01

Определение колебательных параметров молекулы ⁷⁶GeH₄ из высокоточных экспериментальных данных

© А.Л. Фомченко, Е.С. Бехтерева, О.В. Громова, Н.И. Николаева

Исследовательская школа физики высокоэнергетических процессов, Национальный исследовательский Томский политехнический университет, 634050 Томск, Россия

e-mail: fomchenko@tpu.ru

Поступила в редакцию 27.04.2022 г. В окончательной редакции 27.04.2022 г. Принята к публикации 26.05.2022 г.

Для молекулы 76 GeH₄ определены гармонические частоты, параметры ангармоничности, параметры тетраэдрических расщеплений на основе экспериментальных данных о центрах полос. Полученный набор из 3 гармонических частот, 8 параметров ангармоничности и 8 параметров тетраэдрических расщеплений воспроизводит 31 исходный экспериментальный центр полос со среднеквадратичным отклонением 0.054 сm⁻¹.

Ключевые слова: GeH4, колебательные параметры, модель локальных мод.

DOI: 10.21883/OS.2022.08.52900.3612-22

Введение

Теоретическое описание колебательно-вращательных спектров молекул представляет большой интерес для молекулярной спектроскопии, физической химии и смежных областей. Имея информацию о колебательных параметрах произвольной молекулы, можно с высокой точностью предсказать центры колебательновращательных полос в различных диапазонах шкалы длин волн. За прогрессом в определении параметров и, как следствие, описании колебательно-вращательных спектров четырехатомных молекул [1-3] последовал прогресс для пятиатомных молекул высокой симметрии (молекул типа сферического волчка) [4,5]. Для данного типа молекул подобного рода информация важна, поскольку из-за особенностей их спектров при интерпретации практически невозможно применение метода комбинационных разностей [6], который эффективно и широко используется при исследовании спектров молекул более низкой симметрии [7–11].

Молекула GeH₄ является ярким представителем молекул типа сферического волчка. Герман играет важную роль в задачах астрофизики и астрохимии, являясь одним из важнейших компонентов атмосфер планетгигантов Юпитера и Сатурна [12-14], где герман обнаружен в количествах, на порядки превышающих их термохимически равновесные значения в верхних слоях атмосферы. Информация о параметрах, извлеченная из спектров поглощения молекулы GeH₄, имеет решающее значение для изучения таких планетных систем и может быть использована для понимания физических и химических свойств их атмосфер. Молекула германа представляет значительный интерес для фундаментальной молекулярной физики как молекула высокой симметрии, проявляющая эффекты локальных мод в валентных колебаниях. Модель локальных мод применялась

для исследования колебательно-вращательной структуры спектров молекулы GeH₄ [15–22], и было выяснено, что данный подход весьма эффективен для понимания и интерпретации спектров высокого разрешения германа.

Инфракрасные спектры германа в естественном содержании имеют сложную структуру из-за существования пяти стабильных изотопологов, а именно 70 Ge (20.55%), 72 Ge (27.37%), 73 Ge (7.67%), 74 Ge (36.74%) и 76 Ge (7.67%), которые значительно усложняют картину экспериментально зарегистрированных спектров. Дополнительная сложность возникает как из-за наличия сильных резонансных взаимодействий между его колебательно-вращательными полосами, так и из-за вырождения колебательных мод.

Таким образом, важной задачей молекулярной колебательно-вращательной спектроскопии является прецизионное определение колебательных параметров (гармонических частот, параметров ангармоничности и параметров тетраэдрических расщеплений) молекулы германа. Благодаря знанию перечисленного набора параметров можно теоретически рассчитывать и предсказывать центры полос.

Колебательный гамильтониан молекулы типа XY₄

Колебательные энергии молекулы типа XY₄ симметрии T_d могут быть получены как собственные значения матрицы с эффективным колебательным оператором Гамильтона следующего вида [23]:

$$H^{\text{vib}} = \sum_{v,\tilde{v}} |v\rangle \langle \tilde{v} | H^{v\tilde{v}} = E^{vv} \delta_{v\tilde{v}} + W^{v\tilde{v}}(v_1, v_2, v_3, v_4 n \Gamma),$$
(1)

