11,19

Тепловые свойства вещества в рамках модели двухфазной системы

© С.В. Терехов

Донецкий физико-технический институт им. А.А. Галкина, Донецк, ДНР E-mail: svlter@yandex.ru

Поступила в Редакцию 18 апреля 2022 г. В окончательной редакции 18 апреля 2022 г. Принята к публикации 25 апреля 2022 г.

Установлено, что соотношения модели двухфазной системы применимы для описания тепловых свойств твердых веществ с неупорядоченной и кристаллической структурами. Показано, что модель адекватно описывает кривые изохронной и изотермической кристаллизаций аморфных сплавов и термические изменения объема их образцов. Она также пригодна для расчета теплоемкостей и коэффициентов термического расширения разнообразных по своей физической природе веществ.

Ключевые слова: двухфазная система, коэффициент теплового расширения, теплоемкость, аморфные сплавы, сложные оксиды.

DOI: 10.21883/FTT.2022.08.52710.352

1. Введение

В настоящее время экспериментаторы проявляют постоянный интерес к исследованию теплоемкостей сложных оксидов [1–14]. Он вызван не только их техническим использованием (напр., керамик [15]), но также уникальностью и разнообразием физических свойств. Сглаживание экспериментальных данных по теплоемкостям сложных оксидов, как и для большинства других твердых веществ, осуществляется с помощью феноменологических функций определенного типа. Вне интервала аппроксимации они приводят к неверным результатам. Кроме того, протекание в некоторых веществах полиморфных превращений, магнитных фазовых переходов и т.п. явлений отображается на температурных зависимостях в виде "пиков" и "ям", описание которых в предлагаемых моделях отсутствует. Поэтому разработка моделей, способных описывать зависимости термических свойств веществ в широких температурных интервалах, является одной из актуальных задач физики твердого тела.

В работе [16] автором была предложена модель локально-равновесной двухфазной системы с параметром порядка, определенным как разность объемных долей сосуществующих фаз. Минимизация энергии Гиббса по этому параметру позволило получить ряд соотношений, которые использовались в ранних работах и будут применены в данной статье. Поэтому целью данной работы является расчет и построение (в качестве примеров) температурных зависимостей теплоемкостей сложных оксидов и коэффициентов теплового расширения простых оксидов и полупроводников для демонстрации более широкой области применимости модели [16].

Впервые модель [16] была применена при описании явлений и процессов в аморфных сплавах. Адекватность теоретических расчетов экспериментальным данным для металлических стекол позволяет надеяться на применимость модели [16] к описанию тепловых свойств и других систем.

2. Модель двухфазной системы и ее применение

В отличие от точечных фазовых переходов, которые происходят при определенном значении внешнего параметра, размытый фазовый переход осуществляется в некотором интервале изменения температуры, времени или другой величины [17,18]. Эти переходы наблюдают в магнетиках (переход антиферромагнетик-ферромагнетик [17]), релаксорах-сегнетоэлектриках [19,20], аморфных сплавах [21,22] и других системах. Размытый фазовый переход сопровождается преобразованием фазы с беспорядком (возможен лишь ближний порядок в расположении компонентов) в фазу с дальним порядком.

1. Изохронная и изотермическая кристаллизации аморфных сплавов. Аморфный сплав представляет собой метастабильную, т.е. неравновесную систему. Неэргодичность металлических стекол вынуждает аппроксимировать их локально-равновесными областями в соответствии с принципом Пригожина [23].

Рассмотрим совокупность локально-равновесных двухфазных областей, которые содержат возникающую, растущую и упорядочивающуюся фазу (фаза 1 с объемом V_1) и исходную матрицу (фаза 2 с объемом V_2) [16]. Объем системы V равен

$$V_1 + V_2 = V.$$
 (1)

Разделив равенство (1) на объем V, получим соотношение

$$x_1 + x_2 = 1, (2)$$

где $x_i = V_i/V$ — объемная доля фазы i = 1, 2.

