Фотоэлектрические явления в монокристаллах CdV₂S₄ и структурах на их основе

 $^{\odot}$ А.А. Вайполин, Ю.А. Николаев, И.К. Полушина, В.Ю. Рудь * , Ю.В. Рудь ¶ , Е.И. Теруков, N. Fernelius †

Физико-технический институт им. А.Ф. Иоффе Российской академии наук,

194021 Санкт-Петербург, Россия

* Санкт-Петербургский государственный политехнический университет,

195251 Санкт-Петербург, Россия

[†] Air Force Wright Lab., Wright Patterson AFB, OH, USA

(Получена 2 декабря 2002 г. Принята к печати 3 декабря 2002 г.)

Выращены монокристаллы тройного соединения CdV_2S_4 и выполнены исследования их кристаллической структуры, электрических свойств и оптического поглощения. Показано, что замещение элемента III группы в соединениях $A^{II}B_2^{II}C_4^{VI}$ на ванадий приводит к получению кристаллов *n*-типа проводимости с концентрацией электронов ~ 10^{18} см⁻³ и холловской подвижностью $U_n \approx 150$ см²/(B · c) при T = 300 K, которая ограничивается рассеянием на колебаниях решетки. На монокристаллах CdV_2S_4 созданы первые выпрямляющие фоточувствительные структуры, исследованы их фотоэлектрические свойства и сделан вывод о возможности их применения при создании широкодиапазонных фотосенсоров естественного излучения.

Тройные полупроводниковые соединения и их бинарные аналоги обеспечивают управление фундаментальными свойствами алмазоподобных полупроводников за счет вариации природы образующих эти вещества изопериодных атомов [1]. В ряде позиционно-упорядоченных полупроводников установлено, что введение в их состав элементов из других периодов позволяет еще более расширить диапазон управления характеристиками этих веществ [2-4]. К примеру, замещение в тройных полупроводниках $A^{II}B_2^{III}C_4^{VI}$ элементов II группы на элементы VIII ($A^{II} \rightarrow A^{VIII}$) обеспечивает создание магнитных полупроводников нового класса [2-4]. В данной работе представлены результаты изучения замещения атомов III группы в соединениях А^{II}В^{III}С^{VI} атомами VIII группы (на примере замещения ванадием атомов галлия). В результате выращены монокристаллы CdV₂S₄ и созданы фоточувствительные структуры двух типов, что открыло возможность впервые определить ряд оптоэлектронных параметров этого вещества и выявить перспективы его применения в полупроводниковой электронике.

Монокристаллы CdV₂S₄ получены кристаллизацией из нестехиометрических растворов-расплавов [5]. Рентгеновские исследования показали, что монокристаллы кристаллизуются в кубической гранецентрированной решетке с параметром $a = 5.6577 \pm 0.0005 \text{ Å}$ при T = 300 К. Обычно эти монокристаллы представляют собой вытянутые вдоль кристаллографического направления [112] призмы или иглы, ограниченные двумя естественными зеркальными плоскостями (111) и двумя (110). Следует подчеркнуть, что такая огранка не соответствует точечной группе симметрии этого кристалла F43m. Средние размеры полученных монокристаллов составляют $\sim (6-12) \times (0.4-0.6) \times (0.08-0.15) \text{ мм}^3$. Максимальная скорость роста кристаллов соответствует направлению [112], из-за чего в данном направлении они вытянуты и часто имеют форму заостренной иглы. Минимальная скорость роста направлена вдоль [111]. При освещении белым светом кристаллы CdV₂S₄ непрозрачны, тогда как в отраженном обладают металлическим блеском и имеют светло-серую окраску. Полученные кристаллы по знаку термоэдс при $T = 300 \, \text{K}$ обнаруживают электронный тип проводимости. Для измерений коэффициента Холла R и удельной электропроводимости σ использовались участки монокристаллов в форме прямоугольного параллелепипеда с естественной огранкой при средних размерах $\sim 0.15 \times 0.5 \times 4$ мм. На таких образцах методом сварки в электрическом разряде под микроскопом [6] создавались в нужных местах точечные зонды из серебряной проволоки. В результате этой процедуры образец снабжался 4 потенциальными и 2 токовыми зондами. Контакты были омическими и нейтральными по отношению к освещению. Исследования удельной электропроводности и коэффициента Холла проводились в слабых электрическом и магнитном полях.

