05

Механизмы магнитоэлектрических эффектов в оксидных мультиферроиках с прафазой перовскита

© З.В. Гареева^{1,2}, А.К. Звездин^{3,4}, Н.В. Шульга¹, Т.Т. Гареев², С.М. Чен⁵

¹ Федеральное государственное бюджетное научное учреждение Институт физики молекул и кристаллов Уфимского федерального исследовательского центра РАН,

Уфа, Россия
² Башкирский государственный университет,
Уфа, Россия
³ Институт общей физики им. А.М. Прохорова РАН,
Москва, Россия
⁴ Физический институт им. П.Н. Лебедева РАН,
Москва, Россия
⁵ Laboratory of Dielectric Materials, Zhejiang University,
Hangzhou, People's Republic of China, 310027

E-mail: gzv@anrb.ru

Поступила в Редакцию 29 апреля 2022 г. В окончательной редакции 29 апреля 2022 г. Принята к публикации 12 мая 2022 г.

Обсуждаются магнитоэлектрические эффекты в мультиферроиках со структурой перовскита: феррите висмута, редкоземельных ортохромитах, структурах Раддлесдена–Поппера, принадлежащих к тригональной, орторомбической и тетрагональной сингониям. Исследовано влияние структурных искажений на магнитные и сегнетоэлектрические свойства, определены возможные магнитоэлектрические эффекты (линейные, квадратичные, неоднородные) в этих материалах, приведены выражения для тензора линейного магнитоэлектрического эффекта. Рассмотрены макроскопические проявления неоднородного магнитоэлектрического эффекта на основе мультиферроиков.

Ключевые слова: мультиферроики, магнитоэлектрический эффект, перовскиты, симметрия.

DOI: 10.21883/FTT.2022.09.52830.43HH

1. Введение

Развитие информационных технологий и спинтроники стимулирует поиск и разработку новых материалов с эффективными функциональными свойствами. В этом отношении перспективными являются мультиферроидные структуры, в которых реализуется несколько типов упорядочений. Магнитоэлектрические компоненты на основе мультиферроиков планируется использовать в качестве буферных элементов логических устройств, принцип работы которых основан на магнитоэлектрической и спин-орбитальной связи (MESO), магнитной памяти произвольного доступа (MRAM), а также элементов нейросетевых технологий [1-4]. В связи с этим возникает необходимость поиска оптимальных условий для реализации магнитоэлектрических эффектов и интегрирования качеств мультиферроиков с топологическими свойствами материалов.

К магнитоэлектрическим материалам относится большая группа однофазных мультиферроиков — соединений с прафазой ABO₃ — перовскита, среди которых наиболее известными мультиферроиками являются феррит висмута (BiFeO₃), редкоземельные ортоферриты (*R*FeO₃) и ортохромиты (*R*CrO₃) [5]; также к претендентами на перовскитные мультиферроики можно отнести топологические изоляторы Bi_xMn_{1-x}Te₂, в которых недавно был обнаружен магнитоэлектрический эффект (МЭЭ) [6]; все больший интерес исследователей привлекают слоистые структуры типа Раддлесдена-Поппера (РП) [7–10] в связи с обнаружением в них высокотемпературных сегнетоэлектрических свойств [10]. Проявления МЭ свойств в перечисленных материалах имеют существенные различия, что связано с различной степенью искажения структуры перовскита и различием групп симметрии, соответствующих конкретной кристаллической структуре. Степень искажения кристаллической структуры сказывается на магнитных и сегнетоэлектрических свойствах мультиферроиков. В связи с этим выявление механизмов, отвечающих за взаимодействие кристаллографической, сегнетоэлектрической и магнитной подсистем мультиферроиков АВО3 — типа является важной задачей, решение которой необходимо для успешной реализации приборов и устройств, основанных на использовании МЭЭ.

Цель настоящего исследования состоит в том, чтобы выделить основные механизмы МЭЭ в *ABO*₃ — мультиферроиках различной симметрии, акцентируя внимание на кристаллографических дисторсиях; рассмотреть условия реализации линейного, квадратичного и неоднородного МЭЭ; проанализировать спин-орбитальные эффекты, микромагнитные структуры и полярные состояния в пленках мультиферроиков ограниченных размеров.

Магнитоэлектрические эффекты в мультиферроиках со структурой перовскита

В данном разделе на основе использования методов теоретико-группового анализа мы проанализируем кристаллическую структуру, сегнетоэлектрические и магнитные свойства материалов со структурой перовскита (BiFeO₃, RCrO₃, Ca_{3-x} R_x Fe₂O₇).

