т.е. действуют так, как если бы обозначения уровней $|e\rangle$ и $|g\rangle$ поменяли местами. Таким образом, в

полученном уравнении возникает определенная симметрия: если заменить в обозначениях "плюсы" на "минусы" а "минусы" на "плюсы", то вид уравнения при этом не изменится. Эту симметрию удобно использовать при анализе полученных решений. В частности, без потери общности достаточно рассмотреть только те случаи, когда $w_+ > w_-$. Кроме того, как следует из полученных ранее решений для упрощенной модели, приведенных на рис. 2, кооперативные эффекты в атомной среде появляются тогда, когда в среде создана достаточная инверсия населенностей, при которой скорость индивидуального накачки w по порядку величины оказывается сравнимой со скоростью кооперативного распада Ny. Следовательно, будем считать, что выполняется условие $w_+, w_- \gg \gamma_-, \gamma_+$. Также предположим, что $\gamma_- > \gamma_+$. Во всех остальных случаях система будет вести себя аналогичным образом с той лишь разницей, что атомные уровни "поменяются местами".

Из (8) нетрудно получить уравнения для поляризации $\langle \sigma_1^z \rangle$ и двухатомных корреляций $\langle \sigma_1^+ \sigma_2^- \rangle$:

$$\frac{d}{dt} \langle \sigma_{1}^{z} \rangle = w_{+} (1 - \langle \sigma_{1}^{z} \rangle) - w_{-} (1 + \langle \sigma_{1}^{z} \rangle) - 2(N-1)(\gamma_{-} - \gamma_{+}) \langle \sigma_{1}^{+} \sigma_{2}^{-} \rangle,$$

$$\frac{d}{dt} \langle \sigma_{1}^{+} \sigma_{2}^{-} \rangle = \{ (N-2)(\gamma_{-} - \gamma_{+}) \langle \sigma_{1}^{z} \rangle - (w_{+} + w_{-} + \gamma_{-} + \gamma_{+}) \} \langle \sigma_{1}^{+} \sigma_{2}^{-} \rangle + \frac{1}{2} ((\gamma_{-} - \gamma_{+}) + (\gamma_{-} + \gamma_{+}) \langle \sigma_{1}^{z} \rangle]) \langle \sigma_{1}^{z} \rangle,$$
(9)

где, как и ранее, с помощью разложения по кумулянтам были исключены корреляции третьего порядка и произведена факторизация следующих моментов [15]: $\langle \sigma_1^z \sigma_2^z \rangle \approx \langle \sigma_1^z \rangle^2$ и $\langle \sigma_1^+ \sigma_2^- \sigma_3^z \rangle \approx \langle \sigma_1^+ \sigma_2^- \rangle \langle \sigma_1^z \rangle$. Чтобы найти стационарное решение этих уравнений, нужно положить левые части равными нулю и решить получившуюся систему однородных уравнений.

На рис. 4, а приведены решения стационарных уравнений для средней поляризации $\langle \sigma_1^z \rangle$ и двухатомных корреляций $\langle \sigma_1^+ \sigma_2^-
angle$ в зависимости от безразмерной скорости накачки $w_+/N\gamma_-$, нормированной на число атомов N, при $\gamma_+ = 0$, т.е. в присутствии только одного кооперативного распада в (8) с уровня $|e\rangle$ на уровень $|g\rangle$. Сплошные кривые соответствуют упрощенной модели сверхизлучательного лазера при $w_{-} = 0$ (как на рис. 2), которые будем использовать для сравнения. Штрихованная и пунктирные линии соответствуют двум другим случаям, когда $w_{-}/N\gamma_{-} = 0.03$ и $w_{-}/N\gamma_{-} = 0.06$. Видно, что наличие дополнительного индивидуального члена в (8) на переходе с $|e\rangle \rightarrow |g\rangle$ (его можно рассматривать как индивидуальный распад) приводит к смещению нижнего и верхнего порогов генераций, т.е. изменению граничных условий (4). При этом поляризация среды растёт с ростом скорости накачки w_+ до некоторого значения, после чего достигает насыщения и выходит на плато. Максимум двухатомных корреляций

$$\max_{w_+}\left\langle \sigma_1^+\sigma_2^-
ight
angle = rac{1}{8} - rac{w_-}{N\gamma_+}rac{\gamma_-}{\gamma_+} - 1$$

достигается при скорости накачки $w_{+,\mathrm{opt}} = N(\gamma_- - \gamma_+)/2 - w_-$ для $N \gg 1.$

На рис. 4, *b* показаны зависимости средней поляризации $\langle \sigma_1^z \rangle$ и двухатомных корреляциях $\langle \sigma_1^+ \sigma_2^- \rangle$ от γ_+/γ_- при $w_+/N\gamma_- = 0.1$. Видно, двухатомные корреляции в системе оказываются весьма чувствительными к наличию индивидуального распада атомов с уровня $|e\rangle$ на уровень $|g\rangle$.