На рис. 1 приведены типичные температурные зависимости кинетических коэффициентов σ и R в исследованном интервале температур 140-300 К. Из рис. 1 (кривые 1 и 2) следует, что монокристаллы CdV_2S_4 при комнатной температуре обладают значительной электропроводностью $\sigma \approx 50-60 \, \mathrm{Om^{-1} cm^{-1}}$, которая плавно растет с понижением температуры. Аналогичный температурный ход обнаруживает и коэффициент Холла, возрастая от 6-7 до 8.5-9 см³/Кл с понижением температуры от 300 до 140 К. Вычисленная концентрация свободных электронов в полученных монокристаллах составляет $\sim 10^{18}$ см³ при T = 300 К. Слабое повышение кинетических коэффициентов σ и R с понижением температуры позволяет высказать предположение о существовании достаточно мелких уровней, что в соединениях А^{II}В^{III}С^{VI} еще не наблюдалось [7]. Следовательно, замещение атомов $B^{III}(Cd, Zn) \rightarrow V$ приводит к сильному росту проводимости на 10-12 порядков величины,

[¶] E-mail: yuryrud@mail.ioffe.ru

Рис. 1. Температурные зависимости удельной электропроводности (*1*), коэффициента Холла (*2*) и холловской подвижности электронов (*3*) монокристалла CdV₂S₄.

например, относительно аналога $CdV_2S_4 - CdGa_2S_4$ [7]. Вероятно, введение атомов типа ванадия в кристаллы $A^{II}B_2^{III}C_4^{VI}$ может рассматриваться при решении проблемы легирования этих веществ [7]. К числу существенных особенностей электрических свойств монокристаллов CdV_2S_4 следует также отнести:

а) обнаружение достаточно высокой холловской подвижности электронов $U_n \approx 150 \text{ см}^2/(\text{B}\cdot\text{c})$ при T = 300 K и высокой их концентрации $n \approx 10^{18} \text{ см}^{-3}$;

б) рост холловской подвижности с понижением температуры T < 300 K по закону $U_n \propto T^{-3/2}$, что позволяет сделать вывод о доминирующем рассеянии электронов на колебаниях решетки [8].

Как видно из рис. 1 (кривая 3), при T = 140 K холловская подвижность электронов возрастает до значений $U_n \approx 620 \,\mathrm{cm}^2/(\mathrm{B}\cdot\mathrm{c})$, что свидетельствует о принципиальной возможности получения достаточно совершенных монокристаллов CdV₂S₄. Экстраполяция полученной зависимости $U_n(T)$ к температуре жидкого азота свидетельствует о том, что при сохранении решеточного механизма подвижности возможно достижение в этом тройном соединении значений $U_n \approx 2300 \text{ см}^2/(\text{B} \cdot \text{c})$ при T = 77 К. Следовательно, тройные соединения нового класса А^{II}В^{VIII}С^{VI}₄ являются полупроводниками и могут быть получены с достаточно высокой (для полупроводников сложного состава) подвижностью электронов. Следует при этом отметить, что для тройных аналогов CdV_2S_4 соединений $A^{II}B_2^{III}C_4^{VI}$, которые изучаются уже достаточно длительное время [4,7], пока не обнаружены кристаллы со значительной подвижностью носителей заряда, а вопрос о механизмах рассеяния в них еще не анализировался.

Методом абсорбционной спектроскопии на полученных монокристаллах CdV_2S_4 столь малых размеров при T = 300 K были выполнены также измерения оптического пропускания T_0 , согласно которым вычислялся коэф-

Физика и техника полупроводников, 2003, том 37, вып. 6

1 $((1-R_0)^2)$ $([(1-R_0)^2]^2)$

$$\alpha = \frac{1}{d} \ln \left\{ \frac{(1 - R_0)^2}{2T_0} + \sqrt{\left[\frac{(1 - R_0)^2}{2T_0}\right]^2 + R_0^2} \right\}, \quad (1)$$

фициент оптического поглощения из соотношения [9]

где коэффициент отражения $R_0 \approx 0.3$. На рис. 2 (кривая 1) представлен типичный спектр $\alpha(\hbar\omega)$ для монокристалла CdV₂S₄. Видно, что значительный рост *а* наблюдается при $\hbar \omega > 1$ эВ. При энергиях фотонов выше 1.24 эВ этот рост усиливается и завершается вблизи $\hbar\omega \approx 1.34$ эВ. В координатах $(\alpha\hbar\omega)^2 - \hbar\omega$ в спектре коэффициента оптического поглощения удается выделить прямолинейный участок (рис. 2, кривая 2), а его экстраполяция $(\alpha\hbar\omega)^2 \rightarrow 0$ дает значение ширины запрещенной зоны $E'_g \approx 1.22$ эВ при T = 300 К. С учетом низких значений коэффициента оптического поглощения вблизи $E_g^\prime~(lphapprox 30\,{
m cm^{-1}})$ по аналогии с кристаллами ${
m A^{II}B^{IV}C_2^V}$ следует отнести эти межзонные переходы к псевдопрямым [10,11]. Однако очевидно, что окончательный вывод о природе краевого поглощения в CdV₂S₄ требует продвижения в область сильного оптического поглощения ($\alpha > 10^3 \, \text{см}^{-1}$), что при имеющихся размерах полученных кристаллов с помощью традиционной абсорбционной спектроскопии оказалось нереализуемым.

