14,04

Нанокомпозиты на основе термопластичных ароматических полиимидов с наночастицами диоксида церия: диэлектрическая спектроскопия

© Н.А. Никонорова¹, А.А. Кононов², Р.А. Кастро², И.В. Гофман¹, А.Л. Николаева¹, И.В. Абалов¹, А.В. Якиманский¹, А.Е. Баранчиков³, В.К. Иванов³

¹ Институт высокомолекулярных соединений РАН, Санкт-Петербург, Россия ² Российский государственный педагогический университет им. А.И. Герцена, Санкт-Петербург, Россия ³ Институт общей и неорганической химии РАН, Москва, Россия E-mail: n_nikonorova2004@mail.ru

Поступила в Редакцию 5 апреля 2022 г. В окончательной редакции 5 апреля 2022 г. Принята к публикации 11 апреля 2022 г.

Методом диэлектрической спектроскопии исследована молекулярная подвижность пленок термопластичных ароматических полиимидов и нанокомпозитов на их основе с 3% диоксида церия. Для исходных полиимидов обнаружено три области релаксации дипольной поляризации, γ и β (в стеклообразном состоянии) и α (переход в высокоэластическое состояние). Введение в матричный полиимид 3% диоксида церия приводит к подавлению γ процесса и к появлению в спектрах нанокомпозитов, наряду с β процессом, второго релаксационного процесса β 1. Температурные зависимости времени релаксации для γ , β и β 1 процессов линейны и отвечают уравнению Аррениуса, а для α процесса криволинейны и описываются уравнением Фогеля–Таммана–Гессе. Дана интерпретация молекулярных механизмов наблюдаемых процессов.

Ключевые слова: Полимер-неорганические нанокомпозиты, ароматические полиимиды, наноразмерный диоксид церия, диэлектрические характеристики, температуры переходов, молекулярные механизмы диэлектрических процессов.

DOI: 10.21883/FTT.2022.08.52715.333

1. Введение

Термопластичные ароматические полиимиды (ПИ) [1,2], отличающиеся большим разнообразием химической структуры и, соответственно, физических свойств, широко используются в микроэлектронике, электротехнике, что обусловлено их уникальными электрическими характеристиками (удельное сопротивление $\rho_v \sim 10^{15} \,\Omega/m$ и относительно низкая диэлектрическая проницаемость $\varepsilon \sim 2.5 - 3.5$). Одним из способов оптимизации комплекса свойств полимерных материалов, широко используемым в современных работах, является получение композитов путем введения в полимерную матрицу различных наполнителей. В последнее время большой интерес представляют собой композиты на основе термопластичных ПИ и наноразмерных частиц самой различной природы и геометрии, таких как нанотрубки, фуллерены, графены и др. Взаимодействия между наночастицами и макромолекулами полимерной матрицы приводят к изменению свойств исходного полимерного материала [3-8]. Большой интерес представляет исследование механизмов влияния наночастиц на свойства композита, а также прогнозирование свойств в зависимости от вида и строения наночастиц и их концентрации.

В работах, опубликованных в последние годы, представлены результаты исследований термопластичных ароматических полиимидов и нанокомпозитов на их основе с использованием различных экспериментальных методов (механические испытания, ДСК, термогравиметрия, рентгеноструктурный анализ, диэлектрические и др.), каждый из которых дает информацию о специфических свойствах этих материалов [9–13].

Ценная информация о рассматриваемых вопросах может быть получена методом диэлектрической спектроскопии (ДС). Это один из современных физических методов исследований, позволяющий изучать процессы, связанные с молекулярной подвижностью в полимерном образце, помещенном во внешнее переменное электрическое поле с частотой ω . Такие исследования являются важным инструментом для получения данных о молекулярной подвижности различных кинетических единиц (отдельных атомов, групп, сегментов), несущих полярную группу, в широком интервале температур и частот. Расшифровка диэлектрического спектра основана на сопоставлении диэлектрического поведения схожих по химическому строению систем [11,14-20] Это позволяет идентифицировать наблюдаемые релаксационные процессы и связать их с подвижностью определенных

Таблица 1. Структуры и обозначения ПИ, используемых в работе

кинетических единиц, в состав которых входит полярная группа.

Кроме того, ДС является удобным и быстрым методом для измерения электрической проводимости материала, что важно при использовании ПИ в микроэлектронике.

Среди широкого набора разнообразных наночастиц, используемых для формирования нанокомпозитов на основе ПИ, несомненный интерес, как показали полученные в новых работах результаты [21-23], представляет наноразмерный оксид церия — наночастицы размером ~ единиц нанометров. Их введение в пленки ПИ позволяет модифицировать различные группы свойств материала, в частности, механические характеристики и термостойкость материала. С учетом ранее полученных результатов представлялось целесообразным исследование влияния этого наноразмерного наполнителя на характеристики термостимулируемых физических переходов, реализуемых в термопластичных ПИ, на молекулярную подвижность, реализуемую в этих материалах в широком диапазоне частот и температур. Детальное исследование этих особенностей поведения нанокомпозитных пленок "ПИ-СеО2", сформированных на основе ряда термопластичных полиядерных ПИ, различающихся строением диаминной части элементарного звена, являлось целью настоящей работы.