Введем в рассмотрение параметр порядка *η* по формуле

$$\eta = x_1 - x_2. \tag{3}$$

Из (2) и (3) следует, что

$$x_1 = (1+\eta)/2, \qquad x_2 = (1-\eta)/2.$$
 (4)

Формулы (4) показывают, что параметр порядка η принимает значения из интервала от -1 до +1, так как объемные доли x_i изменяются в пределах от 0 до 1.

Энергия Гиббса из расчета на единицу объема системы, состоящей из двух невзаимодействующих между собой фаз, равна

$$g = \mu_1 x_1 + \mu_2 x_2, \tag{5}$$

где μ_i — химические потенциалы элементов фаз задаются формулами

$$\mu_i(P, T, t) = \mu_{i0}(P, T, t) + k_{\rm B}T \ln x_i(T, t), \qquad (6)$$

 $\mu_{i0}(P, T, t)$ — стандартные значения химических потенциалов для каждой из фаз, P — давление, T температура, $k_{\rm B}$ — постоянная Больцмана.

Найдем экстремум энергии Гиббса (5) по аргументу η , которому отвечает локально-равновесное значение параметра порядка

$$(dg/d\eta)\big|_{\eta=\eta_0} = 0 \Rightarrow \eta_0(T,t)$$
$$= -\operatorname{th}\big(0.5\Delta\mu_0(T,t)/(k_{\rm B}T)\big), \qquad (7)$$

где функция $\Delta \mu_0 = \mu_{10} - \mu_{20}$. Следовательно, равновесная доля новой фазы при температуре *T* в момент времени *t* описывается функцией

$$x_1(T,t) = 0.5 [1 - \text{th}(\varphi(T,t)/T)],$$
 (8)

здесь аргумент

$$\varphi(T,t) = 0.5\Delta\mu_0(T,t)/k_{\rm B}.$$

Разложим функцию $\varphi(T, t)$ в ряд Тейлора вблизи точки экстремального теплового эффекта фазового перехода с сохранением только линейных членов ряда

$$\varphi(T,t) = (\partial \varphi/\partial T)(T - T_x) + (\partial \varphi/\partial t)(t - t_x).$$
(9)

Рассмотрим частные случаи кристаллизации аморфного сплава:

— изохронная кристаллизация $\varphi(T, t) = f(T)$ т.е. формулу (8) с учетом (9) можно записать в виде

$$\varphi(T,t)/T = a(q)((T_x/T) - 1),$$
 (10)

где параметр $a(q) = -\partial \varphi / \partial T$, q — скорость нагрева образца. Параметр модели

$$a(q) = 2T_x(q)u_x(q) \tag{11}$$

Рис. 1. Функциональные зависимости объемной доли x_1 кристаллической фазы от температуры при q = 40 K/min (a) и от времени при T = 619 K (b) для аморфного сплава Fe₄₀Co₄₀P₁₄B₆ (сплошная линия — теория; точки — эксперимент [22]).

связан с температурой $T_x(q)$, при которой наблюдается максимум первой производной от объемной доли фазы 1 $u_x(q) = (dx_1/dT)_{T=T_x}$ и экстремум теплоты фазового перехода.

- изотермическая кристаллизация $\varphi(T, t) = f(t)$ при $T = \text{const}, \text{ т. е. формула (8) с учетом (9) принимает вид$

$$\varphi(T,t)/T = b(q)((t/t_x) - 1),$$
(12)

где коэффициент $b(q) = (t_x/T)\partial \varphi/\partial t$. Вычисления объемной доли новой фазы в металлическом стекле Fe₄₀Co₄₀P₁₄B₆ по формуле (8) с учетом равенств (10) и (12) представлены на рис. 1, *а* и 1, *b* соответственно [24].