Стационарное решение для двухатомных корреляций $\langle \sigma_1^+ \sigma_2^- \rangle$ показывает, что сверхизлучательный режим в системе возникает тогда, когда скорость индивидуальной накачки w_+ удовлетворяет следующим неравенствам:

$$w_{-} < w_{+} < N(\gamma_{-} - \gamma_{+}) \frac{w_{+} - w_{-}}{w_{+} + w_{-}} - w_{-}.$$
 (10)

По сравнению с полученными ранее граничными условиями (4) для упрощенной модели сверхизлучательного лазера, новые граничные условия связывают между собой все четыре скорости, входящие в (8). Таким образом, требуется соблюдение более тонкого баланса между ними для кооперативной генерации когерентного света.

На рис. 5, a-f представлен общий вид зависимости средней поляризации $\langle \sigma_1^z \rangle$ и двухатомных корреляциях $\langle \sigma_1^+ \sigma_2^- \rangle$ от безразмерной скорости индивидуальной накачки $w_+/N\gamma_-$, нормированной на число атомов N, и безразмерной скорости γ_+/γ_- кооперативного процесса на переходе $|g\rangle \rightarrow |e\rangle$. На рис. 5, a-f (а также рис. 5, g-i) пунктирной кривой обозначен диапазон значений параметров, при которых в атомной среде возникает кооперативное излучение, что подтверждается расчетом спектра.

3.2. Спектр излучения

Чтобы найти спектр излучения, генерируемого рамановским сверхизлучательным лазером, воспользуемся квантовой теоремой регрессии [14,17]. Для этого вернемся к управляющему уравнению (7), описывающему временную эволюцию матрицы плотности системы до адиабатического исключения резонатора, и с его помощью запишем уравнение для среднего значения полевого оператора уничтожения *â*:

$$\frac{d}{dt}\langle \hat{a}(t)\rangle = -\frac{\kappa}{2}\langle \hat{a}(t)\rangle - i\left(\Omega_{+}\langle J^{-}(t)\rangle + \Omega_{-}\langle J^{+}(t)\rangle\right).$$
(11)

В правую часть уравнения входят средние значения атомных коллективных повышающего и понижающего операторов $\langle J^+(t) \rangle$ и $\langle J^-(t) \rangle$. Поскольку $\kappa \gg w_\pm, \Omega_\pm,$

Рис. 4. Средняя поляризация $\langle \sigma_1^z \rangle$ (три верхние линии), двухатомные корреляции $\langle \sigma_1^+ \sigma_2^- \rangle$ (три нижние линии) в зависимости от следующих параметров задачи: (*a*) безразмерной накачки $w_+/N\gamma_-$ на переходе $|g\rangle \to |e\rangle$; (*b*) безразмерной скорости кооперативного процесса γ_+/γ_- на переходе $|g\rangle \to |e\rangle$. Количество атомов $N = 10^6$.

изменение со временем $\langle J^+(t) \rangle$ и $\langle J^-(t) \rangle$ происходит медленнее, чем $\langle \hat{a}(t) \rangle$, что позволяет использовать управляющее уравнение для матрицы плотности атомной системы (8) для определения их временной эволюции вместо уравнения для матрицы плотности полной системы (7). Получим следующие уравнения:

$$\begin{aligned} \frac{d}{dt} \langle J^{-}(t) \rangle &= -i w_{eg} \langle J^{-}(t) \rangle \\ &- \frac{1}{2} \Big\{ \gamma_{-} + \gamma_{+} + \omega_{+} + \omega_{-} - (\gamma_{-} - \gamma_{+}) N \langle \sigma_{1}^{z} \rangle \Big\} \langle J^{-}(t) \rangle, \end{aligned}$$
(12)
$$\begin{aligned} \frac{d}{dt} \langle J^{+}(t) \rangle &= +i w_{eg} \langle J^{+}(t) \rangle \\ &- \frac{1}{2} \Big\{ \gamma_{-} + \gamma_{+} + \omega_{+} + \omega_{-} - (\gamma_{-} - \gamma_{+}) N \langle \sigma_{1}^{z} \rangle \Big\} \langle J^{+}(t) \rangle, \end{aligned}$$
(13)