2. Экспериментальная часть

В качестве матричных ПИ, на основе которых формировались нанокомпозитные пленки, а также в качестве контрольных полимерных образцов использованы три термопластичных полиядерных ПИ, структуры которых приведены в табл. 1.

Пленки нанокомпозитов, содержащих 3 mass.% CeO_2 , как и контрольные образцы ПИ, толщиной $25-40\,\mu m$

приготовлены с использованием метода двухстадийного синтеза [1–2]. Полиамидокислоты (ПАК) — форполимеры соответствующих ПИ в виде растворов в N-метипирролидоне получены в Институте высокомолекулярных соединений РАН по методике [24].

Квазисферические наночастицы оксида церия размером 5–6 nm синтезированы в Институте общей и неорганической химии РАН. Протокол синтеза подробно описан в [25].

Для формирования нанокомпозитов расчетные количества наночастиц диспергировали в N-метипирролидоне с помощью ультразвукового диспергатора, после чего полученную однородную дисперсию вводили в расчетное количество раствора ПАК с последующей гомогенизацией раствора с помощью верхнеприводной механической мешалки. Из полученных нанокомпозитных растворов, как и из растворов контрольных ПАК, путем отливки на стеклянные подложки приготавливали пленки композиций "ПАК-CeO₂" и исходных ПАК, соответственно. Затем пленки сушили (80°С — 4 h) и проводили их термическую циклизацию (нагрев до 300°С с выдержкой при этой температуре в течение 0.5 h.).

Термомеханический анализ пленок проведен с помощью анализатора TMA 402 F1 Hyperion (Netzsch, Германия) в режиме нагрева образцов от -100° C до перехода в расстеклованное состояние со скоростью 5 deg·min⁻¹ при действии на образец динамического растягивающего усилия с частотой 1 Hz и амплитудой 1 MPa на фоне постоянного растягивающего напряжения 2 MPa.

Диэлектрические спектры пленок ПИ и нанокомпозитов получены на широкополосных диэлектрических спектрометрах "Concept-22" и "Concept-81" фирмы "Novocontrol Tecnologies" с автоматическим частотным анализатором высокого разрешения ALPHA-ANB. Образцами служили пленки, спрессованные между латунными электродами (диаметр верхнего электрода 20 mm) при температуре на ~ 30° С выше температуры стеклования (значения последней предварительно определены термомеханическим методом). Диэлектрические измерения проводили в интервале частот $0.1-3 \cdot 10^{6}$ Hz и температур $-100 - +390^{\circ}$ C.

Для получения количественных характеристик наблюдаемых релаксационных процессов комплексную диэлектрическую проницаемость $\varepsilon^* = \varepsilon'(\omega) - i\varepsilon''(\omega)$ описывали эмпирической формулой Гаврилиака — Негами (ГН) [26]:

$$\varepsilon^*(\omega) - \varepsilon_{\infty} = \sum_{k=1}^n \operatorname{Im}\left[\frac{\Delta\varepsilon_k}{\{1 + (i\omega\tau_{HN_k})^{\alpha_k}\}^{\beta_k}}\right], \quad (1)$$

где $\Delta \varepsilon$ — инкремент диэлектрической проницаемости: $\Delta \varepsilon = \varepsilon_0 - \varepsilon_\infty$, $\varepsilon_0 = \varepsilon'$ при частоте $\omega \to 0$, $\varepsilon_\infty = \varepsilon'$ при $\omega \to \infty$; τ_{HN} — характеристическое время релаксации Гаврилиака–Негами; α_{HN} и β_{HN} — параметры, отвечающие расширению и асимметрии распределения времен релаксации, соответственно; k — число релаксационных процессов.

Наивероятнейшее время релаксации τ_{max} , отвечающее значению времени релаксации при $\varepsilon''_{\text{max}}$ на зависимости $\varepsilon'' = \varphi(\omega)$, определено как [27]:

$$\tau_{\max} = \tau_{HN} \left[\frac{\sin\left(\frac{\pi(\alpha_{HN})\beta_{HN}}{2(\beta_{HB}+1)}\right)}{\sin\left(\frac{\pi(\alpha_{HN})}{2\beta_{HN}+1}\right)} \right]^{1/\alpha_{(HN)}}.$$
 (2)

Разделение процессов и вычисление их параметров проводилось с использованием программы WinFit "Novocontrol Technologies", основанной на минимизации суммы квадратов отклонений функций от искомых переменных.

3. Результаты и обсуждение

Как было отмечено в экспериментальной части, изготовление качественных образцов для диэлектрических испытаний требует запрессовки исследуемых пленок между латунными электродами при температурах, превышающих температуры стеклования T_g соответствующих полимерных материалов на ~ 30°С. Для проведения этой подготовительной операции на первом этапе работы были термомеханическим методом определены

Таблица 2. Температуры стеклования исследованных ПИ и композитов с CeO₂

N₂	Состав пленки	$T_g, ^{\circ}\mathrm{C}$
1	Р-СОД	217
2	$P-COД + CeO_2$	216
3	Р-ООД	179
4	$P-OOД + CeO_2$	179
5	P-COC	185
6	$P-COC + CeO_2$	183

Рис. 1. Термомеханические кривые пленки Р-СОД: температурные зависимости модуля E' и тангенса угла механических потерь.