2.1. Феррит висмута BiFeO₃ является одним из наиболее известных высокотемпературных мультиферроиков, температуры сегнетоэлектрического и магнитного упорядочения в нем составляют $T_C = 1083 \, \text{K}$, $T_N = 643 \,\mathrm{K}$ [11,12]. ВіFeO₃ кристаллизуется в группе симметрии R3c, основные кристаллографические искажения (дисторсии) АВО3 перовскита следующие: (i) смещение ионов Ві и Fe вдоль оси $\langle 111 \rangle$, (ii) деформации кислородных октаэдров FeO₆ и (ііі) антивращение кислородных октаэдров вокруг оси (111). Именно с наличием перечисленных типов дисторсий связано возникновение сегнетоэлектрических и магнитных свойств BiFeO3. Так, согласно оценкам, сделанным в работе [13] величина спонтанной сегнетоэлектрической поляризации связана с дисторсиями вида (i), (ii) и может быть рассчитана по формуле

$$P_x = \frac{4e}{V} \left(3\xi_{\rm Bi} - 4\xi_{\rm O1} - 2\xi_{\rm O3}\right),\tag{1}$$

где e — элементарный заряд, V — объем элементарной ячейки, ξ_{Bi} — смещение ионов Bi, соответствующее (i) дисторсии, ξ_{O1} и ξ_{O3} — смещения ионов кислорода, соответствующее (ii) — дисторсии. Отметим, что эта простая оценка хорошо подтверждается результатами экспериментальных измерений [14,15]. В магнитном отношении BiFeO₃ является слабым ферромагнетиком с антиферромагнитным упорядочением *G*-типа, при этом возникновение результирующей намагниченности связано с вращением кислородных октаэдров [16], ее величина может быть рассчитана по формуле [17]:

$$\mathbf{M} = \frac{V_0 a^2}{6J} \, \mathbf{\Omega} \times \boldsymbol{L} + \frac{V_0 a^2}{6J} \sum_{n=1}^6 (\mathbf{n}_n \times \boldsymbol{\xi}_{\mathbf{O}_n}), \qquad (2)$$

где V_0 — константа, a — параметр решетки, J — константа обмена, \mathbf{n}_n — единичный вектор, ориентированный вдоль одной из кристаллографических осей $\langle 100 \rangle$.

Симметрия BiFeO₃ разрешает существование линейного магнитоэлектрического эффекта (МЭЭ), в частности, линейной зависимости электрической поляризации от магнитного поля, а также существование пространственно-модулированных структур, стабилизируемых взаимодействием Дзялошинского-Мория (вДМ). Зависимость электрической поляризации от магнитного поля выражается через тензор МЭЭ α_{ij} [12], величина которого в монокристаллах и пленках феррита висмута до сих пор остается предметом активных научных дискуссий. Это обусловлено не только фундаментальным физическим интересом к вопросу, но и перспективами практического использования кристаллов и пленок BiFeO₃ с высокими значениями α_{ij} . В связи с этим мы остановимся на некоторых результатах исследований последних лет, акцентируя внимание на корреляции сегнетоэлектрических и магнитных свойств BiFeO₃ с искажениями структуры перовскита, проявление которой следует ожидать и в коэффициенте магнитоэлектрической связи α_{ij} .

Механизм линейного МЭЭ в BiFeO₃ теоретически исследован, в частности, в работе [18], где было показано, что величина тензора линейного МЭЭ зависит от структурных искажений, в том числе, от чувствительности дисторсионного параметра порядка Ω_0 к внешнему электрическому полю (**E**), которая определяется тензором диэлектрической восприимчивости

$$\hat{\eta} = \begin{pmatrix} \eta_{\perp} & 0 & 0\\ 0 & \eta_{\perp} & 0\\ 0 & 0 & \eta_{\parallel} \end{pmatrix},$$
(3)

где η_{\perp} и η_{\parallel} — компоненты тензора $\hat{\eta}$, определяющие диэлектрическую восприимчивость параметра Ω_0 к электрическому полю, ориентированному перпендикулярно и вдоль направления вектора спонтанной электрической поляризации $\mathbf{P}_s \parallel \langle 111 \rangle$. В этом случае тензор линейного МЭЭ, выраженный через компоненты тензора $\hat{\eta}$, имеет вид

$$\alpha_{ij}^{\text{BiFeO}_3} = 4\pi\chi_{\perp} \frac{H_D^0}{\Omega_0} \begin{vmatrix} 0 & \eta_{\perp}L_z & -\eta_{\perp}L_y \\ -\eta_{\perp}L_z & 0 & \eta_{\perp}L_x \\ \eta_{\parallel}L_y & \eta_{\parallel}L_x & 0 \end{vmatrix}, \quad (4)$$