решая которые, найдём:

$$\langle J^{-}(t)\rangle = \langle J^{-}(0)\rangle e^{-\frac{1}{2}\Gamma t} e^{-iw_{eg}t},\qquad(14)$$

$$\langle J^+(t)\rangle = \langle J^+(0)\rangle e^{-\frac{1}{2}\Gamma t} e^{+iw_{eg}t},$$
(15)

Рис. 5. (a-c) Поляризация $\langle \sigma_1^z \rangle$; (d-f) двухатомные корреляции $\langle \sigma_1^+ \sigma_2^- \rangle$; (g-i) безразмерная ширина спектральной линии Γ/γ_- в зависимости от безразмерной скорости индивидуальной накачки $w_{\pm}/N\gamma_-$, нормированной на число атомов N, и безразмерной скорости γ_+/γ_- . Количество атомов $N = 10^6$.

где $\Gamma = \gamma_{-} + \gamma_{+} + \omega_{+} + \omega_{-} - (\gamma_{-} - \gamma_{+})N\langle \sigma_{1}^{z} \rangle$ является спектральной шириной линии излучения. Подставляя полученные временные зависимости для $\langle J^{+}(t) \rangle$ и $\langle J^{-}(t) \rangle$ в (11), получим неоднородное дифференциальное уравнение:

$$\frac{d}{dt}\langle \hat{a}(t)\rangle + \frac{\kappa}{2} \langle \hat{a}(t)\rangle = -i \left(\Omega_{+} \langle J^{-}(0)\rangle e^{-\frac{1}{2}\Gamma t} e^{-iw_{eg}t} + \Omega_{-} \langle J^{+}(0)\rangle e^{-\frac{1}{2}\Gamma t} e^{iw_{eg}t}\right),$$
(16)

из которого находим решение для $\langle \hat{a}(t) \rangle$:

$$\begin{aligned} \langle \hat{a}(t) \rangle &= C(0)e^{-\frac{\kappa t}{2}} + i\left(\frac{\Omega_{-}\langle J^{+}(0) \rangle}{-iw_{eg} + (\Gamma - \kappa)/2}e^{iw_{eg}t} \right. \\ &+ \frac{\Omega_{+}\langle J^{-}(0) \rangle}{iw_{eg} + (\Gamma - \kappa)/2}e^{-iw_{eg}t} e^{-\Gamma t/2}, \end{aligned} \tag{17}$$

где C(0) = 0, так как в начальный момент времени поле отсутствует.

Согласно квантовой теореме регрессии [14,17], для набора операторов $\{Y_i\}$ открытой квантовой системы, средние значения которых описываются замкнутой линейной системой дифференциальных уравнений

$$\partial_t \langle Y_i(t) \rangle = \sum_j G_{ij}(t) \langle Y_j(t) \rangle$$

где $G_{ij}(t)$ — некоторые функции, связывающие эти средние между собой, двухвременную корреляционную функцию можно записать как

$$\partial_t \langle Y_i(t+\tau)Y_k(t) \rangle = \sum_j G_{ij}(\tau) \langle Y_j(t+\tau)Y_k(t) \rangle.$$

Таким образом, из (17) следует выражение для двухвременной корреляционной функции $\langle \hat{a}^{\dagger}(t)\hat{a}(0) \rangle$:

$$\begin{aligned} \langle \hat{a}^{\dagger}(t)\hat{a}(0)\rangle &= \left(\frac{\Omega_{-}^{2}\langle J^{-}(0)J^{+}(0)\rangle}{w_{eg}^{2} + (\Gamma - \kappa)^{2}/4}e^{-iw_{eg}t} + \frac{\Omega_{+}^{2}\langle J^{+}(0)J^{-}(0)\rangle}{w_{eg}^{2} + (\Gamma - \kappa)^{2}/4}e^{iw_{eg}t}\right)e^{-\Gamma t/2}. \end{aligned}$$
(18)

Спектр излучения получается простым взятием преобразования Фурье:

$$S(\omega) = \mathscr{F}[\langle \hat{a}^{\dagger}(t)\hat{a}(0) \rangle](\omega).$$