значения T_g используемых полимеров и композитов (табл. 2).

Из полученных результатов может быть сделан важный вывод о полной идентичности температур стеклования пленки каждого из использованных ПИ и пленки нанокомпозита, изготовленного на его основе.

При анализе кривых температурных зависимостей тангенса угла механических потерь (пример для пленки Р-СОД — на рис. 1) определяется также дополнительный переход в области ниже T_g . Для Р-СОД он реализуется при температуре 86°С (измерение на частоте 1 Нz, амплитуда колебаний растягивающей нагрузки 1 МРа).

Результаты исследований диэлектрическим методом различных ПИ, характеризуемых большим разнообразием структур как диаминной, так и диангидридной составляющих элементарного звена макромолекулы, приведены в работах [11,14–16,28–34]. Как, правило, диэлектрические спектры (зависимости $\varepsilon'' = \varphi(\omega)$) этих материалов показывали наличие, по крайней мере, трех областей максимума, обусловленных процессами релаксации дипольной поляризации, так как максимум ε'' с ростом температуры сдвигался в сторону высоких частот. Эти процессы обозначали, по мере увеличения температуры, как γ и β (в стеклообразном состоянии) и α при переходе в высокоэластическое состояние.

Чтобы визуализировать диэлектрическое поведение исследованных образцов во всем температурном интервале, были построены температурные зависимости тангенса угла диэлектрических потерь tg δ при различных частотах для пленок нанокомпозитов и матричных полимеров. Как и для ранее исследованных ПИ, для исходных образцов Р-СОД, Р-ООД и Р-СОС наблюдали три релаксационных процесса, γ , β и α . Для нанокомпозитов наблюдали только α и β процессы. Все три пары образцов (ПИ и нанокомпозит на его основе) давли сходную картину диэлектрического поведения. На

Таблица 3. Параметры уравнения (3): $-\lg \tau_0$, и E_a , описывающего γ , $\beta 1$ и β процессы для пленок изученных ПИ и нанокомпозитов

Образец	$-\lg(au_0,s)$	E_a , kcal/mol	$-\lg(au_0,s)$	E_a , kcal/mol	$-\lg(au_0,s)$	E_a , kcal/mo
	у-процесс		β 1-процесс		β -процесс	
Р-СОД Р-СОД 3% СеО ₂	14.5	9.9	12.5	14.8	20.3 19.17	32 27.2
P-COC P-COC 3% CeO ₂	14.1	10.1	14.3	15.0	19.4 21.4	28.5 30.5
Р-ООД Р-ООД 3% СеО ₂	14.72	10.3	14.2	15.2	20.1 20.3	28.4 28.2

рис. 2, в качестве примера, представлены температурные зависимости tg δ для пленок Р-ООД (*a*) и композита Р-ООД +3% CeO₂ (*b*).

Сопоставление диэлектрического поведения пленки Р-ООД и соответствующего нанокомпозита при частоте 1 kHz демонстрирует рис. 3.

Видно, что в области α перехода введение CeO₂ практически не меняет положение максимума tg δ и

Рис. 2. Температурные зависимости tg δ для P-OOД (*a*) и композита P-OOД + CeO₂ (*b*) при частотах 0.1–1·10⁶ Hz. Частота, при которой получена каждая следующая кривая, в \sim 5 раз выше частоты предыдущей кривой.

Рис. 3. Температурные зависимости tg δ для Р-ООД (1) и Р-ООД + 3% СеО₂ (2) при частоте 1 kHz.

интенсивность процесса. Это означает, что введение наночастиц не меняет молекулярную подвижность в области α -процесса. Этот результат хорошо соответствует данным, полученным термомеханическим методом (табл. 2). В то же время в нанокомпозитах в стеклообразном состоянии (при температурах ниже α перехода) по сравнению с исходными ПИ происходит заметный рост диэлектрических потерь, вследствие чего γ процесс наблюдать не удается.

Наивероятнейшие времена релаксации для всех наблюдаемых релаксационных процессов, как для исходных ПИ, так и для нанокомпозитов, рассчитаны из частотных зависимостей ε'' по формулам (1) и (2). В качестве примера, даны частотные зависимости ε'' для Р-СОД в области γ и β процессов (рис. 4, *a*, 4, *b*, соответственно) и для Р-СОС в области α процесса (рис. 4, *c*), описанные уравнением ГН. Для области α процесса учитывали также вклад, обусловленный проводимостью: $\frac{\sigma_{dc}a}{\varepsilon_v\omega^s}$, где σ_{dc} — удельная проводимость на постоянном токе, *s* и *a* — расчетные параметры: *s* = 1 (в случае омической проводимости) или меньше 1 (во всех других случаях), $\varepsilon_v = 8.854 \, \text{pF/m}$ — диэлектрическая проницаемость вакуума.