2. Мультистадийное зародышеобразование в металлических стеклах. Полученные соотношения позво-

Рис. 2. a — зависимость объемной доли кристаллической фазы (на вставке — изменение ее первой производной) от температуры в аморфном сплаве Fe₈₅B₁₅ при скоростях нагрева образца q = 10(1) и 40(2) К/min (сплошная кривая — теория, точки — эксперимент [21]); b — изменения той же величины в аморфном сплаве Al₈₆Ni₆Co₂Gd₆ при q = 10 К/min (сплошная кривая — теория, точки — по ДСК-термограмме).

ляют описывать не только одно-, но и мультистадийную кристаллизацию [25], когда в сплаве формируется не менее двух кристаллов. На рис. 2 представлены кривые изохронной кристаллизации аморфных сплавов $Fe_{85}B_{15}$ (рис. 2, *a*) и Al₈₆Ni₆Co₂Gd₆ (рис. 2, *b*). Например, зародышеобразование в аморфном сплаве $Fe_{85}B_{15}$ происходит в две стадии: до температуры 750 К растут кристаллы *α*-Fe (фаза *α*), а затем начинают зарождаться кристаллы Fe₃B (фаза *β*) [21]. Для каждой новой фазы ее объемные доли кристаллов $x_{1(\alpha)}$ и $x_{1(\beta)}$ вычислялись по формулам (8) и (10), при этом суммарная объемная доля образующей-

ся фазы определялась по формуле [25]:

$$x = c_1 x_{1(\alpha)} + c_2 x_{1(\beta)}, \tag{13}$$

где константы c_1 и c_2 не зависят от скорости нагрева образца q (параметры модели приведены в работе [25]).

3. Теплоемкость сложных оксидов

В отличие от субстанциональной (полной) производной, описывающей поведение функции в любой точке системы и при переходе от одной ее точки к другой, локальная (частная) производная характеризует изменения функции в окрестности отдельной точки. Воспользуемся этим фактом при исследовании теплоемкости локальноравновесной области.

1. Энтропия локально-равновесной области. Плотность субстанциональной энтропии системы при изменяющемся фазовом составе $x = x_1$ зададим отношением, взятым со знаком минус, дифференциала функции (5) к дифференциалу температуры

$$\sigma = -(dg/dT) = -\left[(\partial g/\partial T)_x + (\partial g/\partial x)_T (dx/dT) \right]$$
$$= \sigma_x + \varepsilon_T u, \tag{14}$$

где локальная энтропия при фиксированном фазовом составе *x* определяется классической формулой [26,27], т. е. частной производной от (5) по температуре

$$\sigma_x = -(\partial g/\partial T)_x = \sigma_x + \sigma_d x + \sigma_s, \qquad (15)$$

здесь энтропии: исходной фазы

$$\sigma_m = -(\partial \mu_{20}/\partial T),$$

различия фаз

$$\sigma_d = -\left[\partial(\Delta\mu_0)/\partial T
ight]$$

и смешения

$$\sigma_s = -k_{\rm B} \left[x \ln x + (1-x) \ln(1-x) \right];$$

плотность энергии сосуществования фаз

$$\varepsilon_T = -(\partial g/\partial x)_T = -\Delta \mu_0 - k_{\rm B} T \ln(x/(1-x)), \quad (16)$$

u = dx/dT — "скорость" изменения фазового состава x при тепловом переходе в новое состояние. Таким образом, локально-равновесная энтропия (15) совпадает с ее субстанциональным определением (14) при выполнении равенства $\varepsilon_T = 0$, которое порождает формулу (8).

Первое слагаемое в (14) описывает энтропию системы при фиксированном фазовом составе системы, а второе — при его изменении, т.е. является "кинетической" составляющей субстанциональной энтропии, так как определяется "скоростью" изменения фазового состава *и*.