Видно, что наличие двух кооперативных переходов атомов $|e\rangle \rightarrow |g\rangle$ и $|g\rangle \rightarrow |e\rangle$ в правой части (7) приводит к наличию двух линий с лоренцовыми контурами. При этом спектральная ширина Г для каждой из них будет одинаковой (при $w_+ > w_-$ и $N \gg 1$) и равна

$$\frac{\Gamma}{\gamma_{-}} \approx \left(\frac{1}{W_{-}(1-W_{+})} + \frac{W_{+}}{1-W_{+}} - W_{+} - \frac{1}{W_{-}}\right) \left(1 - \frac{\gamma_{+}}{\gamma_{-}}\right)$$
$$= \frac{W_{+} + W_{+}W_{-}(W_{-} - W_{+}W_{-} - 1)}{(W_{+} - 1)(W_{-} - 1)W_{-}} \left(1 - \frac{\gamma_{+}}{\gamma_{-}}\right), \quad (19)$$

где для удобства записи ввели безразмерную величину

$$W_\pm\coloneqq rac{(w_+\pm w_-)(w_++w_-)}{N(\gamma_--\gamma_+)(w_+-w_-)}$$

На рис. 5, g-i представлена безразмерная ширина линии Γ/γ_{-} в зависимости от тех же параметров обобщенной модели, что и для проанализированных ранее средних поляризации и двухатомных корреляций. Видно, что, как и для обычного сверхизлучательного лазера, ширина спектральной линии в обобщенной модели сверхизлучательного рамановского лазера также оказывается сравнимой с γ_{-} в области, где существуют ненулевые двухатомные корреляции и выполняются граничные условия (10). Для удобства анализа обобщенной модели и наглядности на рис. 6 схематично показан вид получившегося спектра излучения, где с помощью S_{+} и S_{-} обозначены интенсивности лоренцовых пиков. При этом для их отношения имеем

$$\frac{S_{+}}{S_{-}} = \frac{\gamma_{+}}{\gamma_{-}} \frac{1}{1 - \frac{\langle J^{z} \rangle}{\langle J^{+} J^{-} \rangle}} \approx \frac{\gamma_{+}}{\gamma_{-}}.$$
(20)

Отметим, что интенсивности пиков не могут быть одинаковыми, поскольку граничные условия (10) не выполняются при $\gamma_+ = \gamma_-$.

Влияние корреляций старших порядков

Оценим наличие межатомных корреляций старших порядков при стационарном режиме генерации сверхизлучательного лазера. Для простоты проанализируем упрощенную модель, описываемую уравнением (2),

Рис. 6. Вид получившегося спектра излучения $S(\omega)$ и его характеристики.

когда есть только кооперативный переход на переход е $|e\rangle \rightarrow |g\rangle$ и индивидуальная накачка на переходе $|g\rangle \rightarrow |e\rangle$. Запишем управляющее уравнение для редуцированной матрицы плотности подансамбля из *n* произвольно взятых атомов (нижний индекс "at", использованный ранее для обозначения атомной системы, здесь и далее будем опускать):

$$\dot{\rho}_{n} = L_{n}(\rho_{n}) - \frac{1}{2}\gamma(N-n)\sum_{i=1}^{n} \left\{ \sigma_{-}^{(i)} \operatorname{Tr}_{\{n+1\}}[\sigma_{+}^{(n+1)}\rho_{n+1}] + h.c. \right\},$$
(21)

где $\rho_n = \text{Tr}_{\{n+1,...,N\}}[\rho]$ — редуцированная матрица плотности для *n* частиц. В фигурных скобках указаны оставшиеся (N - n) частиц, по состояниям которых взят частичный след от матрицы плотности полного ансамбля из *N* частиц ρ . В правой части уравнения с помощью L_n обозначен супероператор, осуществляющий временное развитие ρ_n согласно (2). Кроме того, мы учли, что взаимодействие атомов с внутрирезонаторным полем является одинаковым и ансамбль оказывается симметричным относительно перестановки двух любых его частиц. В частности, это позволяет описать взаимодействия рассматриваемого подансамбля с оставшимися (N - n) атомами с помощью редуцированной матрицы плотности ρ_{n+1} , описывающей состояние *n* частиц подансамбля и одной из (N - n) оставшихся.

Видно, что уравнение (21) оказывается незамкнутым, так как в его правую часть входит редуцированная матрица плотности ρ_{n+1} , описывающая состояние (n + 1)частицы. Чтобы убрать из системы корреляции (n + 1)го порядка и выразить ρ_{n+1} через ρ_n , используем разложение по кумулянтам. Удобство использования кумулянтов для описания корреляций между частями составной системы заключается в том, что в отличие от моментов ненулевой кумулянт *n*-го порядка показывает наличие корреляций сразу между *n* частями, т.е. в него не входят корреляции младших порядков между меньшим числом частей.