Полоса	E, cm ⁻¹	Источник	Полоса	E, cm ⁻¹	Источник	
$v_4(F_2)$	820.3270	[29]	$v_2 + 2v_4 (2E)$	2573.4424	[33]	
$\nu_2(E)$	929.9130	[29]	$\nu_2 + 2\nu_4(A_2)$	2576.5357	[33]	
$2\nu_4(A_1)$	1627.4950	[31]	$2\nu_2 + \nu_4 (1F_2)$	2675.2299	[33]	
$2v_4(F_2)$	1639.2570	[31]	$2\nu_2 + \nu_4 (F_1)$	2681.3912	[33]	
$2\nu_4(E)$	1642.1422	[31]	$2\nu_2 + \nu_4 (2F_2)$	2684.1880	[33]	
$\nu_2 + \nu_4 (F_2)$	1748.3962	[31]	$3\nu_2(E)$	2785.4117	[33]	
$\nu_2 + \nu_4 (F_1)$	1752.5031	[31]	$3\nu_2(A_2)$	2792.1467	[33]	
$2\nu_2(A_1)$	1857.2721	[31]	$\nu_3 + \nu_4(F_1)$	2924.2427	[34]	
$2\nu_2(E)$	1860.6673	[31]	$\nu_3 + \nu_4 (E)$	2924.9923	[34]	
$\nu_1(A_1)$	2110.6918	[30]	$\nu_1 + \nu_4(F_2)$	2925.3489	[34]	
$\nu_3(F_2)$	2110.7323	[30]	$v_3 + v_4(F_2)$	2927.0038	[34]	
$3\nu_4(1F_2)$	2438.2407	[33]	$\nu_2 + \nu_3(F_1)$	3032.8780	[34]	
$3\nu_4(F_1)$	2459.5121	[33]	$\nu_2 + \nu_3 (F_2)$	3033.1864	[34]	
$3\nu_4(2F_2)$	2462.4009	[33]	$2\nu_1(A_1)$	4152.9765	[32]	
$\nu_2 + 2\nu_4(F_1)$	2567.6835	[33]	$\nu_1 + \nu_3(F_2)$	4153.2348	[32]	
$v_2 + 2v_4(F_2)$	2571.4759	[33]				

Таблица 1. Центры полос молекулы ⁷⁶GeH₄

где

$$E^{v,\tilde{v}} = \sum_{\lambda} \omega_{\lambda} \left(v_{\lambda} + \frac{d_{\lambda}}{2} \right) + \sum_{\lambda\mu \ge \lambda} x_{\lambda\mu} \left(v_{\lambda} + \frac{d_{\lambda}}{2} \right) \left(v_{\mu} + \frac{d_{\mu}}{2} \right) = \sum_{\lambda} \tilde{\omega}_{\lambda} v_{\lambda} + \sum_{\lambda\mu > \lambda} \tilde{x}_{\lambda\mu} v_{\lambda} v_{\mu}.$$
(2)

Здесь ω_{λ} и $x_{\lambda\mu}$ — гармонические частоты и параметры ангармоничности, $d_{\lambda} = 1$ при $\lambda = 1$, $d_{\lambda} = 2$ при $\lambda = 2$ и $d_{\lambda} = 3$ при $\lambda = 3$, 4.

$$\tilde{\omega}_{\lambda} = \omega_{\lambda} + x_{\lambda\lambda} d_{\lambda} + \frac{1}{2} \sum_{\mu \neq \lambda} x_{\lambda\mu} d_{\mu}, \qquad (3)$$

$$\tilde{x}_{\lambda\mu} = x_{\lambda\mu}.\tag{4}$$

Величины $W^{v\tilde{v}}(v_1, v_2, v_3, v_4n\Gamma)$ представляют собой сложные функции, зависящие от колебательных квантовых чисел v_{λ} и симметрии колебательных состояний v и \tilde{v} . Эти величины описывают, с одной стороны, колебательные резонансные взаимодействия и, с другой стороны, различные виды так называемых тетраэдрических расщеплений [24].

