^{10,04} Фононный спектр La₂Ge₂O₇: *ab initio* расчет

© В.А. Чернышев, В.П. Петров

Уральский федеральный университет, Екатеринбург, Россия E-mail: vladimir.chernyshev@urfu.ru

Поступила в Редакцию 22 апреля 2022 г. В окончательной редакции 22 апреля 2022 г. Принята к публикации 28 апреля 2022 г.

В рамках теории функционала плотности проведен расчет *ab initio* для кристаллической структуры, фононного спектра и упругих свойств германата лантана $La_2Ge_2O_7$ с триклинной структурой (пр. гр. $P\bar{1}$, по. 2). Определены частоты и типы фундаментальных колебаний. Из анализа векторов смещений, полученных из расчета, определена степень участия ионов в каждой моде. Расчеты выполнены впервые. Экспериментальные данные по ИК- и КР-спектрам, а также упругим постоянным $La_2Ge_2O_7$ отсутствуют в научной печати. Использована программа CRYSTAL17, предназначенная для расчетов *ab initio* по периодическим структурам, в рамках подхода МО ЛКАО.

Ключевые слова: редкоземельные германаты, фононы, упругие постоянные, гибридные функционалы.

DOI: 10.21883/FTT.2022.08.52707.301

1. Введение

Кристаллы R_2 Ge₂O₇, где R — редкоземельный ион, привлекают внимание исследователей многообразием свойств [1–5]. Они кристаллизуются в разных структурных типах [1,6]. Согласно результатам рентгеноструктурного анализа, La₂Ge₂O₇ имеет низкосимметричную

Рис. 1. Кристаллическая структура $La_2Ge_2O_7$ (пр. гр. $P\bar{1}$, Z = 4).

триклинную структуру [6,7] (рис. 1), пространственная группа $P\bar{1}, Z = 4$.

В работе [8] было проведено теоретическое исследование La₂Ge₂O₇ в высокосимметричной структуре пирохлора (кубическая сингония, пр. гр. 227). Однако соответствующие экспериментальные данные отсутствуют. Отметим, что на сайте Materials Project [9,10] также приведены результаты расчета ab initio для La₂Ge₂O₇ в триклинной сингонии. Расчет проведен для пространственных групп Р1 [9] и Р1 [10]. Результаты расчета в пространственной группе Р1 [10] соответствуют экспериментальным данным [6,7]. Расчет в [10] был выполнен с функционалом уровня GGA, что позволило хорошо воспроизвести кристаллическую структуру, полученную из рентгеноструктурного анализа [7]. Однако в научной печати отсутствует информация об упругих постоянных La₂Ge₂O₇, как экспериментальная, так и теоретическая. Отсутствует информация о фононном спектре La₂Ge₂O₇. Для расчета упругих постоянных и фононного спектра La2Ge2O7 представляется актуальным использовать гибридный функционал, учитывающий не только вклады уровня GGA, но и вклад нелокального обмена в формализме Хартри-Фока.

В настоящей работе мы провели расчет *ab initio* для структуры и свойств La₂Ge₂O₇ как в низкосимметричной моноклинной структуре (пр. гр. $P\bar{1}$, Z = 4), так и в структуре пирохлора в рамках теории функционала плотности с гибридным функционалом PBE0.

2. Методы расчета

Расчеты проводились в рамках теории функционала плотности и подхода МО ЛКАО. Структура и свойства La₂Ge₂O₇ как в низкосимметричной пространственной

группе, так и в высокосимметричной структуре пирохлора были рассчитаны с гибридным функционалом PBE0 [11], учитывающим вклад нелокального обмена (в формализме Хартри–Фока), а также нединамические корреляции [12]. Кроме того, кристаллическая структура $La_2Ge_2O_7$ и в той, и в другой пространственной группе была рассчитана с несколькими функционалами разного уровня: негибридным PBE, гибридными B3LYP (20% XФ-обмена) и PBE0 (25% XФ обмена).

Для расчетов была использована программа CRYSTAL17, предназначенная для моделирования периодических структур.