где χ_{\perp} — поперечная магнитная восприимчивость $(\chi_{\perp} \sim 5 \cdot 10^{-5}), H_D^0$ — величина поля Дзялошинского $(H_D^0 \approx 1.4 \cdot 10^5 \,\text{Oe}), \ \Omega_0$ — аксиальный вектор дисторсионного параметра порядка, направление совпадает с направлением оси (111), а его величина составляет $11^0 - 14^0$; L_i , $i = \{x, y, z\}$ — компоненты вектора антиферромагнетизма. Учитывая что $|\mathbf{L}| = 1$, приведем оценку компонент тензора МЭЭ [18] $\alpha_{\perp} \sim 0.67 \, \mathrm{V/(cm \cdot Oe)}, \, \alpha_{\parallel} \sim 9.81 \, \mathrm{V/(cm \cdot Oe)},$ которая согласуется с результатами экспериментальных исследований МЭ свойств гетероструктур на основе BiFeO₃ [19]. Отметим, что достижение такого результата возможно в пленочных структурах BiFeO₃, в которых стрикционные деформации приводят к подавлению пространственномодулированной структуры циклоидного типа [20], являющейся основным магнитным состоянием BiFeO₃, в то время как в монокристаллах BiFeO₃ линейный МЭЭ не может реализоваться вследствие наличия спиновой циклоиды, так как в этом случае среднее значение $\langle \mathbf{L} \rangle = 0$, что, приводит к занулению компонент тензора α_{ii} , как видно из формулы (4). В качестве альтернативы ВіFeO₃ — содержащим гетероструктурам выступает ВіFeO₃-керамика, в которой также удается реализовать линейный МЭЭ за счет замещения ионов Ві редкоземельными ионами. Исследования в этом направлении проводятся, начиная с 1990 гг. по сегодняшний день, полученные результаты указывают на возможность реализации МЭЭ в соединениях $Bi_{1-x}R_xFeO_3$ с редкоземельными ионами (R = Gd, Dy, La, Lu) [20–27]. Ниже мы остановимся на результатах работ, в которых возникновение МЭЭ в *R*-замещенных монокристаллах BiFeO₃ обосновывается за счет понижения симметрии. В работах [13,20-25] было показано, что при изменении концентрации редкоземельных ионов х наблюдается серия структурных фазовых переходов, сопровождающихся понижением симметрии, с тригональной R3c (C_{3v}^6) до ромбической $Pn2a_1$ (C_{2v}^9) ($C_{3v}^6 - C_1^1 - D_2^6 - D_2^5 - C_{2v}^9$) [13,25], и как было показано в [28], до Pbnm ($R3c - Pna2_1 - Pbnm$). Экспериментальные исследования, выполненные в [28], указывают на появлении намагниченности и увеличение величины магнитоэлектрического коэффициента α в $Bi_{0.82-x}La_xLu_{0.18}FeO_3$ керамике до $2 \text{ mV/(cm \cdot Oe)}$, отметим, однако, что физические механизмы, отвечающие за возникновение магнитоэлектрических свойств в данных структурах являются не до конца выясненными.

Как было показано, в работах [29–31], в структурах с симметрией *Pbnm* при наличии магнитно-активных f-ионов (Gd, Dy, Tb), МЭЭ может возникнуть за счет антиферромагнитного (центро-асимметричного) упорядочения редкоземельных ионов, которое определяется антиферромагнитным вектором I редкоземельных ионов, компоненты которого классифицируются по неприводимым представлениям группы симметрии *Pbnm* (D_{2h}) [33,34]. В случае замещения ионов Ві ионами La, как было показано в работе [25], магнитоэлектрические свойства Bi_{1-x}La_xFeO₃ могут быть обусловлены квадратичным МЭЭ, что частично позволяет объяснить меньшую величину коэффициента МЭЭ, полученного в [28] по сравнению с экспериментальными значениями $\alpha_{\rm ME}$ [19].

2.2. Редкоземельные ортохромиты и ортоферриты (RCrO₃ и RFeO₃) относятся к низкотемпературным мультиферроикам ($T_C \sim 130-250 \, {\rm K}$) со слабо выраженными магнитоэлектрическими свойствами, тем не менее сама возможность реализации МЭЭ в этих материалах представляет большой научный интерес. RCrO3 и RFeO3 кристаллизуются в неполярной группе симметрии Pbnm, механизмы возникновения МЭЭ активно обсуждаются в литературе. В соответствии с результатами экспериментальных исследований [35-37], также см. цитирования в работе [38], в редкоземельных ортоферритах и ортохромитах наблюдается МЭЭ, реализуемый при определенных условиях. Так, в работе [30] приводятся данные по линейному МЭЭ ($\alpha_{zz} \sim 2.4 \cdot 10^{-2} \operatorname{esu}$), который экспериментально наблюдался в DyFeO3 при температурах ниже температуры антиферромагнитного упорядочения ионов Dy^{3+} ($T_N \sim 4 \, {\rm K}$). В этом случае как было упомянуто выше, одним из физических механизмов, отвечающих за магнитоэлектрический эффект, является антиферромагнитное упорядочение редкоземельных ионов (Dy³⁺), которые классифицируются по таким же неприводимым представлениям, что и компоненты вектора электрической поляризации, теоретически этот механизм был исследован в работе [29]. Экспериментальные исследования [35-37] указывают на появление сегнетоэлектрических свойств ортохромитов (YCrO₃, *R*CrO₃ с различными редкоземельными ионами) после полировки кристаллов в электрическом поле, что приводит к возникновению электрической поляризации, процесс сопровождается спин-переориентационными фазовыми переходами, что указывает на магнитоэлектрическую природу эффекта. Ниже мы обсудим общий подход к анализу магнитоэлектрических свойств монокристаллов ортохромитов и ортоферритов, основываясь на рассмотрении кристаллографических дисторсий и симметрийном анализе структурных, магнитных и сегнетоэлектрических параметров порядка. К основным кристаллографическим дисторсиям АВО3 перовскита, приводящим к структурам вида RCrO₃ (RFeO₃) можно отнести вращение кислородных октаэдров CrO₆ (FeO₆) вокруг кристаллографического направления [110], а также смещения R^{3+} и O^{2-} ионов (ξ_q , q = R, O) относительно их центро-симметричных позиций в структуре АВО3 перовскита. Как было показано в работе [38], в окрестности ионов Cr³⁺ индуцируется дипольный момент, который возникает вследствие смещений ионов кислорода (ξ_a). В рамках модели точечных зарядов величина дипольного момента $\mathbf{d}_q = q \mathbf{r}_q$ определяется радиусом вектором