Теоретическое определение колебательных параметров молекулы GeH₄

Говоря о проблеме точного полуэмпирического определения колебательных параметров молекулы GeH₄, необходимо учитывать, что до недавнего времени это было невозможно из-за отсутствия надлежащего числа экспериментальных центров полос ни для одного из пяти стабильных изотопологов данной молекулы. Однако недавно были проведены обширные исследования

Таблица 2. Спектроскопические параметры молекулы ⁷⁶GeH₄

Параметр	Значение, cm^{-1}	Параметр	Значение, cm^{-1}
$ \begin{array}{l} \omega \\ x \\ \omega_2 \\ \omega_4 \\ x_{12} \end{array} $	2194.64(27) -8.526(12) 944.46(52) 836.13(21) -7.16(25)	$ \begin{array}{c} x_{44} \\ G_{22} \\ G_{34} \\ G_{44} \\ T_{23} \\ \end{array} $	-2.318(20) 0.878(28) 0.371(21) 2.154(13) 0.019(04)
$ \begin{array}{c} x_{14} \\ x_{22} \\ x_{23} \end{array} $	-5.723(80) -0.417(43) -7.47(12)	$T_{24} \\ T_{34} \\ T_{44}$	-0.254(05) -0.201(07) 0.154(03)
x ₂₄ x ₃₄	0.307(59) -5.487(68)	S_{34} $d_{\rm rms}$	0.303(08) 0.054

колебательных спектров высокого разрешения различных изотопологов молекулы германа [25–34] (в этих работах более всего исследовался образец GeH₄, обогащенный изотопом ⁷⁶Ge). Это дало возможность в качестве первого шага поставить вопрос о высокоточном определении параметров колебательного гамильтониана молекулы ⁷⁶GeH₄ на основе точных экспериментальных данных о центрах его полос. Также было бы интересно и важно оценить колебательные параметры не только для молекулы ⁷⁶GeH₄, но и для других четырех стабильных изотопологов. К сожалению, имеющейся в настоящее время в литературе экспериментальной информации недостаточно для такой прямой оценки.

Для предварительной оценки колебательных параметров мы использовали тот факт, что молекула GeH₄ удовлетворяет условиям модели локальных мод [35]. В этом случае колебательные параметры ω_1/ω_3 , $x_{11}/x_{13}/x_{33}$, G_{33} , T_{33} , F_{1133} и F_{1333} с хорошей точностью удовлетворяют следующим соотношениям (определение всех указанных параметров можно найти, например, в [1]):

$$\omega_1 \simeq \omega_3 = \omega \tag{5}$$

Полоса	Эксперимент	Расчет	δ	Полоса	Эксперимент	Расчет	δ
$v_4(F_2)$	820.33	820.38	-0.05	$v_2 + 2v_4(E)$	2573.44	2573.70	-0.26
$v_2(E)$	929.91	929.76	0.15	$v_2 + 2v_4 (A_2)$	2576.54	2576.72	-0.18
$2\nu_4(A_1)$	1627.50	1627.51	-0.01	$2v_2 + v_4(F_2)$	2675.23	2675.26	-0.03
$2v_4(F_2)$	1639.26	1639.20	0.06	$2v_2 + v_4(F_1)$	2681.39	2681.44	-0.05
$2\nu_4(E)$	1642.14	1642.28	-0.14	$2\nu_2 + \nu_4 (F_2)$	2684.19	2684.11	0.08
$\nu_2 + \nu_4 (F_2)$	1748.40	1748.42	-0.02	$3v_2(E)$	2785.41	2785.04	0.37
$\nu_2 + \nu_4 (F_1)$	1752.50	1752.48	0.02	$3\nu_2(A_1)$	2791.95	2792.05	-0.10
$2\nu_2(A_1)$	1857.27	1856.94	0.33	$3\nu_2(A_2)$	2792.15	2792.05	0.10
$2v_2(E)$	1860.67	1860.45	0.22	$v_3 + v_4 (F_1)$	2924.24	2924.24	0.00
$\nu_1(A_1)$	2110.69	2110.69	0.00	$\nu_3 + \nu_4 (E)$	2924.99	2924.99	0.00
$v_3(F_2)$	2110.73	2110.73	0.00	$v_1 + v_4 (F_2)$	2925.35	2925.35	0.00
$3v_4(F_2)$	2438.24	2438.24	0.00	$\nu_3 + \nu_4 (A_1)$	2926.91	2926.91	0.00
$3\nu_4(A_1)$	2456.25	2456.46	-0.21	$v_3 + v_4 (F_2)$	2927.00	2927.00	0.00
$3v_4(F_1)$	2459.51	2459.54	-0.03	$\nu_2 + \nu_3 (F_1)$	3032.87	3032.87	0.00
$3v_4(F_2)$	2462.40	2462.39	0.01	$v_2 + v_3 (F_2)$	3033.19	3033.18	-0.01
$v_2 + 2v_4 (6E)$	2556.20	2556.84	-0.64	$\nu_1 + \nu_2 (E)$	3034.38	3034.31	0.07
$\nu_2 + 2\nu_4 (F_1)$	2567.68	2567.54	0.14	$2\nu_1 (A_1)$	4152.98	4153.11	-0.13
$\nu_2 + 2\nu_4 (A_1)$	2568.97	2568.59	0.38	$\nu_1 + \nu_3 (F_2)$	4153.23	4153.11	0.12
$ u_2 + 2 u_4 \left(F_2 ight)$	2571.48	2571.60	-0.12				