Хорошо известно, что моменты являются коэффициентами разложения в ряд характеристической функции, тогда как кумулянты – коэффициенты разложения её логарифма [18]. Между кумулянтами и моментами существует определенная связь [19]. Так, например, для кумулянтов и моментов с 1-го по 3-й порядок будет выполняться:

$$\langle \langle \sigma_1^{\alpha_1} \rangle \rangle = \langle \sigma_1^{\alpha_1} \rangle ,$$

$$\langle \langle \sigma_1^{\alpha_1} \sigma_2^{\alpha_2} \rangle \rangle = \langle \sigma_1^{\alpha_1} \sigma_2^{\alpha_2} \rangle - \langle \sigma_1^{\alpha_1} \rangle \langle \sigma_2^{\alpha_2} \rangle ,$$

$$\langle \langle \sigma_1^{\alpha_1} \sigma_2^{\alpha_2} \sigma_3^{\alpha_3} \rangle \rangle = \langle \sigma_1^{\alpha_1} \sigma_2^{\alpha_2} \sigma_3^{\alpha_3} \rangle - \langle \sigma_1^{\alpha_1} \sigma_2^{\alpha_2} \rangle \langle \sigma_3^{\alpha_3} \rangle$$

$$- \langle \sigma_1^{\alpha_1} \sigma_3^{\alpha_3} \rangle \langle \sigma_2^{\alpha_2} \rangle - \langle \sigma_2^{\alpha_2} \sigma_3^{\alpha_3} \rangle \langle \sigma_1^{\alpha_1} \rangle$$

$$+ 2 \langle \sigma_1^{\alpha_1} \rangle \langle \sigma_2^{\alpha_2} \rangle \langle \sigma_3^{\alpha_3} \rangle .$$

$$(22)$$

Здесь $\sigma_i^{\alpha_i}$ — оператор, действующий на состояние *i*го атома, верхний индекс α_i , как и раньше, задаёт конкретный вид оператора (например, "*z*", "+", "-"), двойными угловыми скобками обозначены кумулянты, а одинарными — моменты. Общее выражение, связывающее кумулянты и моменты произвольного порядка, может быть записано следующим образом:

$$\left\langle \left\langle \bigotimes_{i \in \mathbb{A}} \sigma_i^{\alpha_i} \right\rangle \right\rangle = \sum_{\pi \in \pi_{\mathbb{A}}} (|\pi| - 1)! (-1)^{|\pi| - 1} \prod_{\mathbb{B} \in \pi} \left\langle \bigotimes_{i \in \mathbb{B}} \sigma_i^{\alpha_i} \right\rangle,$$
(23)

где \mathbb{A} — некоторый набор номеров частиц, являющийся подмножеством полного набора частиц $\{1, ..., N\}$, т.е. $\mathbb{A} \subseteq \{1, ..., N\}$. С помощью $|\pi|$ обозначено число элементов набора π , а $\pi_{\mathbb{A}}$ является множеством всех возможных разбиений множества \mathbb{A} . Например, для $\mathbb{A} = \{1, 2, 3\}$ набор $\pi_{\mathbb{A}}$ состоит из следующих разбиений $\{1, 2, 3\}$: $\{\{1, 2\}, \{3\}\}, \{\{1\}, \{2, 3\}\}, \{\{1, 3\}, \{2\}\},$ $\{\{1\}, \{2\}, \{3\}\}.$

В квантовой механике моменты могут быть получены не только через характеристическую функцию, но и напрямую, путём взятия следа от произведения соответствующих операторов и матрицы плотности, описывающей состояние системы, т.е. $\langle \otimes_{i \in \mathbb{A}} A_i^{\alpha_i} \rangle = \operatorname{Tr}_{\mathbb{A}}[\rho_{\mathbb{A}} \otimes_{i \in \mathbb{A}} A_i^{\alpha_i}]$. В работе [24] была введена матрица плотности $\tau_{\mathbb{A}}$ для кумулянтов, которая позволяет получить любой кумулянт $\langle \langle \otimes_{i \in \mathbb{A}} A_i^{\alpha_i} \rangle \rangle$ аналогичным образом:

$$\left\langle \left\langle \bigotimes_{i \in \mathbb{A}} A_i^{\alpha_i} \right\rangle \right\rangle = \operatorname{Tr}_{\mathbb{A}} \left[\tau_{\mathbb{A}} \bigotimes_{i \in \mathbb{A}} A_i^{\alpha_i} \right].$$
 (24)

Кроме того, в той же работе было показано, что между матрицей плотности для кумулятнов и обычной матрицей плотности существует связь, аналогичная (23):

$$\tau_{\mathbb{A}} := \sum_{\pi \in \pi_{\mathbb{A}}} (|\pi| - 1)! (-1)^{|\pi| - 1} \bigotimes_{\mathbb{B} \in \pi} \rho_{\mathbb{B}}.$$
 (25)