$$\mathbf{r}_{q} = \frac{\left(+\frac{3}{8}\,e\right)\sum_{i=1}^{8}\xi_{R_{i}} + \left(-\frac{2}{2}\,e\right)\sum_{i=1}^{6}\xi_{\mathrm{O}_{i}}}{\left|8\cdot\left(+\frac{3}{8}\,e\right) + 6\cdot\left(-\frac{2}{2}e\right)\right|}$$

выраженным через дисторсии (ξ_q , где $q = R^{3+}$, O^{2-}). При отсутствии внешних воздействий дипольные моменты образуют антисегнетоэлектрическую структуру, таким образом, в кристаллах с группой симметрии *Pbnm* электрическая поляризация не проявляется, и как следствие, сегнетоэлектрический и магнитоэлектрический эффекты отсутствуют.

В *R*CrO₃ (*R*FeO₃) реализуется 3 типа магнитных обменно-связанных структур $\Gamma_1(A_x, G_y, C_z)$, $\Gamma_2(F_x, G_z, C_y)$, $\Gamma_3(F_z, A_y, G_x)$, со слабым ферромагнетизмом на фоне антиферромагнитного упорядочения *G*-типа. Компоненты ферромагнитного вектора **M** зависят от аксиального дисторсионного параметра порядка Ω_b . В ортоферритах и ортохромитах вектор Ω_b ориентирован вдоль b — оси кристалла ($\langle 010 \rangle$), его величина определяется углом разворота кислородных октаэдров.

$$\mathbf{M} = \left(\alpha_{xxz}\Omega_{bx}G_z, \alpha_{yyx}\Omega_{by}G_x, \alpha_{zyz}\Omega_{by}G_z\right).$$
(5)

В результате тепловой обработки *R*FeO₃ или электрополировки кристаллов *R*CrO₃ электрическим полем имеет место понижение симметрии до *Pnma*, в этом случае, антисегнетоэлектрическая структура дипольных моментов нарушается, что приводит к появлению спонтанной электрической поляризации и возникновению МЭЭ, который экспериментально наблюдался в работах [35–37]. Тензор МЭЭ можно рассчитать [31], используя таблицу неприводимых представлений группы *Pnma*

$$\alpha_{ij}^{RCtO_3} = \begin{vmatrix} a_1 G_x (g_z G_y - g_y G_z) & a_2 g_z & a_3 g_x \\ a_2 g_z & a_1 G_x (g_z G_y - g_y G_z) & a_4 g_y \\ a_4 g_y & a_3 g_x & a_2 g_z \end{vmatrix},$$
(6)

где G_i, g_i — компоненты антиферромагнитных векторов Cr^{3+} -подрешетки и R^{3+} подрешетки соответственно.

2.3. Структуры Раддлесдена-Поппера представляют собой слоистые структуры, полученные на основе перовскитов, с общей химической формулой $A_{n+1}B_nC_{3n+1}$, в которых в A- и B-позициях расположены A²⁺ и *В*⁴⁺ — валентные катионы, а в позициях *С* — анионы C^{2-} , преимущественно анионы кислорода (O^{2-}) , где *n* — число октаэдрических перовскитных слоев. Ситуации с n = 1 и $n = \infty$ являются предельными случаями СРП. При n = 1 реализуется 2D структура вида A_2BO_4 , состоящая из ячеек перовскитов ABO_3 , разделенных слоями AO, при $n = \infty$ СРП представляет собой бесконечный ряд перовскитных ячеек. В последние годы структуры Раддлсдена-Поппера (RP) привлекают значительное внимание в связи с обнаружением в них сегнетоэлектрических свойств, которые могут реализовываться при комнатных температурах, и перспективами высокотемпературных МЭЭ [10,39]. При изменении температуры в RP структурах имеют место фазовые переходы из тетрагональной І4/ттт фазы в орторомбическую через серию промежуточных фаз. В соединениях вида Ca₃Mn₂O₇ в интервале температур $T < T_N < T_{RT} (T_N \sim 134 \, {\rm K})$ реализуется антиферромагнитное (АФМ) упорядочение G- или C-типа, в работе [8] было показано, что в них могут формироваться обменно-связанные структуры вида $(G_x F_y G_z), (F_x G_y A_z),$ $(A_x C_y F_z)$. Можно показать, что в данных структурах симметрией разрешен линейный МЭЭ, и тензор $\alpha_{i\,i}^{R-P}$ имеет вил

$$\alpha_{ij}^{R-P} = \begin{vmatrix} \gamma_3 G_z & 0 & \gamma_2 G_x \\ 0 & \gamma_3 G_z & \gamma_2 G_y \\ \gamma_4 G_x & \gamma_4 G_y & \gamma_5 G_z \end{vmatrix}.$$
 (7)