2. Теплоемкость локально-равновесного вещества. Субстанциональная теплоемкость системы зависит от температуры T, фазового состава x и "скорости" его изменения u, она задается выражением

$$C(T, x, u) = T(d\sigma/dT) = C_e + C_k + C_d, \qquad (17)$$

где локальная теплоемкость в "статическом" тепловом состоянии

$$C_e = T(\partial\sigma/\partial T)_{x,u} = T\left[(\partial\sigma_m/\partial T)_{x,u} + (\partial\sigma_d/\partial T)_{x,u}x\right]$$
$$= k_1T + k_2x, \qquad (18)$$

коэффициенты $k_1 = (\partial \sigma_m / \partial T)_{x,u}$ и $k_2 = T (\partial \sigma_d / \partial T)_{x,u}$. "Кинетическая" составляющая теплоемкости

$$C_{k} = T(\partial \sigma / \partial x)_{T,u} u = \left[2\xi_{T} - k_{B}Tu / [x(1-x)]\right] Tu$$
$$= f(x, u)Tu,$$
(19)

где

$$\xi_T = (\partial \varepsilon_T / \partial T)_{x,u} = \sigma_d - k_B \ln(x/(1-x))$$

Экспериментальные исследования температурных зависимостей теплоемкостей ряда веществ демонстрируют на графиках наличие особенностей в виде "пиков" или "ям" в низко- или высокотемпературной областях. По предварительным расчетам они описываются формулой (19) и возникают как отражение фазовых переходов в подсистемах атомов или квазичастиц, а их проявление

Таблица 1. Параметры модели для вычисления теплоемкостей сложных оксидов

Оксид	a(q)	T_x , K	$k_1 \cdot 10^4$	k_2
$Nd_2Sn_2O_7$	0.6780	67	837	302.6
Nd ₂ Ge ₂ O ₇	0.5571	137	271.2	362
$Tm_2O_3\cdot 2ZrO_2$	0.3200	310	100	450
$Er_2Ge_2O_7$	0.6471	166	318.6	333
$Cu_5V_2O_{10}$	0.3300	341	15	718
$Pb_7Nd_3(GeO_4)_5(VO_4)$	0.6146	102	2304.1	1122
$Pb_9Nd(GeO_4)_3(VO_4)_3$	0.6223	94	1759.7	1165
Tb ₂ Ge ₂ O ₇	0.5090	122	438.6	336
LaGa _{0.5} Sb _{1.5} O ₆	0.2900	346	400	336
FeTa ₂ O ₆	0.6710	187	170	276
$La_2Zr_2O_7$	0.7700	142	2096	228
SmGaGe ₂ O ₇	0.6880	220	312.2	338
Y _{0.6} Bi _{0.4} VO ₄	0.5200	215	54	205.2
Bi ₂ Ti ₄ O ₁₁	0.4747	157	302	576
Bi ₄ Ti ₃ O ₁₂	0.4773	174	940	616
GdGaTi ₂ O ₇	0.6721	214	20.67	372

Рис. 3. Температурные зависимости теплоемкостей LaGa_{0.5}Sb_{1.5}O₆ (*a*) и NaNbO₃ (*b*) (квадраты — данные [8], кружки — [29]).

в виде "пиков" и "ям" зависит от знака теплового эффекта перехода. "Динамическая" компонента теплоемкости в формуле (17) задается выражением

$$C_d = T(\partial \sigma / \partial u)_{T,x} w = T \varepsilon_T w \tag{20}$$

(здесь w = du/dT). Отметим, что при установлении локального равновесия ($\varepsilon_T = 0$) функция (20) обращается в нуль.

Первое слагаемое в формуле (18) линейно зависит от температуры и согласно классической термодинамике [28] описывает вклад в теплоемкость вещества электронной подсистемы, а изменение температурного хода кривой теплоемкости отображается вторым слагаемым. Учет вклада в теплоемкость дополнительной фазы осуществляется посредством применения формулы (19) при постоянстве функции f(x, u).