Для всех исходных ПИ области γ и β релаксации дипольной поляризации надежно описаны одним процессом ГН (рис. 4, *a* и 4, *b* соответственно). В области α

Рис. 4. Частотные зависимости ε'' , описанные формулой ГН (сплошные линии), точки экспериментальные данные. (*a*) Р-СОД — область γ процесса при –100 (*I*), –80 (*2*), –60 (*3*), –40 (*4*) и –20°С (*5*); (*b*) Р-СОД — область β процесса при 60 (*I*), 80 (*2*), 100 (*3*), 120 (*4*) и 140°С (*5*); (*c*) Р-СОС — область α процесса при 200 (*I*), 210 (*2*), 220 (*3*), 230 (*4*), 240 (*5*), 250 (*6*) и 260°С (*7*); штриховые линии — пример разделения диэлектрического спектра при 200°С на α процесс и вклад за счет проводимости σ .

Рис. 5. Частотные зависимости ε'' при 70°С, описанные одним процессом ГН для Р-СОД (*a*), Р-ООД (*b*) и Р-СОС (*c*) и двумя процессами ГН для композитов СОД + 3% CeO₂ (*a*), Р-ООД + 3% CeO₂ (*b*) и Р-СОС + 3% CeO₂ (*c*); *1* и 2 — экспериментальные данные для ПИ и нанокомпозита соответственно; штриховые линии — разделение диэлектрического спектра на β и β 1 процессы.

процесса, как для ПИ, так и для нанокомпозитов, диэлектрические спектры описаны одним процессом ГН с учетом вклада проводимости (рис. 4, *c*).

Диэлектрическое поведение нанокомпозитов в стеклообразном состоянии характеризуется двумя особенностями по сравнению с поведением ПИ. Во-первых, не удалось выделить γ процесс, что связано с более высокой интенсивностью диэлектрических потерь в этой области температур (рис. 3). Во-вторых, для всех трех нанокомпозитных пленок β -релаксацию невозможно описать одним процессом ГН, а только суммой двух процессов ГН (рис. 5).

Для всех исследованных систем времена релаксации, τ_{max} , были рассчитаны по формулам (1) и (2). В качестве примера зависимости – lg τ_{max} , от обратной температуры для Р-ООД (*a*) и Р-ООД + 3% CeO₂ (*b*) приведены на рис. 6.

Для γ , β и β 1 процессов зависимости — $\lg \tau_{max}$, от обратной температуры линейные и описывается уравнением Аррениуса (рис. 6, кривые *1*, *2*, *4*):

$$au(T)_{\max} = au_0 \exp\left(\frac{E_a}{RT}\right),$$
(3)

где $\tau_0 = \tau_{\max}$ при $T \to \infty$, E_a — энергия активации релаксационного процесса, R — универсальная газовая постоянная.

Рис. 6. Зависимости — $\lg \tau_{\max}$ от обратной температуры для Р-ООД (*a*) и Р-ООД + 3% СеО₂ (*b*) для γ (*1*), β (*2*), β 1 (*4*) и α (*3*) процессов. Точки — вычисления τ_{\max} по формуле ГН. Сплошные линии — зависимости, описанные формулами 3 (1,2,4) и 4 (3), соответственно.

Рис. 7. Частотные зависимости σ_{ac} для нанокомпозитной пленки P-COC + 3% CeO₂

Линейная зависимость $-\lg \tau_{\max} = \varphi(1/T)$ типична для локальных форм молекулярной подвижности, описываемых моделью Дебая, когда процесс переориентации диполей определяется только внутримолекулярными взаимодействиями и может быть во всем диапазоне температур охарактеризован одним значением энергии активации [11,14–16]. Параметры уравнения (3), $-\lg \tau_0$, и E_a , для γ , $\beta 1$ и β процессов даны в табл. 3.

Для α процесса зависимость $-\lg \tau_{\max}$, $= \varphi(1/T)$ криволинейна (рис. 6, кривые 3) и хорошо описывается эмпирическим уравнением Фогеля–Таммана–Гессе (Φ –T– Γ) [35].

$$\tau_{\max} = \tau_0 \exp\left(\frac{B}{T - T_0}\right),\tag{4}$$

где τ_0 , *B* и T_0 — расчетные параметры, не зависящие от температуры (τ_0 — предэкспоненциальный множитель, *B* — активационный параметр, T_0 — т.н. температура Фогеля).

Нелинейность зависимостей $-\lg \tau_{\max} = \varphi(1/T)$ характерна для кооперативных форм молекулярной подвижности, к которым относится, прежде всего, α процесс, обусловленный сегментальной подвижностью и связанный с переходом в высокоэластическое состояние [31]. Для исследованных систем зависимости $-\lg \tau_{\max}, = \varphi(1/T)$ в области α процесса надежно описываются уравнением 4). Значения входящих в уравнение параметров даны в табл. 4.

Для исходных ПИ и нанокомпозитов частотные зависимости действительной части комплексной удельной проводимости, $\sigma_{aac} = \varphi(f)$, в двойном логарифмическом масштабе качественно схожи. В качестве примера на рис. 7 приведены зависимости $\sigma_{ac} = \varphi(f)$ для нанокомпозита Р-СОС + 3% СеО₂ в области стеклообразного и высокоэластического состояния.