Для применения фотоэлектрической спектроскопии при изучении свойств полученных монокристаллов в работе была также предпринята попытка создания фоточувствительных структур на основе монокристаллов CdV₂S₄ *n*-типа. С этой целью изучались возможности

Рис. 2. Спектральная зависимость коэффициента оптического поглощения в координатах $\alpha - \hbar \omega$ (1) и в координатах $(\alpha \hbar \omega)^2 - \hbar \omega$ (2) монокристалла CdV₂S₄ при T = 300 K.

Фотоэлектрические свойства структур на основе монокристаллов
 $\mathit{n}\text{-}\mathrm{CdV_2S_4}$ при $T=300\,\mathrm{K}$

Тип структуры	K	U_0, \mathbf{B}	R_0 , Ом	п	$S_U^{\rm m}, {\rm B}/{\rm Br}$	$\Delta\hbar\omega,$ эВ
$\frac{\text{In}/n\text{-}\text{CdV}_2\text{S}_4}{\text{H}_2\text{O}/n\text{-}\text{CdV}_2\text{S}_4}$	50 20	0.6	$\begin{array}{c} 330 \\ \sim 10^5 \end{array}$	~ 1.9	50 10	2.7 - 3.3 2.9 - 3.4

Примечание. К — коэффициент выпрямления ВАХ, *n* — коэффициент идеальности ВАХ.

контактов изучаемых кристаллов с металлами и жидким электролитом. На основании исследований контактных явлений некоторых металлов (In, Cu, Mo, Au) с плоскостью [111] монокристаллов CdV₂S₄ было установлено, что напыленные вакуумным термическим испарением тонкие пленки индия ($d \approx 0.1 \,\mathrm{MM}$) обнаруживают четкое выпрямление. На рис. 3 представлена типичная вольт-амперная характеристика (ВАХ) структуры In/n-CdV₂S₄. Средние размеры кристаллов CdV₂S₄ составляли $\sim 0.5 \times 0.5 \times 0.1$ мм³. При напряжениях смещения $|U| \approx 0.7 \,\mathrm{B}$ коэффициент выпрямления K в лучших структурах достигает 50 (см. таблицу), причем пропускное направление всегда соответствовало положительной полярности внешнего смещения на барьерном контакте. При U > 0.8 В вольт-амперные характеристики начинают следовать соотношению

$$I = \frac{U - U_0}{R_0},\tag{2}$$

где напряжение отсечки $U_0 \approx 0.6$ В и остаточное сопротивление $R_0 \approx 330-350$ Ом при T = 300 К для полученных структур In/CdV₂S₄. В координатах lg I-U прямая ветвь BAX (рис. 3, кривая 2) при $U_0 \leq 0.3$ В следует экспоненциальному закону

$$I_f = I_0 \exp\left(\frac{eU}{nkT} - 1\right) \tag{3}$$

со значением фактора неидеальности $n \approx 1.7-1.9$, что позволяет высказать предположение о рекомбинационной природе прямого тока [12] в полученных структурах In/CdV₂S₄. Обратный ток плавно увеличивается с ростом напряжения по степенному закону $I \propto U^{\gamma}$, где при U < 0.35 В показатель $\gamma = 1$, тогда как при U > 0.7 В ток начинает резко расти и $\gamma \approx 10$, что свидетельствует о наступлении "мягкого" пробоя.

На монокристаллах CdV₂S₄, подобно [13], также созданы фотоэлектрохимические ячейки (ФЭХЯ). В случае ячеек H₂O/CdV₂S₄ наблюдалось выпрямление, характеризуемое коэффициентом $K \approx 20$ при напряжениях $|U| \approx 10$ В, тогда как значения сопротивлений R_0 были существенно более высокими, чем для твердотельных структур In/CdV₂S₂ (см. таблицу). Столь высокие значения R_0 характерны вообще для ФЭХЯ [13] и определяются в основном проводящими свойствами электролита. Пропускное направление полученных ячеек H_2O/CdV_2S_4 , как правило, всегда соответствует отрицательной полярности внешнего смещения на кристалле CdV_2S_4 .