Отметим, что экспериментальные исследования структур $[1 - x](Ca_ySr_{1-y})_{1.15}Tb_{1.85}Fe_2O_7$ [39] подтвердили наличие линейного МЭЭ в этих материалах при определенных концентрациях $0.0 \le x \le 0.30$, y = 0.563.

Неоднородные магнитоэлектрические эффекты в наноэлементах на основе мультиферроиков

В этом разделе мы кратко остановимся на неоднородных магнитоэлектрических эффектах, которые могут быть реализованы в мультиферроидных системах ограниченной геометрии. Для этого мы рассмотрим наноэлемент, представляющий собой пленку мультиферроика, симметрия которого разрешает существование неоднородного магнитоэлектрического эффекта, при этом за счет спин-орбитальной связи с ориентирующей подложкой в системе возникает взаимодействие Дзялошинского-Мория. Энергия такой системы имеет вид

$$F = \iint d^2 r \Big(A (\partial_{\mu} m_{\alpha})^2 + F_{me} + F_{\text{DMI}} - K m_z^2 - \frac{1}{2} M_s \mathbf{m} \cdot \mathbf{H}_m - M_s \mathbf{m} \cdot \mathbf{H} \Big),$$
(8)

где A — константа обменного взаимодействия, K — константа магнитной анизотропии, $\alpha, \mu = x, y, z,$ $\mathbf{m} = \mathbf{M}/M_s$ — единичный вектор намагниченности, \mathbf{H}_m — поле магнитостатики, \mathbf{H} — внешнее магнитное поле (будем рассматривать ситуацию, когда поле \mathbf{H} ориентировано по нормали к поверхности пленки). $F_{me} = \gamma \mathbf{P} [\mathbf{M}(\nabla \mathbf{M}) - (\mathbf{M}\nabla)\mathbf{M}]$ — магнитоэлектрическая энергия, γ — параметр неоднородного магнитоэлектрического взаимодействия, $F_{\rm DMI}$ — энергия Дзялошинского-Мория. В рассматриваемом нами случае $F_{\rm DMI}$ имеет вид

$$F_{\rm DM} = t \iint D \left[\left(m_x \, \frac{\partial m_z}{\partial x} - m_z \, \frac{\partial m_x}{\partial x} \right) + \left(m_y \, \frac{\partial m_z}{\partial y} - m_z \, \frac{\partial m_y}{\partial y} \right) \right] d^2 r, \qquad (9)$$

где *t* — толщина нанолемента. Электрическая поляризация рассчитывается по формуле

$$\mathbf{P} = \gamma \chi_e \big[(\mathbf{M} \nabla) \mathbf{M} - \mathbf{M} (\nabla \mathbf{M}) \big].$$
(10)

Взаимодействие Дзялошинского-Мория на границе раздела (iDMI) может приводить к стабилизации неоднородных магнитных структур разной топологии. Вид магнитной структуры зависит от сочетания геометрических факторов (размеров наноэлемента), внутренних параметров системы (A, K, M_s, D) и внешних воздействий. При изменении параметров имеют место переходы между магнитными состояниями. В соответствии с концепцией неоднородного МЭЭ в окрестности неоднородного распределения намагниченности реализуется электрическая поляризация.

В качестве примера рассмотрим наноэлемент с размерами $a \times a \times t \text{ nm}^3$ и с параметрами материала:

a — микромагнитные состояния (1, 2, 3, 4), реализуемые в наноэлементе при изменении магнитного поля; b — график зависимости электрической поляризации от магнитного поля, $D = 0.6 \text{ mJ/m}^2$, a = 50 nm, t = 30 nm.

 $A = 2.9 \cdot 10^{-12}$ J/m, $K = 1 \cdot 10^3$ J/m³, -0.5 < D < 0.5 mJ/m². Возможные типы микромагнитных конфигураций, возникающих под действием магнитного поля $\mathbf{H} = (0, 0, H)$, рассчитаем с использованием пакета OOMMF [40], размер сетки $5 \times 5 \times 3$ nm³. На рисунке (*a*) показаны примеры четырех топологических микромагнитных структур, которые реализуются в наноэлементе с размерами a = 50 nm, t = 30 nm при D = 0.6 mJ/m² в процессе его перемагничивания. Отметим, что исходным состоянием в поле |H| > 16 kOe является однородное состояние, в котором вектор намагниченности $\mathbf{M} = (0, 0, M_s)$ однородно распределен по объему наноэлемента.

