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Analytical solution of the problem of synthesis of three-link stepped

Chebyshev’s microwave filter
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The problem of synthesis of the three-link stepped Chebyshev’s microwave filter is reduced to two independent

fourth-degree equations, including a single link wave impedance as unknown. The solution of Descartes −Euler

is applied to these equations. It is proved that, in case wave impedances of extreme links are equal, the problem

of the filter synthesis has two solutions. Identical phase-frequency responses correspond to these solutions. It is

proved that for each link a product of the wave impedances relating to these solutions is equal to a square of the

wave impedance of the transmission line including the filter.
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The stepped microwave filter is a cascade structure of

regular transmission line sections (links) with different wave

impedances [1–4]. There is a numerical technique providing

an exact solution of the task of synthesizing such a device

with an arbitrary number of links having equal electrical

lengths [5]. Wave impedances of the filter links may

be expressed via the parameters of the prototype stepped

waveguide junction. Paper [1] presents the fourth-degree

equation to which the synthesis of the three-link junction

with the Chebyshev’s frequency response may be reduced.

The analytical solution of the synthesis task described

in this paper allows rigorous substantiation of a number

of properties of stepped Chebyshev’s microwave filters as

exemplified by a simplest three-link structure.

The figure demonstrates a schematic diagram of the three-

stepped microwave filter. Here it is assumed that the link

wave impedances ρ1, ρ2, ρ3 and the wave impedance ρ0
of the transmission line comprising the filter are frequency

independent, while the link electrical lengths θ are equal

to each other. Element T11 of the filter transmission wave

matrix (transmission factor) is defined as follows [1]:

T11 = (1/2)[A11 + (1/ρ0)A12 + ρ0A21 + A22]. (1)

Here Ai j are the filter transmission matrix elements defined

as

A11 = cos(θ)

[

cos2(θ) −
(

ρ1

ρ2
+
ρ1

ρ3
+
ρ2

ρ3

)

sin2(θ)

]

,

A12 = i sin(θ)

[

(ρ1 + ρ2 + ρ3) cos
2(θ) − ρ1ρ3

ρ2
sin2(θ)

]

,

A21 = i sin(θ)

[(

1

ρ1
+

1

ρ2
+

1

ρ3

)

cos2(θ) − ρ2

ρ1ρ3
sin2(θ)

]

,

A22 = cos(θ)

[

cos2(θ) −
(

ρ2

ρ1
+
ρ3

ρ1
+
ρ3

ρ2

)

sin2(θ)

]

, (2)

where i is the imaginary unit. The working attenuation
function of the filter is L = |T11|2. Parameter L may be
represented in the form of a cubic polynomial in degrees of
sin2(θ)

L = 1 +

3
∑

j=1

C j sin
2 j(θ) (3)

with coefficients
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1

4
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(

ρ21
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,
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ρ20ρ2

ρ21ρ3
,
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, (5)

C3 =
1

4

[

�[1]

(

ρ21ρ
2
3

ρ20ρ
2
2

)

− 2

]

−C1 −C2. (6)

Here �[m](x1, . . . , xm) =
m
∑

k=1

(x k + 1/x k) (m = 1, 3).

The working attenuation function of the three-link Cheby-
shev’s filter [1] is:

L = 1 + h2T 2
3 [sin(θ)/S], (7)

where h and S are the amplitude and scale factors (h > 0,
0 < S < 1), T3(x) is the Chebyshev’s first-kind cubic poly-
nomial. It follows from relation (7) that the average link
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The equivalent circuit diagram of the filter.

electrical length in the first attenuation band is θ0 = π/2.

Setting equal the factors at the same sin2(θ) degrees in

relations (3) and (7), obtain a set of nonlinear equations

in the link wave impedances:

C1 = 9h2/S2, C2 = −24h2/S4, C3 = 16h2/S6. (8)

As per (3) and (7),

L(θ = π/2) = 1 +

3
∑

j=1

C j = 1 + h2T 2
3 (1/S).

Taking into account relation (6), obtain

(ψ2 − 2 + 1/ψ2)/4 = h2T 2
3 (1/S), (9)

where ψ = ρ1ρ3/(ρ0ρ2). Solutions of equation (9) may be

represented as follows:

ψ(k) =
√

1 + h2T 2
3 (1/S) + (−1)khT3(1/S) (k = 1, 2).