В табл. 1 приведены параметры модели для сложных оксидов работ [1–14]. В качестве примера на рис. 3 по-

казаны экспериментальные данные и теоретические кривые для LaGa_{0.5}Sb_{1.5}O₆ (рис. 3, a) и NaNbO₃ (рис. 3, b), вычисленные по формуле (18) с параметрами из табл. 1.

Из рис. З видно, что термодинамическая модель достаточно неплохо сглаживает экспериментальные данные и может использоваться как для проведения оценочных расчетов, так и для создания автоматических средств управления технологическими процессами на производстве. Это возможно при создании базы данных по значениям коэффициентов теоретической модели или нахождения связи между ними и индивидуальными характеристиками веществ. Простота модели и широкая область ее применимости указывают на универсальный характер теоретического построения.

4. Тепловое расширение вещества

Адекватное описание экспериментальных данных по теплоемкости разных веществ функцией логистического типа (8) позволяет применить ее к описанию и иных тепловых свойств, например, коэффициентов термического расширения.

1. Коэффициент теплового линейного (объемного) расширения. В соответствии с правилами смешения (см., напр., [30]) коэффициент термического расширения (КТР) двухфазной области

$$\alpha(T, x) = \alpha_1 x + \alpha_2(1 - x) = \alpha_2 + x \Delta \alpha, \qquad (21)$$

здесь $x = x_1$, α_i (i = 1, 2) — КТР фазы i, $\Delta \alpha = \alpha_1 - \alpha_2$ — коэффициент теплового различия фаз. Используя термодинамическое определение теплоемкости, второе правило Грюнайзена (см., например, [31,32]) о связи теплоемкости с КТР и учитывая равенство (18), получим

$$\alpha = q_1 T + q_2 x, \tag{22}$$

где коэффициенты q_1 и q_2 считаем постоянными. На рис. 4 представлены графики температурных зависимостей коэффициентов теплового линейного расширения $\alpha \cdot 10^6$ для оксидов Al₂O₃ (рис. 4, *a*) и ZnO

Рис. 4. Изменение с температурой коэффициентов теплового линейного расширения $\alpha \cdot 10^6$ оксидов Al₂O₃ (*a*) и ZnO (*b*) (точки и квадраты — данные [33]).

Рис. 5. Изменение с температурой коэффициентов теплового объемного расширения $\beta \cdot 10^5$ полупроводников Ge (*a*) и Si (*b*) (треугольники и кружки — данные [34]).

Рис. 6. Температурные изменения объема металлического стекла (*a*) и увеличенная область стеклования (*b*) при скорости нагрева *q*, K/min: $1 - \approx 0, 1; 2 - 5; 3 - 200; 4 - 2500.$

(рис. 4, *b*) [33]. На рис. 5 изображены ход температурных кривых, описывающих коэффициенты теплового объемного расширения $\beta \cdot 10^5$ для полупроводников Ge (рис. 5, *a*) и Si (рис. 5, *b*) [34]. Расчетные параметры модели указаны в табл. 2.

2. Эффект скачкообразного изменения объема при стекловании [35]. Согласно закону Гей-Люссака при постоянном коэффициенте теплового объемного расширения β объем системы изменяется по закону (см., напр., [36])

$$V(T) = V_0[1 + \beta(T - T_0)], \qquad (23)$$

где $V_0 = V(T_0)$ — объем расплава при температуре T_0 . Так как коэффициент термического расширения изме-

С.В. Терехов

Таблица	2.	Параметры	теоретической	модели	для	оксидов
и полупров	зод	ников				

Система	a(q)	T_x , K	$q_1 \cdot 10^4$	q_2
Al ₂ O ₃	0.89	65	16.4	8.94
ZnO	0.92	293	1.0	7.7
Ge	0.749	145	4.5	2.3
Si	0.97	296	1.48	1.45