Таблица 3. Центры полос молекулы ⁷⁶GeH₄

И

$$x_{11} \simeq \frac{1}{4} x_{13} \simeq \frac{5}{9} x_{33} \simeq -\frac{5}{3} G_{33} \simeq -5T_{33}$$
$$\simeq \frac{1}{4} F_{1133} \simeq \frac{1}{16} F_{1333} = x.$$
(6)

Использование данных соотношений позволяет уменьшить количество неизвестных параметров и дает возможность определить их полный набор на основе имеющегося ограниченного количества высокоточных экспериментальных данных о центрах полос молекулы германа.

Таким образом, в настоящем исследовании были определены с высокой точностью колебательные параметры молекулы ⁷⁶GeH₄, что позволяет предсказать значения центров полос для более высоковозбужденных состояний данной молекулы.

Результаты определения колебательных параметров молекулы GeH₄

Для определения колебательных параметров молекулы ⁷⁶GeH₄ были использованы высокоточные экспериментальные данные о центрах полос данной молекулы, которые приведены в табл. 1.

В качестве первого шага были определены параметры, связанные с деформационными колебаниями, а именно $\tilde{\omega}_2, \tilde{\omega}_4, \tilde{x}_{22}, \tilde{x}_{24}, \tilde{x}_{44}, \tilde{G}_{22}, \tilde{G}_{44}, \tilde{T}_{24}, \tilde{T}_{44}$. Данный выбор обусловлен тем, что именно для деформационных колебаний имеется большее число достоверных экспериментальных данных о центрах полос (21 значение из 31, табл. 1). Таким образом, данные параметры определены с высокой точностью на основе экспериментальных данных, извлеченных из колебательно-вращательных спектров высокого разрешения молекулы ⁷⁶GeH₄.

В качестве следующего шага были использованы результаты теории локальных мод в виде соотношений (5) и (6) для определения оставшихся неизвестных параметров, связанных с валентными колебаниями, поскольку имеющихся экспериментальных данных недостаточно для определения их полного набора. Это позволило уменьшить число неизвестных параметров и решить поставленную задачу.

Таким образом, известные экспериментальные значения центров полос были использованы в процедуре варьирования колебательных параметров и параметров тетраэдрических расщеплений. В результате решения обратной задачи был получен набор параметров молекулы ⁷⁶GeH₄, приведенный в табл. 2. В скобках при значениях параметров приведены доверительные интервалы, соответствующие доверительной вероятности 0.66. Среднеквадратичное отклонение при определении данного набора параметров оценивается в 0.054 ст⁻¹.

Для иллюстрации качества полученных результатов в табл. 3 представлены расчетные и экспериментальные значения центров полос молекулы ⁷⁶GeH₄ и разности между ними. Хорошее соответствие расчета и эксперимента позволяет утверждать, что полученный набор колебательных параметров может быть использован для предсказания более высоковозбужденных состояний исследуемой молекулы.

Заключение

Определен полный набор колебательных параметров и параметров тетраэдрических расщеплений молеку-

лы ⁷⁶GeH₄. Полученная информация позволит предсказывать значения центров полос в колебательновращательных спектрах, что значительно упростит анализ положений линий и энергетической структуры рассматриваемой молекулы.

Финансирование работы

Исследование выполнено при финансовой поддержке Томского политехнического университета.

Конфликт интересов

Авторы заявляют, что у них нет конфликта интересов.