(10)
The number of unknowns in equations (8) may be reduced

to two by assuming that

ρ
(k)
2 = ρ

(k)
1 ρ

(k)
3 /(ψ(k)ρ0) (k = 1, 2). (11)

Relations (4)−(6), (11) are invariant to mutual substitu-

tion ρ
(k)
1 ↔ ρ

(k)
3 . Thus, any of equations (8) may be written

in two ways. For example,

C(k)
1

(

ρ
(k)
1 , ρ

(k)
3

)

= 9h2/S2,

C(k)
1

(

ρ
(k)
3 , ρ

(k)
1

)

= 9h2/S2 (k = 1, 2).

Each of these equations defines the first argument C(k)
1 as an

implicit function of the second argument. Thus, obtain two

identical functions ρ
(k)
1 = r (k)

(

ρ
(k)
3

)

and ρ
(k)
3 = r (k)

(

ρ
(k)
1

)

whose plots are mirror-symmetric about line ρ
(k)
1 = ρ

(k)
3 .

Intersection points of these curves relate to the solutions

of the filter synthesis task. If such solutions exist, then the

abscissa and ordinate of one of them meet the following

condition:

ρ
(k)
1 = ρ

(k)
3 (k = 1, 2). (12)

Taking into account (12), relation

2C(k)
1 + C(k)

2 = −6(h2/S)T3(1/S) (k = 1, 2),

following from (8) may be reduced to

3
∑

j=0

α
(k)
j

(

ρ
(k)
1

) j
+
(

ρ
(k)
1

)4
= 0 (k = 1, 2), (13)

where

α
(k)
0 = −(ψ(k))2ρ40, α

(k)
1 = −2ψ(k)ρ30,

α
(k)
2 = −(−1)k6ψ(k) h

S
ρ20, α

(k)
3 = 2ψ(k)ρ0 (k = 1, 2).

(14)
Applying the Descartes−Euler solution [6] to the first of

the fourth-degree equations (13), obtain

ρ
(1)
1,m =

√
y1 − (−1)m√y2 + (−1)msign(β1)

√
y3 −

1

4
α

(1)
3

(m = 1, 2),

ρ
(1)
1,n = −√

y1 − (−1)n√y2 − (−1)nsign(β1)
√

y3 −
1

4
α

(1)
3

(n = 3, 4). (15)

Here

β0 = α
(1)
0 − (1/4)α

(1)
1 α

(1)
3 + (1/16)α

(1)
2

(

α
(1)
3

)2

− (3/256)
(

α
(1)
3

)4
,

β1 = α
(1)
1 − (1/2)α

(1)
2 α

(1)
3 + (1/8)

(

α
(1)
3

)3
,

β2 = α
(1)
2 − (3/8)

(

α
(1)
3

)2
,

ym (m = 1, 3) are the solutions of equation

2
∑

j=0

δ j y
j + y3 = 0 (16)

with coefficients δ0 = −(1/64)β21 ,
δ1 = −(1/4)β0 + (1/16)β22 , δ2 = (1/2)β2 .
To determine ym, use the Cardano’s solution for a cubic

equation [6]:

y1 = ν1 + ν2 −
δ2

3
,

ym = −ν1 + ν2

2
+ (−1)mi

√
3
ν1 − ν2

2
− δ2

3
(m = 2, 3),

νn = 3

√

−(1/2)ζ0 − (−1)n
√
η (n = 1, 2),

η = (1/4)ζ 2
0 + (1/27)ζ 3

1 ,

ζ0 = δ0 − (1/3)δ1δ2 + (2/27)δ32 , ζ1 = δ1 − (1/3)δ22 .

It is easy to verify that quantities ym are interrelated as

follows:
3

5
m=1

ym = (1/64)β21 . (17)

Based on (14), find

β0 =
3

2
(ψ(1))3

(

h
S
− 1

8
ψ(1)

)

ρ40,

β1 = −ψ(1)

(

8
h
S3
ψ(1) + 1

)

ρ30,
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β2 = 3ψ(1)

(

2
h
S
− 1

2
ψ(1)

)

ρ20,

ζ0 = −1

4

(

ψ(1)
)3 h

S3
(2 + h2)ρ60,

ζ1 = −3

4

(

ψ(1)
)2 h2

S2
ρ40,

η =
1

16

(

ψ(1)
)6 h2

S6
(1 + h2)ρ120 ,

ν1,2 =
1

2
ψ(1)

3
√

h
S

(

√

1 + h2 ± 1
)2/3

ρ20 .