няется по (22), то при нагревании аморфного твердого образца или при охлаждении стеклующегося расплава достижение температуры Tg приводит к скачкообразному изменению объема (23) с последующим выходом на прямую с другим угловым коэффициентом (рис. 6 [37]). В силу того, что температура стеклования Т_g зависит от скорости нагрева (охлаждения) q, то температурный диапазон перехода к новому состоянию является переменной величиной, а в точке T_g наблюдается излом прямой (23) [35,38]. При достаточно малой скорости стеклования вместо излома происходит плавный переход от прямой (23) к прямой теплового изменения объема стекла. Увеличение скорости нагрева металлического стекла свыше 500 K/min вызывает существенное расширение температурного интервала осуществления фазового перехода.

5. Заключение

Проведенные расчеты тепловых характеристик разнообразных веществ указывают на: применимость физической аппроксимации неравновесной системы локальноравновесными областями в соответствии с принципом Пригожина; определенный универсализм модели размытого фазового перехода; подобие тепловых свойств разнообразных веществ. В процессе исследования установлено, что тепловой эффект фазовых переходов в подсистемах основной матрицы вещества проявляется на базовой температурной зависимости теплоемкости в виде "пиков" и "ям" (в силу разных знаков энтальпий перехода), что указывает на их "кинетический" характер. В этой связи можно предположить, что появление отрицательных значений коэффициента термического расширения у ряда веществ в низкотемпературной области связано с проявлением "кинетического" эффекта в материнской фазе.

Конфликт интересов

Автор заявляет, что у него нет конфликта интересов.

Список литературы

- Л.Т. Денисова, Л.А. Иртюго, В.В. Белецкий, В.М. Денисов. ФТТ 58, 7, 1250 (2016).
- [2] Л.Т. Денисова, Л.А. Иртюго, В.В. Белецкий, Н.В. Белоусова, В.М. Денисов. ФТТ 60, 3, 618 (2018).
- [3] П.Г. Гагарин, А.В. Тюрин, В.Н. Гуськов, А.В. Хорошилов, К.С. Гавричев. Журн. неорган. химии 63, 11, 1458 (2018).
- [4] Л.Т. Денисова, Л.А. Иртюго, В.В. Белецкий, Н.В. Белоусова, В.М. Денисов. ФТТ 61, 4, 660 (2019).
- [5] Л.Т. Денисова, Ю.Ф. Каргин, Н.В. Белоусова, Н.А. Галиахметова, В.М. Денисов. Журн. неорган. химии 64, 6, 603 (2019).
- [6] Л.Т. Денисова, Е.О. Голубева, Н.В. Белоусова, В.М. Денисов, Н.А. Галиахметова. ФТТ 61, 7, 1397 (2019).
- [7] Л.Т. Денисова, Ю.Ф. Каргин, Л.А. Иртюго, Н.В. Белоусова, В.В. Белецкий, В.М. Денисов. Журн. неорган. химии 64, 7, 731 (2019).
- [8] А.В. Егорышева, С.В. Голодухина, А.В. Тюрин, А.В. Хорошилов, В.О. Веселова, Р.Д. Светогоров. ЖНХ 64, 9, 901 (2019).
- [9] Р.И. Гуляева, С.А. Петрова, В.М. Чумарев, А.Н. Мансурова. ФТТ **61**, *10*, 1985 (2019).
- [10] В.Н. Гуськов, К С. Гавричев, П.Г. Гагарин, А.В. Гуськов. Журн. неорган. химии **64**, *10*, 1072 (2019).
- [11] Л.Т. Денисова, М.С. Молокеев, Л.А. Иртюго, В.В. Белецкий, Н.В. Белоусова, В.М. Денисов. ФТТ 62, 2, 332 (2020).
- [12] Л.Т. Денисова, Е.О. Голубева, Л.Г. Чумилина, В.М. Денисов. ФТТ 62, 4, 640 (2020).
- [13] Л.Т. Денисова, Ю.Ф. Каргин, Л.Г. Чумилина, Н.В. Белоусова, В.М. Денисов. Неорган. материалы **56**, *6*, 630 (2020).
- [14] Л.Т. Денисова, М.С. Молокеев, Л.Г. Чумилина, В.В. Рябов, В.М. Денисов. ФТТ 63, 4, 471 (2021).
- [15] А.А. Фотиев, Б.В. Слободин, М.Я. Ходос. Ванадаты. Состав, синтез, структура, свойства. Наука, М. (1988). 272 с.
- [16] С.В. Терехов. Физика и техника высоких давлений 28, 1, 54 (2018).
- [17] Б.Н. Ролов, В.Э. Юркевич. Физика размытых фазовых переходов. РГУ, Ростов н/Д (1983). 320 с.
- [18] А.А. Боков. ЖЭТФ 111, 5, 1817 (1997).
- [19] С.Е. Александров, Г.А. Гаврилов, А.А. Капралов, Е.П. Смирнова, Г.Ю. Сотникова, А.В. Сотников. ЖТФ 74, 9, 72 (2004).
- [20] И.П. Александрова, А.А. Суховский, Ю.Н. Иванов, И.П. Раевский. ФТТ 54, 2, 298 (2012).
- [21] В.И. Ткач, С.Г. Рассолов, Т.Н. Моисеева, В.В. Попов. ФММ 104, 5, 1 (2007).
- [22] О.В. Коваленко, С.В. Васильев, А.И. Лимановский, В.И. Ткач. Физика и техника высоких давлений 29, 4, 27 (2019).
- [23] И. Пригожин. Неравновесная статистическая механика. Мир, М. (1964). 314 с.
- [24] С.В. Терехов. Физика и техника высоких давлений 29, 2, 24 (2019).
- [25] C.B. TepexoB. ΦMM **121**, 7, 731 (2020).
- [26] Р. Кубо. Термодинамика. Мир, М. (1970). 304 с.
- [27] Ч. Киттель. Введение в физику твердого тела. Наука, М. (1978). 791 с.
- [28] И.А. Квасников. Термодинамика и статистическая физика. Теория разновесных систем. Статистическая физика. Едиториал УРСС, М. (2002). Т. 2. С. 204.