Эти зависимости типичны для полимеров [11,28,36]. При температурах ниже температуры стеклования (на

ПИ	$-\lg(au_0)$	<i>B</i> ,K	T_0, K	T_g , °C*	σ_{dc} , при 270°С, S/ст
Р-СОД	11.1	1426	440	222	165E-10
Р-СОД+3% СеО ₂	10.6	1294	441	221	1.75E-10
P-COC	11.4	1468	404	188	1.01E-10
P-COC + 3% CeO2	12.0	1596	403	187	1.2E-11
P-OOD	10.4	1077	414	185.7	1.65E-10
$P-OOD + 3\% CeO_2$	12.6	1921	391	183.5	1.03E-10

Таблица 4. Значения $-\lg \tau_0$, *B*, T_0 , T_g и σ_{dc} для пленок исследованных ПИ и нанокомпозитов

Примечание.* T_g определены при $\lg \tau_{max}$, = 0.

рисунке не приведены кривые ниже 30° С) зависимости показывают линейный рост проводимости с частотой. В высокоэластическом состоянии на зависимостях $\sigma_{ac} = \varphi(f)$ появляется излом при частоте f_0 , ниже которой наблюдается плато (отсутствие зависимости от частоты). С ростом температуры f_0 последовательно сдвигается к высоким частотам. Плато на зависимости $\sigma_{ac} = \varphi(f)$ отвечает значениям σ_{dc} , которые, собственно, и определяют проводимость системы в высокоэластическом состоянии. При каждой температуре область слева от f_0 отвечает движению зарядов на длинные расстояния, а в области справа — заряды пространственно ограничены в потенциальных ямах.

Чтобы сопоставить значения проводимости для всех исследованных систем, в табл. 4 даны значения σ_{dc} при 270°С. Видно, что все значения σ_{dc} довольно близки, т. е. на проводимость мало влияет не только химическое строение исследуемого ПИ, но и введение в эти матрицы наночастиц CeO₂. Только в случае нанокомпозита на основе P-COC можно говорить о некотором понижении проводимости (в пределах одного порядка) по сравнению с исходным ПИ.

При практическом использовании пленок различных ПИ большое значение имеет величина диэлектрической проницаемости. Она определяется по формуле $\varepsilon' = C_s (14.4 \times d)/D^2$, где C_s — емкость образца (диэлектрической ячейки), пФ, d — толщина образца, мкм, и D диаметр верхнего электрода, см. Для всех исследованных образцов (как ПИ, так и нанокомпозитов на их основе) значения ε' лежали в пределах 3.2 ± 0.1 .

4. Молекулярные механизмы диэлектрических процессов

При исследовании диэлектрического поведения пленок трех использованных в работе полиядерных ПИ, как и для ранее исследованных полимеров этого класса, обнаружены α , β и γ релаксационные процессы. В спектрах всех исследованных нанокомпозитов наблюдали α , β и β 1 релаксационные процессы (γ процесс выделить не удалось). В работах [28–34,36–38] для α , β и γ процессов были предложены молекулярные механизмы. Известно, что на диэлектрическое поведение ПИ влияют присутствие в пленках влаги и термическая предыстория [28,31,36,38]. Для исключения влияния этих факторов на результаты проведенных работ все исследованные пленочные материалы подвергали предварительному отжигу при 300°С.

Молекулярный механизм α процесса в ПИ не вызывает сомнений. Его связывают с растормаживанием крупномасштабной сегментальной (кооперативной) подвижности основной цепи макромолекулы и переходом в высокоэластическое состояние [37–42].

Механизмы реализации у и в процессов, наблюдаемых в стеклообразном состоянии, идентифицируются не столь однозначно. Сопоставление диэлектрических свойств множества ПИ различного строения позволило связать самый низкотемпературный (самый высокочастотный) у процесс с локальной некооперативной подвижностью связанных молекул воды, с ограниченными флуктуациями положений фениленовых колец в диаминной компоненте макромолекулы, либо с переориентацией полярных боковых групп в диангидридном компоненте [14-16,31,36,38]. Интенсивность этого процесса зависит от термической предыстории исследуемого материала, в частности — от условий предварительной сушки образца [15,32]. Для некоторых ПИ предварительная термообработка пленки выше 300°С полностью подавляет у процесс. Для многих ПИ в области у процесса температура tg δ_{\max} слабо зависела от строения ПИ и составляла $\sim -100^{\circ}$ С (при 1 Hz). Температурные зависимости времени релаксации у процесса подчиняются уравнению Аррениуса. Е_а относительно невелики $(\sim 8-11 \text{ kcal/mol})$, а значение $au_0 - 10^{-14} \text{ s}$, что отвечает дебаевскому процессу некооперативного типа. Величина τ_0 является показателем размера переориентирующейся локальной группы в элементарном звене: чем меньше время релаксации, тем меньше группа и тем меньше релаксационный объем [43].