Так, например, матрицы плотности для кумулянтов и обычные матрицы плотности для подансамбля из частиц {1, 2, 3} будут связаны аналогично (22):

$$\begin{aligned} \tau_{\{1\}} &= \rho_{\{1\}}, \\ \tau_{\{1,2\}} &= \rho_{\{1,2\}} - \rho_{\{1\}} \otimes \rho_{\{2\}}, \\ \tau_{\{1,2,3\}} &= \rho_{\{1,2,3\}} - \rho_{\{1,2\}} \otimes \rho_{\{3\}} \\ &- \rho_{\{1,3\}} \otimes \rho_{\{2\}} - \rho_{\{1\}} \otimes \rho_{\{2,3\}} + 2\rho_{\{1\}} \otimes \rho_{\{2\}} \otimes \rho_{\{3\}}. \end{aligned}$$

Данную связь можно записать и в обратную сторону, выразив матрицы плотности через матрицы плотности для кумулянтов:

$$\rho_{\mathbb{A}} = \sum_{\pi \in \pi_{\mathbb{A}}} \bigotimes_{\mathbb{B} \in \pi} \tau_{\mathbb{B}}, \tag{26}$$

откуда для подансамбля из частиц {1, 2, 3} следует:

$$\rho_{\{1\}} = \tau_{\{1\}},$$

$$\rho_{\{1,2\}} = \tau_{\{1,2\}} + \tau_{\{1\}} \otimes \tau_{\{2\}},$$

$$\rho_{\{1,2,3\}} = \tau_{\{1,2,3\}} + \tau_{\{1,2\}} \otimes \tau_{\{3\}} + \tau_{\{1,3\}} \otimes \tau_{\{2\}}$$

$$+ \tau_{\{1\}} \otimes \tau_{\{2,3\}} + \tau_{\{1\}} \otimes \tau_{\{2\}} \otimes \tau_{\{3\}}.$$
(27)

Вернемся к управляющему уравнению для подансамбля из *n* частиц (21). Используя связь между обычными матрицами плотности и матрицами плотности для кумулянтов, запишем усеченную матрицу плотности ρ_{n+1}^{trunc} для (n + 1) частицы: $\rho_{n+1}^{trunc} = \rho_{n+1} - \tau_{n+1}$. Мы вычли матрицу плотности для кумулянтов τ_{n+1} из ρ_{n+1} , тем самым убрав информацию о корреляциях (n + 1)-го порядка между (n + 1) частицей из ρ_{n+1} . Это позволяет выразить ρ_{n+1}^{trunc} как функцию ρ_n . Покажем это на примере подансамбля из трёх частиц $\{1, 2, 3\}$:

$$\rho_{\{1,2,3\}}^{\text{trunc}} = \tau_{\{1,2\}} \otimes \tau_{\{3\}} + \tau_{\{1,3\}} \otimes \tau_{\{2\}} + \tau_{\{1\}} \otimes \tau_{\{2,3\}}
+ \tau_{\{1\}} \otimes \tau_{\{2\}} \otimes \tau_{\{3\}} = \rho_{\{1,2\}} \otimes \rho_{\{3\}} + \rho_{\{1,3\}} \otimes \rho_{\{2\}}
+ \rho_{\{1\}} \otimes \rho_{\{2,3\}} - 2\rho_{\{1\}} \otimes \rho_{\{2\}} \otimes \rho_{\{3\}},$$
(28)

где мы использовали (27). Видно, что в получившемся выражении правая часть зависит теперь от матриц плотности младшего порядка, т.е. меньшего числа частиц. Таким образом, в (21), действуя аналогичным образом, мы можем заменить $\rho_{(n+1)}$ на $\rho_{(n+1)}^{\text{trunc}}$, которая будет являться нелинейной функцией от ρ_n , т.е. $\rho_{(n+1)}^{\text{trunc}} = f(\rho_n)$. Это позволяет замкнуть управляющее уравнение для матрицы плотности подансамбля из *n* частиц:

$$\dot{\rho}_{n} = L_{n}(\rho_{n}) - \frac{1}{2}\gamma(N-n)\sum_{i=1}^{n} \left\{ \sigma_{-}^{(i)} \operatorname{Tr}_{\{n+1\}}[\sigma_{+}^{(n+1)}f(\rho_{n})] + h.c. \right\}.$$
(29)

Полученное уравнение содержит информацию о корреляциях в системе вплоть до *n*-го порядка. Его стационарное решение позволяет определить матрицы плотности

Рис. 7. Норма Фробениуса матрицы плотности для кумулянтов τ_n в зависимости от безразмерной скорости накачки $w/N\gamma$. Количество атомов $N = 10^6$.