Thus the equation (16) solutions are

y1 = ρ20ψ
(1)

(

1

4
ψ(1) +

1

2

3
√

h
S
ξ

)

,

ym = ρ20ψ
(1)

[

1

4
ψ(1) −

(

3

2

h
S

+
1

4

3
√

h
S
ξ

)

+(−1)mi

√
3

4

3
√

h
S

(σ2 − σ1)

]

(m = 2, 3), (18)

where

ξ =

(

3

√

√

1 + h2 + 1− 3

√

√

1 + h2 − 1

)2

,

σ1,2 =
(

√

1 + h2 ∓ 1
)2/3

.

The y2 and y3 quantities are complex-conjugate:

y2 = y∗

3 , y2y3 = |y2|2 > 0. (19)

The y2 absolute value does not vanish to zero since

Im(y2) > 0. Therefore, taking into account (17), obtain

y1 > 0. From (19) it also follows that
√

y2 = (
√

y3)
∗ . Thus,

among expressions (15) real ones are

ρ
(1)
1,m =

√
y1 − (−1)m2Re

(√
y2

)

− 1

2
ψ(1)ρ0 (m = 1, 2).

(20)

Using relation

Re(
√

y2) =
1√
2

√

Re(y2) + |y2|,

find that

Re
(√

y2

)

= ρ0
1

2

√

ψ(1)

[

ψ(1)

2
−
(

3
h
S

+
3
√

h
S
ξ

2

)

+

√

(

3
h
S
− ψ(1)

2

)2

+

(

6
h
S
− ψ(1)

2

)

3
√

h
S
ξ +

h2/3

S2
ξ2
]1/2

.

(21)

From (18), (20), (21), inequality ρ
(1)
1,1 > 0 follows. Taking

into account relation

ρ
(1)
1,1ρ

(1)
1,2 =

(√
y1 −

ψ(1)

2
ρ0
)2 − 4

[

Re
(√

y2

)]2
= ρ20ψ

(1)

×
[

3
h
S

+
3
√

h
S
ξ +

√

ψ(1)

(

ψ(1)

4
+

3
√

h
S
ξ

2

)

+

√

(

3
h
S
− ψ(1)

2

)2

+

(

6
h
S
− ψ(1)

2

)

3
√

h
S
ξ +

h2/3

S2
ξ2

]

−1

×
[

ψ(1)

(

3
h
S
− ψ(1)

2

)

−

√

(ψ(1))2
(

3
h
S
−ψ(1)

2

)2

+2ψ(1)
h
S3
ξ(3h2/3+ξ)2

]

< 0,

obtain ρ
(1)
1,2 < 0. Therefore, the first equation of (13) has a

unique real positive solution

ρ
(1)
1 = ρ0

√

ψ(1)

{

√

ψ(1)

4
+

3
√

h
S
ξ

2
− 1

2

√

ψ(1)

+

[

√

(

3
h
S
− ψ(1)

2

)2

+

(

6
h
S
− ψ(1)

2

)

3
√

h
S
ξ +

h2/3

S2
ξ2

+
ψ(1)

2
− 3

h
S
−

3
√

h
S
ξ

2

]1/2}

. (22)

As per (10), ψ(1)ψ(2) = 1 with ψ(1) < 1, ψ(2) > 1. Substi-

tutions ψ(2) = 1/ψ(1), ρ
(2)
1 = ρ20/ρ

(1)
1 transform the second

equation of (13) to the first one. Thus, solutions of the

filter synthesis task are bound by condition ρ
(1)
1 ρ

(2)
1 = ρ20 .

Equations (11), (12) allow extending it to wave impedances

of all the filter links by writing

ρ
(2)
j = ρ20/ρ

(1)
j ( j = 1, 3). (23)

The phase shift between the direct voltage waves at

the filter input is ϕ = arg(T11). As it follows from (1),
(2), transmission factor T11 is invariant to substitution

ρ
(1)
j = ρ20/ρ

(2)
j or ρ

(2)
j = ρ20/ρ

(1)
j ( j = 1, 3). Therefore,

phase-frequency responses related to solutions (11), (12),
(22), (23) are identical.

The analysis performed shows that, under the assumption

that wave impedances of extreme links are equal, the

problem of synthesizing the three-link stepped Chebyshev’s

microwave filter has two solutions. Filters consistent with

these solutions have identical phase-frequency responses.

For each link, the product of wave impedances correspond-

ing to these solutions is the squared wave impedance of the

transmission line comprising the filter.
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