Рассмотрим сначала процесс размагничивания, в ходе которого наблюдаются фазовые переходы между микромагнитными состояниями различной топологии (см. рисунок, часть *a*). Приведем краткую характеристику этих состояний и условия их наблюдения. В диапазоне полей 0 < H < 16 кОе реализуется состояние 1: (V+) — вихрь положительной полярности, вектор намагниченности в центре вихря V+ ориентирован по направлению магнитного поля. В интервале полей -10 < H < 0 кОе в наноэлементе реализуется состояние 2: (DW+) — система двух вихрей V-, разделенных 180° доменной границей, ориентированной по левой диагонали наноэлемента. При дальнейшем размагничивании имеет

место переход в состояние 4: (V-) — вихрь с противоположной полярностью, которое существует в диапазоне H < -10 kOe, при выходе на насыщение получаем однородно-намагниченное состояние $\mathbf{M} = (0, 0, -M_s)$.

Аналогичная ситуация наблюдается при перемагничивании наноэлемента. При увеличении величины магнитного поля имеют место следующие переходы: однородное состояние $\mathbf{M} = (0, 0, -M_s)$ — состояние 4: вихрь V- с отрицательной полярностью (-16 < H < 0 kOe), далее состояние 3: (DW-) 180° доменная граница, ориентированная по правой диагонали наноэлемента (0 < H < 10), далее состояние 1: вихрь V+ (H > 10 kOe) и переход в однородное состояние $\mathbf{M} = (0, 0, M_s)$. Вследствие неоднородного магнитоэлектрического эффекта в окрестности неоднородного распределения намагниченности в состояниях 1, 2, 3, 4 появляется электрическая поляризация $P(\mathbf{r}_i)$. В результате в наноэлементе наряду с микромагнитными структурами формируются полярные сегнетоэлектрические структуры, в которых распределение вектора $\mathbf{P}(\mathbf{r}_i)$ определяется магнитным состоянием. Величина поляризации, количество и свойства полярных структур определяются топологией магнитной текстуры, которая в свою очередь, зависит от внутренних параметров системы (магнитной анизотропии, константы ДзялошинскогоМория), геометрических факторов (формы образца, поперечных и продольных размеров), а также внешних воздействий (магнитного или электрического поля). Изменение внешнего магнитного поля приводит к изменению величины полной электрической поляризации $\mathbf{p} = \frac{1}{V} \sum_{i} \mathbf{P}(\mathbf{r}_{i})$ (смотри рисунок, часть *b*).

В завершение отметим несколько работ по изучению МЭЭ в мультиферроидных пленках. В Terfenol-D содержащих композитных структурах [41,42], экспериментально наблюдались МЭЭ, причем гистерезисные зависимости пъезоэлектрических коэффициентов от магнитного поля аналогичны рассчитанному изменению поляризации. В работе [43] представлены результаты экспериментальных исследований по влиянию iDMI (взаимодействия Дзялошинского-Мория на границе раздела) на магнитоэлектрические свойства пленок Sr₂IrO₄/SrTiO₃ (BaTiO₃) (структур Раддлесдена-Поппера на пара/сегнетоэлектрической подложке), причем величина магнитоэлектрического коэффициента и электрической поляризации в этих структурах регулируются за счет iDMI. Экспериментальное исследование магнитоэлектрических эффектов в массиве наноточек в композитной структуре ферромагнетик-пъезоэлектрик [Pt/Co/Ta]₁₂ при учете iDMI проведено в работе [44]. Экспериментально магнитоэлектрический эффект изучается в пленках ферритов гранатов [15,45], но в отсутствии iDMI. Тем не менее представленные результаты указывают на характерные особенности полярных состояний, которые зависят и определяются топологией магнитных неоднородностей.

4. Заключение

В работе исследованы магнитоэлектрические свойства мультиферроиков со структурой перовскита. Неустойчивость структуры АВО3 перовскитов к замещению А, В-катионов приводит к широкому разнообразию магнитных структур, различающихся симметрией кристаллической структуры, магнитными и сегнетоэлектрическими свойствами. В качестве примера выбраны мультиферроики различной симметрии (тригональной — BiFeO₃, орторомбической — RCrO₃ и RFeO₃, тетрагональной — структуры Раддлесдена-Поппера), что позволяет проиллюстрировать влияние кристаллографических дисторсий на магнитные и сегнетоэлектрические свойства мультиферроиков. Показано, что в RCrO₃ и RFeO₃ сегнетоэлектрическая поляризация $(P_s \sim 0.04 \,\mu\text{C/cm}^2)$ может возникнуть вследствие разрушения антисегнетоэлектрической структуры дипольных моментов, образующихся в окрестности ионов Cr и Fe, в отличие от BiFeO₃, в котором реализуется спонтанная электрическая поляризация ($P_s \sim 50 - 100 \, \mu {\rm C/cm^2}$), разрешенная симметрией. Рассчитаны компоненты тензоров линейного магнитоэлектрического эффекта рассмотренных мультиферроиков, показана возможность реализации линейного магнитоэлектрического эффекта в структурах Раддлесдена–Поппера. Рассмотрены проявления неоднородного магнитоэлектрического эффекта в мультиферроидных структурах ограниченной геометрии, показана возможность возникновения полярных состояний разного типа при намагничивании таких структур. Построены гистерезисные зависимости электрической поляризации и намагниченности, позволяющие обнаруживать переключение состояний в устройствах на основе магнитоэлектрических наноэлементов.