Для идентификации механизма β релаксации в литературных источниках предлагается несколько гипотез. В работе [31] его связывают с подвижностью диангидридной компоненты макромолекулы. Авторы работ [16,28,29,36] считали, что β процесс обусловлен вращением пара-фениленовых последовательностей в диаминной компоненте и/или участков парафениленовых и имидных групп в диангидридной компоненте, соответственно. Для β процесса в ПИ характерно широкое распределение времен релаксации, что свидетельствует о вкладах, вносимых в него несколькими элементарными релаксационными процессами с близкими временами релаксации. Для некоторых ПИ удалось выделить два β процесса [16,29,33]: β' и β'' , обусловленные переориентацией парафениленовых фрагментов в диаминной части макромолекулы и переориентацией диангидридных фрагментов между имидными циклами и самих имидных циклов, соответственно. Температурные зависимости времени релаксации для β процесса подчиняются уравнению Аррениуса, параметры которого чувствительны к химической структуре ПИ при широкой вариации последней. Так, значения энергии активации лежат в пределах от 20 до 50 kcal/mol, а температура максимума tg δ при 1 Hz изменяется в интервале 50–150°C [29,31,33].

Анализируя полученные результаты, следует определить кинетические структурные единицы, входящие в состав звеньев (включающие полярные группы), которые могут являться источником появления релаксационных процессов в исследуемых системах в стеклообразном состоянии. Исходя из химической структуры, можно ожидать несколько мод подвижности. В диаминном компоненте макромолекулы, включающем четыре парафениленовых кольца, соединенных мостиковыми группами, это может быть движение одного или двух средних колец. В диангидридном компоненте такими модами подвижности могут быть переориентация метафениленового кольца и имидных групп.

Можно полагать, что источником самого быстрого γ процесса для исходных ПИ является подвижность парафениленовых колец с примыкающими к ним полярными группами –O–, –SO₂- или –S–. Температура перехода для γ процесса (положение ε''_{max} при 1 Hz) для Р-СОД, Р-СОС и Р-ООД составляла –101, –92 и –96°С соответственно. Значения параметров уравнения Аррениуса, E_a и lg τ_0 , являются типичными для некооперативного локального типа молекулярной подвижности и составляют ~ 11 kcal/mol и ~ 13 соответственно (табл. 4), что близко к значениям для исследованных ранее ПИ.

В области в процесса для Р-СОД, Р-СОС и Р-ООД значения параметров E_a и $\lg \tau_0$ в уравнениях Аррениуса составляют $\sim 30 \, \text{kcal/mol}$ и ~ 20 соответственно (табл. 3). Это говорит о некотором вкладе межмолекулярных взаимодействий и влиянии гетерогенности локального окружения и может быть связано с флуктуации более протяженных участков макромолекулы. Такими участками могут быть мета-фениленовые кольца плюс имидные кольца в диангидридной компоненте, а также два-три пара-фениленовых кольца с примыкающими к ним полярными группами. Следовательно источником β процесса является подвижность полярных -О- и -О=N=О- (диангидридный фрагмент) и/или -O-, -SO₂- или -S- групп (диаминный фрагмент). Молекулярная подвижность Р-СОД, Р-СОС и Р-ООД для β процесса слабо зависит от химической структуры; параметры уравнения (3) близки, а температуры ε''_{\max} (при 1 Hz) для Р-СОД, Р-СОС и Р-ООД, составляют 81, 81 и 79°C соответственно, т.е. лежат в рамках температур для исследованных ранее ПИ. Можно полагать, что этот процесс является наложением нескольких

мод молекулярной подвижности с близкими временами релаксации. На это указывает широкое распределение времен релаксации ($\alpha_{HN} = 0.25 - 0.35$). Для данных систем не удалость разделить β процесс на две составляющих, β' и β'' .

Для нанокомпозитов в стеклообразном состоянии наблюдали две особенности: из-за роста значений tg δ и ε'' не удалось выделить γ процесс (рис. 2), а в области β процесса диэлектрические спектры можно было описать суммой двух процессов ГН (рис. 4). Для первого процесса температурно-частотное положение зависимости $-\lg \tau_{\max} = \varphi(1/T)$ близко к таковому для β процесса в исходных ПИ (табл. 3), а температуры ε_{\max}'' (при 1 Hz) для составляют 81, 79 и 73°С соответственно. Второй β 1 процесс наблюдается при более низких температурах: времена релаксации по сравнению β процессом на 1-4 порядка ниже (ср. кривые 3 и 4 на рис. 5, b), а параметры уравнения Аррениуса близки к Дебаевскому некооперативному процессу. Температуры переходов $\beta 1$ процесса для Р-СОД + 3% СеО₂, Р-СОС + 3% СеО₂ и Р-ООД + 3% CeO₂ для ε''_{max} при 1 Hz составляют 2, -5 и -2° С соответственно. Очевидно, что β 1 процесс обусловлен присутствием наночастиц в полимерной матрице ПИ. Для β и β 1 процесса молекулярная подвижность практически не зависит от химического строения.

Самый высокотемпературный α процесс, как в случае исходных ПИ, так и для нанокомпозитов, можно связать с крупномасштабной сегментальной подвижностью основной цепи макромолекулы. Температурно-частотные координаты α процесса, зависимости $-\lg \tau_{\max} = \varphi(1/T)$, отделяют область стеклообразного состояния полимера (справа) от высокоэластического состояния (слева). Температуры стеклования исследованных образцов определены традиционной для диэлектрического метода процедурой — экстраполяцией зависимости $-\lg \tau_{\max} = \varphi(1/T)$, описанной уравнением $\Phi - T - \Gamma$, к lg $\tau_{\text{max}} = 0$ ($\tau_{\text{max}} = 1$ s). Параметры уравнения (4) даны в табл. 4. Для нанокомпозитов температурно-частотные координаты в области а процесса близки к таковым для исходных ПИ. Соответственно, температура стеклования каждого из исследованных ПИ практически идентична таковой для нанокомпозита, сформированного на его основе (табл. 4). Этот результат полностью согласуется с данными, полученными термомеханическим методом (табл. 2).