Список литературы

- I.M. Mills, A.G. Robiette. Mol. Phys., 56 (4), 743 (1985). DOI: 10.1080/00268978500102691
- [2] R. Marquardt, K. Sagui, J. Zheng, W. Thiel, D. Luckhaus, S. Yurchenko, F. Mariotti, M. Quack. J. Phys. Chem A., 117 (32), 7502 (2013). DOI: 10.1021/jp4016728
- [3] X. Huang, D.W. Schwenke, T.J. Lee. J. Chem. Phys., 134 (4), 044321 (2011). DOI: 10.1063/1.3541352
- [4] T.J. Lee, J.M.L. Martin, P.R. Taylor. J. Chem. Phys., 102 (1), 254 (1995). DOI: 10.1063/1.469398
- [5] E. Venuti, L. Halonen, R.G. Della Valle. J. Chem. Phys., 110 (15), 7339 (1999). DOI: 10.1063/1.478635
- [6] V. Boudon, J.P. Champion, T. Gabard, M. Loete, M. Rotger, Ch. Wenger. Spherical top theory and molecular spectra. Handbook of high-resolution spectroscopy (Chichester, Wiley, 2011), vol. 3, p. 1437–1460. DOI: 10.1002/9780470749593.hrs021
- [7] O.N. Ulenikov, O.V. Gromova, E.S. Bekhtereva, N.V. Kashirina, S. Bauerecker, V.-M. Horneman. J. Mol. Spectrosc., 313, 4 (2015). DOI: 10.1016/j.jms.2015.04.008
- [8] O.N. Ulenikov, O.V. Gromova, E.S. Bekhtereva, N.V. Kashirina, C. Maul, S. Bauerecker. J. Quant. Spectrosc. Radiat. Transf., 164, 117 (2015). DOI: 10.1016/j.jqsrt.2015.06.006
- [9] O.N. Ulenikov, E.S. Bekhtereva, S. Albert, S. Bauerecker, H. Hollenstein, M. Quack. J. Phys. Chem. A, **113** (10), 2218 (2009). DOI: 10.1021/jp809839t
- [10] O.N. Ulenikov, G.A. Onopenko, N.E. Tyabaeva, S. Alanko, M. Koivusaari, R. Anttila. J. Mol. Spectrosc., 186 (2), 293 (1997). DOI: 10.1006/jmsp.1997.7431
- [11] G. Guelachvili, O.V. Naumenko, O.N. Ulenikov. J. Mol. Spectrosc., 131 (2), 400 (1988).
 DOI: 10.1016/0022-2852(88)90247-0
- [12] U. Fink, H.P. Larson, RR. Treffers. Icarus, 34 (2), 344 (1978).
 DOI: 10.1016/0019-1035(78)90172-0
- [13] F. Chen, D.L. Judge, C.Y. Robert Wu, J. Caldwell, H. Peter White, R. Wagener. J. Geophys. Res., 96 (E2), 17519 (1991). DOI: 10.1029/91JE01687
- S.K. Atreya, P.R. Mahaffy, H.B. Niemann, M.H. Wong, T.C. Owen. Planet. Space Sci., 51 (2), 105 (2003).
 DOI: 10.1016/s0032-0633(02)00144-7
- [15] Q.-S. Zhu, B.A. Thrush. J. Chem. Phys., 92, 2691 (1990).
 DOI: 10.1063/1.458582
- [16] Q.-S. Zhu, H. Qian, B.A. Thrush. Chem. Phys. Lett., 186, 436 (1991). DOI: 10.1016/0009-2614(91)90205-N