Финансирование работы

Работа поддержана грантами Министерства образования и науки, РФФИ 19-52-80024, National Natural Science Foundation of China (Grant № 51961145105), государственным заданием на выполнение научных исследований лабораториями (приказ MN-8/1356 от 20.09.2021).

Конфликт интересов

Авторы заявляют, что у них нет конфликта интересов.

Список литературы

- S. Manipatruni, D.E. Nikonov, C.-C. Lin, T.A. Gosavi, H. Liu, B. Prasad, Y.-L. Huang, E. Bonturim, R. Ramesh, I.A. Young. Nature 565, 35 (2019).
- [2] J.F. Scott, J. Floyd. npj Computat. Mater. 1, 1, 1–9 (2015).
- [3] B. Sun, G. Zhou, L. Sun, H.B. Zhao, Y. Chen, F. Yang, Y. Zhao, Q.L. Song. Nanoscale Horizons 6, 939 (2021).
- [4] А.А. Бухараев, А.К. Звездин, А.П. Пятаков, Ю.К. Фетисов. УФН 188, 12, 1288 (2018).
- [5] C.N.R. Rao, A. Sundaresan, R. Saha. J. Phys. Chem. Lett. 3, 2237 (2012).
- [6] A.M. Shikin, D.A. Estyunin, N.L. Zaitsev, D. Glazkova, I.I. Klimovskikh, S.O. Filnov, A.G. Rybkin, E.F. Schwier, S. Kumar, A. Kimura, N. Mamedov, Z. Aliev, M.B. Babanly, K. Kokh, O.E. Tereshchenko, M.M. Otrokov, E.V. Chulkov, K.A. Zvezdin, A.K. Zvezdin. Phys. Rev. B 104, 115168 (2021).
- [7] A.B. Harris. Phys. Rev. B 84, 064116 (2011).
- [8] P. Sahlot, A. Jana, A.M. Awasthi. AIP Conf. Proc. 1942, 130009 (2018).
- [9] M.V. Lobanov, M. Greenblatt, E.ad N. Caspi, J.D. Jorgensen, D.V. Sheptyakov, B.H. Toby, C.E. Botez, P.W. Stephens. J. Phys.: Condens. Matter 16, 5339 (2004).
- [10] B.H. Zhang, Z.Z. Hu, B.H. Chen, X.Q. Liu, X.M. Chen. J. Appl. Phys. 128, 054102 (2020).
- [11] Г.А. Смоленский, В.А. Исупов, А.И. Аграновская, Н.Н. Крайник. ФТТ 2, 2982 (1960).
- [12] Г.А. Смоленский, И.Е. Чупис. УФН 137, 7, 415 (1982).
- [13] Z. Gabbasova, M. Kuz'min, A. Zvezdin, I. Dubenko, V. Murashov, D. Rakov, I. Krynetsky. Phys. Lett. A 158, 491 (1991).
- [14] J. Li, J. Wang, M. Wuttig, R. Ramesh, N. Wang, B. Ruette, A.P. Pyatakov, A.K. Zvezdin, D. Viehland. Appl. Phys. Lett. 84, 25, 5261 (2004).
- [15] А.П. Пятаков, А.К. Звездин. УФН 182, 6, 593 (2012).
- [16] Н.Е. Кулагин, А.Ф. Попков, А.К. Звездин. ФТТ 53, 5, 912 (2011).