5. Выводы

Исследование диэлектрического поведения пленок ряда полиядерных ПИ и композитов на их основе, наполненных наноразмерными частицами диоксида церия (3 mass.%), показало несколько областей релаксации дипольной поляризации: γ (только в исходных ПИ), β 1 (только в нанокомпозитах), β и α (в исходных ПИ и в нанокомпозитах) процессы. Температурные зависимости времени релаксации в областях γ , β 1 и β подчиняются уравнению Аррениуса, а в области α процесса описываются эмпирической формулой Φ -T- Γ . В областях γ и β 1 и β процессов молекулярная подвижность слабо зависит от структуры и отвечает температурно-частотным координатам кривой *I*, *4* и *2* соответственно (рис. 5). Для γ и β 1 и β процессов температура ε''_{max} при 1 Нz лежит вблизи –100, 2 и 80°С соответственно. Дана молекулярная интерпретация каждого из этих процессов.

Введрение наночастиц диоксида церия в ПИ приводит к тому, что:

1. В стеклообразном состоянии, наряду с β процессом, появляется более высокочастотный (более низкотемпературный) β 1 процесс;

2. Наличие β1 процесса связано именно с присутствием в материале наночастиц Ce₂O и отражает взаимодействия между ними и полярными группами макромолекулы ПИ, возникающие при образовании нанокомпозита.

3. Введения в полимер 3% Ce₂O не приводит к заметной вариации сегментальной молекулярной подвижности в области α процесса, поскольку интенсивность этого процесса, как и времена релаксации, практически не меняются по сравнению с этими характеристиками исходных ПИ.

4. Данные по проводимости в высокоэластическом состоянии показывают, что для исследованных пленочных материалов значения σ_{dc} мало меняются при вариации структуры матричного ПИ и при внедрении в него диоксида церия.

Благодарности

Авторы выражают благодарность сотрудникам Лаборатории синтеза высокотермостойких полимеров ИВС РАН, которые синтезировали форполимеры для этой работы.

Финансирование работы

Работа выполнена при финансовой поддержке Российского научного фонда (грант № 22-13-00068).

Конфликт интересов

Авторы заявляют, что у них нет конфликта интересов.

Список литературы

- R.G. Bryant. Polyimides. In: Encyclopedia of polymer science and technology / Ed. H.F. Mark. 4th ed. John Wiley & Sons Publ., N.Y. (2002). V. 7. P. 529–555.
- [2] M.I. Bessonov, M.M. Koton, V.V. Kudryavtsev, L.A. Laius. Polyimides — Thermally Stable Polymers. Plenum Publishing Corp., N.Y. (1987). 318 p.
- [3] Y. Gogotsi. Nanomaterials handbook. Tailor and Francis, Boca Raton, London, N.Y. (2006). 779 p.
- [4] I. Zaman, B. Manshoor, A. Khalid, S. Araby. J. Polymer Res. 5, 21, 429 (2014).
- [5] A. Kausar. Polymer-Plast. Technol. Eng. 56, 13, 1375 (2017).