для кумулянтов τ_n также вплоть до *n*-го порядка. При этом наличие ненулевой нормы Фробениуса у τ_n будет говорить о наличии корреляций *n*-го порядка в системе, т.е. коррелированности сразу между *n* частицами.

На рис. 7 представлена зависимость нормы Фробениуса матрицы плотности для кумулянтов τ_n от безразмерной скорости накачки $w/N\gamma$ для $n \in \{2, 4, 6\}$, построенная в логарифмическом масштабе. Видно, что для двухатомных корреляций n = 2 (сплошная линия) эта зависимость совпадает с зависимостью для $\langle \sigma_1^+ \sigma_2^- \rangle$, приведенной на рис. 2. При этом значения для корреляций между 4 частицами при n = 4 (штриховая линия) и 6 частицами при *n* = 6 (пунктирная линия) оказываются существенно меньше, чем для n = 2 при любых значениях $w/N\gamma$. Отметим, что в τ_2 входят не только двухатомные корреляции вида $\langle \sigma_1^+ \sigma_2^- \rangle$, однако именно они вносят наибольший вклад в норму Фробениуса. Корреляции нечетных порядков в стационарном режиме при N ≫ 1 в системе отсутствуют, что вызвано наличием перестановочной симметрии. Таким образом, наибольший вклад в рассматриваемые нами эффекты при стационарном режиме генерации вносят именно двухатомные корреляции. Это будет выполняться и для обобщенной модели сверхизлучательного лазера, матрица плотности атомной системы которого подчиняется (8).

5. Заключение

Мы рассмотрели обобщенную модель сверхизлучательного рамановского лазера, в которой учли конкурирующие кооперативные и индивидуальные процессы, возникающие в атомах со сложной многоуровневой энергетической структурой при их взаимодействии с внешними световыми полями. Используя метод проекторов, нам удалось адиабатически исключить быстро затухающую моду резонатора и записать управляющее уравнение для матрицы плотности, описывающей только состояние атомного ансамбля. С его помощью мы нашли стационарные решения для средней поляризации (инверсии населенностей) $\langle \sigma_1^z \rangle$ и двухатомных корреляций $\langle \sigma_1^+ \sigma_2^- \rangle$ и, проанализировав их, показали, при каких значениях параметров задачи возможно кооперативное излучение атомов ансамбля. Затем, вернувшись к уравнению для матрицы плотности полной системы, с помощью квантовой теоремы регрессии мы вычислили двухвременную корреляционную функцию $\langle \hat{a}^{\dagger}(t)\hat{a}(0)\rangle$, взяв преобразование Фурье которой, нашли спектр излучения S(w). Как мы увидели, в спектре излучения присутствуют две узкие спектральные линии с лоренцовыми контурами, каждая из которых связана со своим кооперативным процессом. При этом ширина этих полос оказалась сравнимой с эффективной скоростью распада одного атома у. Мы также оценили наличие межатомных корреляций старших порядков, рассчитав норму Фробениуса матрицы плотности для кумулянтов, и показали, что наибольший вклад в стационарную генерацию света вносят двухатомные корреляции.

Отметим, что рассмотренная модель может быть использована не только для исследовании свойств сверхизлучательного лазера, но также и для изучения спинполяризованных ансамблей щелочных атомов с большой оптической плотностью, которые непрерывно накачиваются и зондируются внешними полями [21,22]. Такие системы интересны для многочисленных приложений в квантовой метрологии и квантовой обработке информации. Как и в случае, когда атомы находятся внутри резонатора, большая оптическая плотность в направлении оптической оси создаст в среде выделенное направление, вдоль которого, благодаря эффекту Парселла, будет происходить кооперативное излучение ансамбля. Это позволяет ввести "виртуальный" резонатор и рассматривать такой ансамбль атомов так же, как и сверхизлучательный лазер, т.е. пользоваться теми же методами, которые были рассмотрены в настоящей работе. При этом полученные нами результаты будут полезны при описании возникающих кооперативных эффектов.

Благодарности

Мы благодарны Клеменсу Хаммереру за плодотворные дискуссии.

Финансирование работы

Работа выполнена при финансовой поддержке Российского научного фонда (грант № 21-72-00049).

Конфликт интересов

Авторы заявляют, что у них нет конфликта интересов.