- [17] Z. Gareeva, O. Diéguez, J. Iñiguez, A.K. Zvezdin. Phys. Rev. B 91, 060404 (2015).
- [18] A.F. Popkov, M.D. Davydova, K.A. Zvezdin, S.V. Solov'yov, A.K. Zvezdin. Phys. Rev. B 93, 094435 (2016).
- [19] M. Lorenz, G. Wagner, V. Lazenka, P. Schwinkendorf, H. Modarresi, M.J. Van Bael, A. Vantomme, K. Temst, O. Oeckler, M. Grundmann. Appl. Phys. Lett. **106**, 012905 (2015).
- [20] D. Sando, A. Agbelele, D. Rahmedov, J. Liu, P. Rovillain, C. Toulouse, I.C. Infante, A.P. Pyatakov, S. Fusil, E. Jacquet, C. Carrétéro, C. Deranlot, S. Lisenkov, D. Wang, J.-M. Le Breton, M. Cazayous, A. Sacuto, J. Juraszek, A.K. Zvezdin, L. Bellaiche, B. Dkhil, A. Barthélémy, M. Bibes. Nature Mater. **12**, 7, 641 (2013).
- [21] В.А. Мурашов, Д.Н. Раков, И.С. Дубенко, А.К. Звездин, В.М. Ионов. Кристаллография 35, 4, 912 (1990).
- [22] A. Kadomtseva, Yu.F. Popov, T.V. Schogoleva, G.P. Vorob'ev, A.K. Zvezdin, V.A. Murashov, D.N. Rakov. Ferroelectrics 169, 85 (1995).
- [23] Г.П. Воробьев, А.К. Звездин, А.М. Кадомцева, Ю.Ф. Попов, В.А. Мурашов, Д.Н. Раков. ФТТ **37**, *11*, 3262 (1995).
- [24] Г.П. Воробьев, А.К. Звездин, А.М. Кадомцева, Ю.Ф. Попов, В.А. Мурашов, Ю.П. Черненков. ФТТ 37, 8, 2428 (1995).
- [25] В.А. Мурашов, Д.Н. Раков, Н.А. Экономов, А.К. Звездин, И.С. Дубенко. ФТТ 32, 2156 (1990).
- [26] В.С. Покатилов, А.С. Сигов, А.О. Коновалова, А. Гиппиус, Н. Гервиц. Фундаментальные проблемы радиоэлектронного приборостроения **10**, *1–3*, 366 (2010).
- [27] В.С. Русаков, В.С. Покатилов, А.С. Сигов, А.А. Белик, М.Е. Мацнев. ФТТ 61, 6, 1107 (2019).
- [28] J. Chen, L. Liu, X.L. Zhu, Z.V. Gareeva, A.K. Zvezdin, X.M. Chen. Appl. Phys. Lett. **119**, 112901 (2021).
- [29] А.К. Звездин, А.А. Мухин. Письма в ЖЭТФ 88, 8, 581 (2008).
- [30] Y. Tokunaga, S. Iguchi, T.H. Arima, Y. Tokura. Phys. Rev. Lett. 101, 9, 097205 (2008).
- [31] Z. Gareeva, A. Zvezdin, K. Zvezdin, X. Chen. Materials 15, 2, 574 (2022).
- [33] К.П. Белов, А.К. Звездин, А.М. Кадомцева, Р.З. Левитин. Ориентационные переходы в редкоземельных магнетиках. Наука, М. (1979).
- [34] Е.А. Туров, А.В. Колчанов, В.В. Меньшенин, И.Ф. Мирсаев, В.В. Николаев. Симметрия и физические свойства антиферромагнетиков. Физматлит, М. (2001). 559 с.
- [35] B. Rajeswaran, D.I. Khomskii, A.K. Zvezdin, C.N.R. Rao, A. Sundaresan. Phys. Rev. B 86, 214409 (2012).
- [36] В.А. Санина, Б.Х. Ханнанов, Е.И. Головенчиц, М.П. Щеглов. ФТТ **61**, *3*, 501 (2019).
- [37] В.А. Санина, Б.Х. Ханнанов, Е.И. Головенчиц, М.П. Щеглов. ФТТ **61**, *1*, 95 (2019).
- [38] A.K. Zvezdin, Z.V. Gareeva, X.M. Chen. J. Phys. Condens. Matter 33, 385801 (2021).
- [39] M.J. Pitcher, P. Mandal, M.S. Dyer, J. Alaria, P. Borisov, H. Niu, J.B. Claridge, M.J. Rosseinsky. Science 347, 6220, 420 (2015).
- [40] M.J. Donahue, D.G. Porter. OOMMF User's Guide, Version 1.0; NIST IR 6376. National Institute of Standards and Technology: Gaithersburg, MD, 1999; p NIST IR 6376.
- [41] T.Z. Wang, Y.H. Zhou. J. Appl. Phys. 108, 123905 (2010).
- [42] J. Zhang, Y. Gao. Int. J. Solids Struct. 69–70, 291 (2015).

- [43] X. Liu, W. Song, M. Wu, Y. Yang, Y. Yang, P. Lu, Y. Tian, Y. Sun, J. Lu, J. Wang, D. Yan, Y. Shi, N.X. Sun, Y. Sun, P. Gao, K. Shen, G. Chai, S. Kou, C.-W. Nan, J. Zhang. Nature Commun. 12, 1, 5453 (2021).
- [44] Z. Hou, Y. Wang, X. Lan, S. Li, X. Wan, F. Meng, Y. Hu, Z. Fan, C. Feng, M. Qin, M. Zeng, Xi. Zhang, X. Liu, X. Fu, G. Yu, G. Zhou, Y. Zhou, W. Zhao, X. Gao, J.-M. Liu. Adv. Mater. 34, 11, 2270090 (2022).
- [45] K.S. Antipin, T.T. Gareev, N.V. Myasnikov, E.P. Nikolaeva, A.P. Pyatakov. J. Appl. Phys. **129**, *2*, 024103 (2021).

Редактор Ю.Э. Китаев