- [6] X. Wang, Q. Jiang, W. Xu, W. Cai, Y. Inoue, Y. Zhu. Carbon 53, 145 (2013).
- [7] W.Y. Hsieh, K.B. Cheng, C.M. Wu. J. Polymer Res. 24, 11, 205 (2017).
- [8] А.В. Елецкий, А.А. Книжник. Б.В. Потапкин, Х.М. Кенни. УФН 58, 3, 225 (2015)
- [9] V.E. Yudin, V.M. Svetlichnyi, A.N. Shumakov, R. Schechter, H. Harel, G. Marom. Composites A 39, 1, 85 (2008).
- [10] I.V. Gofman, V.E. Yudin, O. Orell, J. Vuorinen, A.Ya. Grigoriev, V.M. Svetlichnyi. J. Macromol. Sci. B 52, 12, 1848 (2013).
- [11] N.A. Nikonorova, A.A. Kononov, H.T. Dao, R.A. Castro. J. Non-Cryst. Solids **511**, *1*, 109 (2019).
- [12] В.А. Герасин, Е.М. Антипов, В.В. Карбушев, В.Г. Куличихин, Г.П. Карпачева, Р.В. Тальрозе, Я.В. Кудрявцев. Усп. химии 82, 4, 303 (2013).
- [13] E.N. Bykova, I.V. Gofman, E.M. Ivan'kova, A.V. Yakimansky, O.S. Ivanova, A.E. Baranchikov, V.K. Ivanov. Nanosystems: Phys. Chem., Math. 10, 6, 666 (2019).
- [14] J.D. Jacobs, M.J. Arlen, D.H. Wang, Z. Ounaies, R. Berry, L-S. Tan, P.H. Garret, R.A. Vaia. Polymer 51, 14, 3139 (2010).
- [15] A.C. Comer, C.P. Ribeiro, B.D. Freeman, D.S. Kalika. Polymer 54, 2, 891 (2013).
- [16] W. Qu, T-M. Ko, R.H. Vora, T-S. Cheng. Polymer 42, 15, 6393 (2001).
- [17] J. van Turnhout, M. Wubbenhorst. J. Non-Cryst. Solids 305, 1-3, 50 (2002).
- [18] Broadband dielectric spectroscopy / Eds F. Kremer, A. Schönhals. Springer, Berlin, Heidelberg (2012). 729 p.
- [19] E. Donth. The glass transition: relaxation dynamics in liquids and disopdered materials. Springer, Berlin (2001). 448 p.
- [20] N.A. Nikonorova, M.Yu. Balakina, O.D. Fominykh, M.S. Pudovkin, T.A. Vakhonina, R. Diaz-Calleja, A.V. Yakimansky. Chem. Phys. Lett. 552, 114 (2012).
- [21] I. Gofman, A. Nikolaeva, A. Yakimansky, O. Ivanova, A. Baranchikov, V. Ivanov. Polymer Adv. Technol. 30, 6, 1518 (2019).
- [22] A. Nikolaeva, I. Gofman, A. Yakimansky, E. Ivan'kova, N. Gulii, M. Teplonogova, O. Ivanova, A. Baranchikov, V. Ivanov. Mater. Today Commun. 22, 100803, (2020).
- [23] A.L. Nikolaeva, I.V. Gofman, A.V. Yakimansky, E.M. Ivan'kova, I.V. Abalov, A.E. Baranchikov, V.K. Ivanov. Polymer 12, 9, 1952 (2020).
- [24] I.V. Gofman; I.V. Abalov, S.V. Gladchenko, N.V. Afanas'eva. Polymer Adv. Technol. 23, 3, 408 (2012).
- [25] V.K. Ivanov, G.P. Kopitsa, A.E. Baranchikov, S.V. Grigor'ev, V.V. Runov, V.M. Haramus. Russ. J. Inorg. Chem. 54, 12, 1857 (2009).
- [26] S. Havriliak, S. Negami. Polymer 8, 161 (1967).
- [27] R. Diaz-Calleja. Macromolecules 33, 24, 8924 (2000).
- [28] S. Chisca, V.E. Musteata, I.S.M. Bruma. Eur. Polymer J. 47, 5, 1186 (2011).
- [29] Z. Sun, L. Dong, Y. Zhuang, L. Cao, M. Ding, Z. Feng. Polymer 33, 22, 4728 (1992).
- [30] J.C. Coburn, P.D. Soper, B.C. Auman. Macromolecules 28, 9, 3253 (1995).
- [31] S.Z.D. Cheng, T.M. Chalmes, Y. Gu, Y. Yoon, F.W. Harris, J. Cheng, M. Fone, J.L. Koenig. Macromol. Chem. Phys. 196, 5, 1439 (1995).
- [32] G. Xu, C.C. Gryte, A.S. Nowick, S.Z. Li, Y.S. Pak, S.G. Greenbaum. J. App. Phys. 66, 11, 5290 (1989).

- [33] H. Tang, L. Dong, M. Ding, Z. Feng. Eur. Polymer J. 32, 10, 1221 (1996).
- [34] C. Bas, T. Pascal, N.D. Alberola. Polymer Eng. Sci. 43, 2, 344 (2003).
- [35] A.M. Kamalov, M.E. Borisova, A.L. Didenko, N.A. Nikonorova, V.M. Svetlichnyi, V.E. Smirnova, R.A. Kastro, V.E. Yudin. Polymer Sci. A. 62, 2, 107 (2020).
- [36] R. Khazaka, M.L. Locatelli, S. Diaham, P. Bidan, L. Dupuy,
 G. Grosset. J. Phys. D 46, 6, 065501 (2013).
- [37] N.A. Nikonorova, A.L. Didenko, V.V. Kudryavtsev, R.A. Castro. Non-Cryst. Solids **447**, 117 (2016).
- [38] A.E. Eichstadt, S. Andreev, T.C. Ward. Proc. Ann. Meeting Adhesion Soc. 23, 484 (2000).
- [39] J. Melchez, Y. Daben, G. Arlt. IEEE Trans. Electr. Insul. 24, 1, 31 (1989).
- [40] M. Calle, C. Garcia. A.E. Lozano, J.G. de la Campa, J. de Abajo, C. Alvarez. J. Membrane Sci. 434, 121 (2013).
- [41] P. Klonos, A. Panagopoulou, A. Kyritsis, L. Bokobza, P. Pissis. J. Non-Cryst. Solids 357, 2, 610 (2011).
- [42] A. Fukam, K. Lisaka, S. Kubota, S. Etoh. J. Appl. Polymer Sci. 42, 11, 3065 (1991).
- [43] C.J.F. Bottcher, P. Bordewijk. Theory of electric polarization. 2nd ed. Elsevier, Amsterdam (1978). V. 2, 377 p.

Редактор Ю.Э. Китаев