- [17] Q.-S. Zhu, A. Campargue, J. Vetterhoffer, D. Permogorov, F. Stoeckel. J. Chem. Phys., 99, 2359 (1993).
 DOI: 10.1063/1.465251
- [18] F.-G. Sun, X.-G. Wang, Q.-S. Zhu, C. Pierre, G. Pierre. Chem. Phys. Lett., 239, 373 (1995). DOI: 10.1016/0009-2614(95)00475-J
- [19] F.-G. Sun, X.-G. Wang, J.-L. Liao, Q.-S. Zhu. J. Mol. Spectrosc., 184, 12 (1997). DOI: 10.1006/jmsp.1997.7281
- [20] H. Lin, D. Wang, X.-Y. Chen, X.-G. Wang, Z.-P. Zhou, Q.-S. Zhu. J. Mol. Spectrosc., **192**, 249 (1998). DOI: 10.1006/jmsp.1998.7673
- [21] X.-Y. Chen, H. Lin, X.-G. Wang, D. Wang, K. Deng, Q.-S. Zhu.
 J. Mol. Struct., 517-518, 41 (2000). DOI: 10.1016/S0022-2860(99)00237-9
- [22] L. Halonen, A.G. Robiette. J. Chem. Phys., 84 (12), 6861 (1998). DOI: 10.1063/1.450690
- [23] O.N. Ulenikov, E.S. Bekhtereva, S. Albert, S. Bauerecker, H.M. Niederer, M. Quack. J. Chem. Phys., 141 (23), 234302 (2014). DOI: 10.1063/1.4899263
- [24] K.T. Hecht. J. Mol. Spectrosc., 5 (1–6), 355 (1961).
 DOI: 10.1016/0022-2852(61)90102-3
- [25] O.N. Ulenikov, O.V. Gromova, E.S. Bekhtereva, N.I. Raspopova, M.A. Koshelev, I.A. Velmuzhova, A.D. Bulanov, P.G. Sennikov. J. Quant. Spectrosc. Radiat. Transf., 221, 129 (2018). DOI: 10.1016/j.jqsrt.2018.09.023
- [26] O.N. Ulenikov, O.V. Gromova, E.S. Bekhtereva, N.I. Raspopova, A.V. Kuznetsov, M.A. Koshelev, I.A. Velmuzhova, P.G. Sennikov. J. Quant. Spectrosc. Radiat. Transf., 225, 206 (2019). DOI: 10.1016/j.jqsrt.2018.12.036
- [27] O.N. Ulenikov, O.V. Gromova, E.S. Bekhtereva, N.I. Raspopova, M.A. Koshelev, I.A. Velmuzhova, P.G. Sennikov, A.D. Bulanov, A.V. Kuznetsov, C. Leroy. J. Quant. Spectrosc. Radiat. Transf., 236, 106593 (2019). DOI: 10.1016/j.jqsrt.2019.106593
- [28] O.N. Ulenikov, O.V. Gromova, E.S. Bekhtereva, N.I. Raspopova, K. Berezkin, C. Sydow, S. Bauerecker. J. Quant. Spectrosc. Radiat. Transf., 242, 106755 (2020). DOI: 10.1016/j.jqsrt.2019.106755
- [29] O.N. Ulenikov, O.V. Gromova, E.S. Bekhtereva, N.I. Raspopova, P.G. Sennikov, M.A. Koshelev, I.A. Velmuzhova, A.P. Velmuzhov, A.D. Bulanov. J. Quant. Spectrosc. Radiat. Transf., 144, 11 (2014). DOI: 10.1016/j.jqsrt.2014.03.025
- [30] M.A. Koshelev, A.P. Velmuzhov, I.A. Velmuzhova, P.G. Sennikov, N.I. Raspopova, E.S. Bekhtereva, O.V. Gromova, O.N. Ulenikov. J. Quant. Spectrosc. Radiat. Transf., 164, 161 (2015). DOI: 10.1016/j.jqsrt.2015.06.003
- [31] O.N. Ulenikov, O.V. Gromova, E.S. Bekhtereva, N.I. Raspopova, A.L. Fomchenko, P.G. Sennikov, M.A. Koshelev, I.A. Velmuzhova, A.P. Velmuzhov. J. Quant. Spectrosc. Radiat. Transf., 182, 199 (2016). DOI: 10.1016/j.jqsrt.2016.05.014
- [32] O.N. Ulenikov, O.V. Gromova, E.S. Bekhtereva, N.I. Raspopova, P.G. Sennikov, M.A. Koshelev, I.A. Velmuzhova, A.P. Velmuzhov, S.A. Adamchik. J. Quant. Spectrosc. Radiat. Transf., 205, 96 (2018). DOI: 10.1016/j.jqsrt.2017.09.025
- [33] O.N. Ulenikov, O.V. Gromova, E.S. Bekhtereva, N.I. Raspopova, I.A. Velmuzhova, M.A. Koshelev, P.G. Sennikov. J. Quant. Spectrosc. Radiat. Transf., 262, 107517 (2021). DOI: 10.1016/j.jqsrt.2021.107517
- [34] O.N. Ulenikov, O.V. Gromova, E.S. Bekhtereva, N.I. Nikolaeva, I.A. Velmuzhova, M.A. Koshelev. Spectrochim. Acta A, 275, 121135 (2022). DOI: 10.1016/j.saa.2022.121135
- [35] M.L. Sage, J. Jortner. Bond modes. Advance in Chemical Physics (Chichester, New York, 1981), vol. 47, p. 293–322. DOI: 10.1002/9780470142677.ch5