Список литературы

- F. Haake, M.I. Kolobov, C. Fabre, E. Giacobino, S. Reynaud. Phys. Rev. Lett., **71**, 995 (1993). DOI: 10.1103/PhysRevLett.71.995
- [2] R.H. Dicke. Phys. Rev., **93**, 99 (1954).
 - DOI: 10.1103/PhysRev.93.99
- [3] J.G. Bohnet, Z. Chen, J.M. Weiner, K.C. Cox, D. Meiser, M.J. Holland, J.K. Thompson. EPJ Web of Conferences, 57, 03003 (2013). DOI: 10.1103/PhysRev.93.99
- [4] D. Meiser, Jun Ye, D.R. Carlson, M.J. Holland. Phys. Rev. Lett., 102, 163601 (2009).
 DOI: 10.1103/PhysRevLett.102.163601
- [5] B.C. Young, F.C. Cruz, W.M. Itano, J.C. Bergquist. Phys. Rev. Lett., 82, 3799 (1999). DOI: 10.1103/PhysRevLett.82.3799
- [6] S.A. Webster, M. Oxborrow, P. Gill. Phys. Rev. A, 75, 011801(R) (2007). DOI: 10.1103/PhysRevA.75.011801
- J.A. Muniz, J.R.K. Cline, M.A. Norcia, J.K. Thompson. In: *Proc. SPIE 10934, Optical, Opto-Atomic, and Entanglement- Enhanced Precision Metrology*, v. 109342B (SPIE Digital Library, 2019). DOI 10.1117/12.2515582
- [8] J.G. Bohnet, Z. Chen, J.M. Weiner, D. Meiser, M.J. Holland, J.K. Thompson. Nature 484, 78?81 (2012).
 DOI 10.1038/nature10920
- [9] J.M. Weiner, K.C. Cox, J.G. Bohnet, J.K. Thompson. Phys. Rev. A, 95, 033808 (2017).
- DOI: 10.1103/PhysRevA.95.033808
- [10] J.M. Weiner, K.C. Cox, J.G. Bohnet, Z. Chen, J.K. Thompson. Appl. Phys. Lett., **101**, 261107 (2012).
 DOI: 10.1063/1.4773241
- [11] G.S. Agarwal. Phys. Rev. A, 83, 023802 (2011).
 DOI: 10.1103/PhysRevA.83.023802
- [12] D. Meiser, M.J. Holland. Phys. Rev. A, 81, 063827 (2010).
 DOI: 10.1103/PhysRevA.81.063827
- F. Haake, M.I. Kolobov, C. Seeger, C. Fabre, E. Giacobino, S. Reynaud. Phys. Rev. A, 54, 1625 (1996).
 DOI: 10.1103/PhysRevA.54.1625
- [14] C.W. Gardiner, P. Zoller. Quantum noise: a handbook of Markovian and non-Markovian quantum stochastic methods with applications to quantum optics, 3rd ed. (Springer Berlin, Heidelberg, 2004).
- [15] M. Xu, D.A. Tieri, E.C. Fine, J.K. Thompson, M.J. Holland, Phys. Rev. Lett., **113**, 154101 (2014).
 DOI: 10.1103/PhysRevLett.113.154101
- [16] А.П. Казанцев, Г.И. Сурдутович, В.П. Яковлев. *Механическое действие света на атомы* (Наука, Москва, 1991).
 [А.Р. Kazantsev, G.I. Surdutovich, V.P. Yakovlev. *Mechanical Action of Light on Atoms* (World Scientific Publishing, Singapore, 1990). DOI: 10.1142/0585].
- [17] A.A. Budini, J. Stat. Phys., 131, 51 (2008).DOI: 10.1007/s10955-007-9476-9
- [18] A.S. Chirkin, O.V. Belyaeva, A.V. Belinsky. J. Exp. Theor. Phys., 116 (1), 39 (2013). DOI 10.1134/S1063776113010202
- [19] А.Н. Малахов. Кумулянтный анализ случайных негауссовых процессов и их преобразований (Советское радио, Москва, 1978).
- [20] A. Roth. Collective effects and superradiance in atomic ensembles. PhD Thesis (Leibniz University Hannover, Hannover, 2018). DOI: 10.15488/3856
- [21] A.S. Parkins, E. Solano, J.I. Cirac. Phys. Rev. Lett., 96, 053602 (2006). DOI: 10.1103/PhysRevLett.96.053602

[22] C.A. Muschik, E.S. Polzik, J.I. Cirac. Phys. Rev. A, 83, 052312 (2011). DOI: 10.1103/PhysRevA.83.052312