Рис. 3. Вольт-амперная характеристика структуры \ln/n -CdV₂S₄ в координатах I-U (1) и на вставке — в координатах $\lg I-U$ (2 — прямая ветвь, 3 — обратная) при T = 300 К. Пропускное направление реализуется при отрицательной полярности внешнего смещения на кристалле CdV₂S₄.

Рис. 4. Спектральные зависимости относительной квантовой эффективности фотопреобразования структур на основе монокристаллов *n*-CdV₂S₄ при T = 300 K ($1 - \ln/CdV_2S_4$, $2 - H_2O/CdV_2S_4$). Спектральное разрешение не ниже 1 мэВ. Освещение структур со стороны барьерных контактов.

Физика и техника полупроводников, 2003, том 37, вып. 6

Рис. 5. Спектральные зависимости относительной квантовой эффективности фотопреобразования структур на основе монокристаллов *n*-CdV₂S₄ при T = 300 K: I - в координатах $\eta^{1/2} - \hbar \omega$, $2-5 - (\eta \hbar \omega)^2 - \hbar \omega$. Исследованные структуры: $I-3 - \ln/\text{CdV}_2\text{S}_4$; $4, 5 - \text{H}_2\text{O}/\text{CdV}_2\text{S}_4$. Освещение неполяризованным излучением со стороны барьерного контакта.

При освещении обоих типов полученных структур неполяризованным излучением обнаруживается фотовольтаический эффект. Знак фотонапряжения в структурах In/CdV₂S₄ и H₂O/CdV₂S₄ оказывается одинаковым и не зависит от геометрии их освещения и энергии фотонов. Отрицательная полярность фотонапряжения соответствует кристаллу CdV₂S₄, что согласуется с направлением выпрямления в полученных структурах. Максимальная вольтовая чувствительность обычно наблюдается при освещении структур со стороны барьерного контакта (In и H₂O) и в структурах In/CdV₂S₄ достигает $S_U^m = 50$ B/Bт при T = 300 K (см. таблицу). Следует также указать на отсутствие выраженных эффектов деградации фоточувствительности в созданных структурах.

На рис. 4 приведены типичные для структур In/CdV₂S₄ и H₂O/CdV₂S₄ спектральные зависимости относительной квантовой эффективности фотопреобразования $\eta(\hbar\omega)$. Из этих зависимостей видно, что в обоих типах структур фоточувствительность наблюдается в широком спектральном диапазоне, причем спектральный контур $\eta(\hbar\omega)$ для этих различных по природе структур оказался весьма близким. Рост фоточувствительности во всех исследованных структурах начинается при энергиях фотонов $\hbar \omega \gtrsim 0.8$ эВ, а максимальная фоточувствительность достигается в диапазоне $\Delta \hbar \omega$ от 2.7 до 3.4 эВ, тогда как резкого коротковолнового спада η не обнаруживается. Поэтому для количественной характеризации широкополосности спектров фоточувствительности можно сделать оценку полной ширины спектров $\eta(\hbar\omega)$ на их полувысоте $\delta \geq 2$ эВ. Это позволяет высказать предположение о достаточно высокой эффективности собирания фотогенерированных пар в структурах на монокристаллах CdV₂S₄.

На рис. 5 демонстрируются примеры анализа спектров $\eta(\hbar\omega)$ для типичных структур. Как следует из рис. 5 (кривая *I*), длинноволновая часть спектров фоточувствительности поверхностно-барьерных структур In/CdV₂S₄ подчиняется закону Фаулера [14], что может служить основанием для вывода об эмиссии фотогенерированных носителей заряда через барьер. Из экстраполяции линейного участка зависимости $\eta^{1/2} \rightarrow 0$ можно оценить высоту энергетического барьера в таких структурах $\varphi_B \approx 0.6-0.9$ эВ для различных образцов, которая согласуется с величиной напряжения отсечки U_0 в вольтамперных характеристиках (рис. 3) полученных структур. Длинноволновый рост квантовой эффективности фотопреобразования описывается законом

$$\eta \hbar \omega = A (E_g - \hbar \omega)^{1/2}, \tag{4}$$

что, согласно [15], дает основание считать переходы прямыми и из экстраполяции $(\eta\hbar\omega)^2 \rightarrow 0$ для разных структур определить $E'_g \approx 1.18 - 1.21$ эВ (кривые 2, 4 на рис. 5). Следует подчеркнуть, что этот анализ хорошо согласуется с подобным анализом спектров $\alpha(\hbar\omega)$ монокристаллов, на которых создавались фоточувствительные структуры (рис. 2).