- [29] В.С. Бондарев, А.В. Карташев, М.В. Горев, И.Н. Флеров, Е.И. Погорельцев, М.С. Молокеев, С.И. Раевская, Д.В. Суздалев, И.П. Раевский. ФТТ 55, 4, 752 (2013).
- [30] У.Д. Кингери. Введение в керамику. Стройиздат, М. (1967). С. 325.
- [31] С.И. Новикова. Тепловое расширение твердых тел. Наука, М. (1974). С. 13.
- [32] Г.И. Епифанов. Физика твердого тела. Высш. шк., М. (1977). С. 26.
- [33] Ю.Е. Шелудяк, Л.Я. Кашпоров, Л.А. Малинин, В.Н. Цалков. Теплофизические свойства компонентов горючих систем. Справочник / Под ред. Н.А. Силина. НПО "Информация и технико-экономические исследования", М. (1992). 184 с.
- [34] С.В. Станкус, Р.А. Хайрулин, П.В. Тягельский. Теплофизика высоких температур 37, 4, 559 (1999).
- [35] О.В. Мазурин. Стеклование. Наука, JI (1986). С. 18 (рис. 1.6).
- [36] П.Ф. Коротков. Молекулярная физика и термодинамика. Основные положения и решения задач. МФТИ, М. (2004). С. 13.
- [37] С.В. Терехов. Физика и техника высоких давлений **30**, *1*, 5 (2020).
- [38] А. Фельц. Аморфные и стеклообразные неорганические твердые тела. Мир, М. (1986). С. 75 (рис. 2.16.).

Редактор Т.Н. Василевская