Из рис. 5 также следует, что прямолинейный участок в зависимости $(\eta\hbar\omega)^2 - \hbar\omega$ обоих типов барьеров имеется и в коротковолновой спектральной области фоточувствительности, а его экстраполяция $(\eta\hbar\omega)^2 \rightarrow 0$ дает значение $E_g \approx 2.22 - 2.28$ эВ. Эта величина энергии межзонных переходов приходится на область высокого оптического поглощения и поэтому может быть связана с прямыми межзонными переходами в соединении CdV₂S₄. Подчеркнем, что величины E'_g и E_g практически не зависят от типа созданных энергетических барьеров на одном и том же полупроводниковом соединении. Этот факт является еще одним свидетельством в пользу того, что найденные величины E'_g и E_g являются фундаментальными параметрами монокристаллов CdV₂S₄.

Таким образом, выполненные исследования показывают, что тройное соединение CdV₂S₄ может быть отнесено к полупроводникам, которые перспективны в разработках фотодетекторов естественного излучения от инфракрасного до ультрафиолетового спектрального диапазона.

Работа поддержана грантом ISTC-2008.

Список литературы

- [1] Н.А. Горюнова. Сложные алмазоподобные полупроводники (М., Сов. радио, 1968).
- [2] M. Eibshuts, H. Herman, S. Shtrikman. Sol. St. Commun., 5, 529 (1967).
- [3] T. Kanomatra, H. Ido, T. Kaneko. J. Phys. Soc. Jap., 34, 564 (1973).

- [4] Р.Н. Бекимбетов, Н.Н. Константинова, Ю.В. Рудь, М.А. Таиров. Изв. АН СССР; Журн. неорган. матер., 24, 1969 (1988).
- [5] В.Д. Прочухан, Ю.В. Рудь. ФТП, 12, 208 (1978).
- [6] Н.А. Горюнова, Ф.П. Кесаманлы, Д.Н. Наследов, В.В. Негрескул, Ю.В. Рудь, С.В. Слободчиков. ДАН СССР, 160, 633 (1965).
- [7] А.Н. Георгобиани, С.Н. Радауцан, И.М. Тигинягу. ФТП, 19, 193 (1985).
- [8] Ф.Дж. Блат. Теория подвижности электронов в твердых телах (М., ИИЛ, 1963).
- [9] H.Y. Fan, M.O. Becker. Proc. Conf. of Semiconducting Materials (Academic Press, N.Y., 1951) p. 132.
- [10] Ю.А. Валсов, А.А. Лебедев, К. Овезов, В.Д. Прочухан, Ю.В. Рудь. Письма ЖТФ, 2 (22), 1042 (1976).
- [11] А.Ю. Шилейка. В кн.: *Многодолинные полупроводники*, под ред. Ю.К. Пожела (Вильнюс, Мокслас, 1978) с. 143.
- [12] С. Зн. Физика полупроводниковых приборов (М., Мир, 1973).
- [13] Ю.В. Рудь, М.А. Таиров. ФТП, 21, 615 (1987).
- [14] Ж. Панков. Оптические процессы в полупроводниках (М., Мир, 1973).
- [15] Ю.И. Уханов. Оптические свойства полупроводников (М., Наука, 1977).

Редактор Т.А. Полянская

Photovoltaic effects on CdV₂S₄ single crystals and structures on its

A.A. Vaipolin, Yu.A. Nikolaev, I.K. Polushina, V.Yu. Rud'*, Yu.V. Rud', E.I. Terukov, N. Fernelius[†]

Ioffe Physicotechnical Institute, Russian Academy of Sciences, 194021 St. Petersburg, Russia * St. Petersburg State Polytechnical University, 195251 St. Petersburg, Russia † Air Force Wright Lab., Wright Patterson AFB, OH, USA

Abstract The CdV₂S₄ single crystals were first grown and their lattice structure, electrical properties and optical absorbtion were studied. It has been shown, that substituting the III group element of Periodical table in $A^{II}B_2^{II}C_4^{VI}$ compounds to vanadium leads to formation of an *n*-type crystal (*n* being 10^{18} cm⁻³) with the Hall mobility $U \approx 150$ cm²/(V · s) at T = 300 K, which was limited by the lattice thermal scattering. The photosensitive structures on CdV₂S₄ single crystals were obtained and photoelectrical characteristics were investigated for the first time. The conclusion has been drawn that there are possibilities of practical applications for a wide-band photosensor of natural optical radiation.