Для описания Ge и O использовались полноэлектронные базисные наборы [13,14]. Для описания внутренних оболочек La был использован квазирелятивистский псевдопотенциал ECP46MWB. Для описания внешних оболочек $(5s^25p^6)$, участвующих в образовании химической связи, использовался валентный базисный набор TZVP-типа с диффузными и поляризационными s-, p- и d-орбиталями ECP46MWB-I. Псевдопотенциал и валентный базисный набор доступны на сайте Stuttgart [15]. Интегрирование по зоне Бриллюэна проводилось по схеме Монкхорста-Пака с сеткой k-точек $8 \times 8 \times 8$. Точность расчета двухэлектронных интегралов была не менее 10⁻⁸ Хартри. При решении системы одноэлектронных уравнений Кона-Шэма точность расчета самосогласованного поля была установлена 10⁻⁹ а.и. Параметры оптимизации кристаллической структуры были установлены следующие. Среднеквадратичное значение градиента энергии было установлено равным 0.00030 а.u., максимальное значение компоненты — равным 0.00045 а.и. Кроме этого, при оптимизации структуры в программе CRYSTAL оцениваются величины смещений относительно предыдущего шага: по среднеквадратичному значению и абсолютному значению наибольшего компонента. Они были установлены равными 0.0012 и 0.0018 а.и. Оптимизация считалась завершенной, если все четыре условия выполнялись одновременно.

3. Обсуждение результатов

Расчет предсказывает, что энергия, которая приходится на одну формульную единицу $La_2Ge_2O_7$, будет ниже при кристаллизации в низкосимметричной структуре, чем в структуре пирохлора. В табл. 1 приведена разница между энергией структуры пирохлора и энергией

Таблица 1. Различие между энергией структуры пирохлора и низкосимметричной структуры ($\Delta E = E_{\text{pyro}} - E_{\text{low symm}}$), на одну формульную единицу

DFT функционал	ΔE , a.u.
РВЕ	0.045
РВЕО (25% ХФ)	0.053
ВЗІХР (20% ХФ)	0.069

Рис. 2. Локальное окружение ионов La и Ge в низкосимметричной структуре La₂Ge₂O₇.

низкосимметричной структуры (на одну формульную единицу).

Расчеты предсказывают, что энергетически наиболее выгодной является низкосимметричная структура. Причем учет вклада нелокального обмена в формализме Хартри—Фока (функционалы B3LYP и PBE0, табл. 1) лишь усиливает эту выгоду. Этот результат хорошо согласуется с PCA-экспериментом [7], где наблюдалась низкосимметричная структура La₂Ge₂O₇.

В табл. 2 приведены рассчитанные (с функционалом PBE0) постоянные решетки и углы элементарной ячейки низкосимметричной структуры La₂Ge₂O₇.

Согласие с экспериментом [7] хорошее.

Координаты ионов в элементарной ячейке приведены в табл. 3.

В структуре пирохлора, пространственная группа $Fd\bar{3}m$ (по. 227), ионы находятся в позициях: Ge — 16c (0, 0, 0), La — 16d (1/2, 1/2, 1/2), O1 — 48f (x, 1/8, 1/8), O2 — 8b (3/8, 3/8, 3/8). Кислород находится в двух симметрично неэквивалентных позициях. Расчет с функционалом РВЕО для такой структуры дает постоянную решетки 10.331 Å и x = 0.32035.

В низкосимметричной структуре редкоземельный ион находится в окружении 8-ми ионов кислорода. Ион Ge — в окружении 4-х ионов кислорода (рис. 2).

Заряды ионов и заряды на связях (по Малликену) для низкосимметричной структуры приведены в табл. 4–5.

Расчет предсказывает существенное отклонение зарядов ионов от их зарядов в предположении ионной связи. Расчет предсказывает незначительный заряд на связи La–O, и существенный заряд на связи Ge–O (табл. 5).

Можно отметить, что в низкосимметричной структуре расстояния Ge–O меньше, чем в структуре пирохлора.

	<i>a</i> , Å	<i>b</i> , Å	<i>c</i> , Å	α , deg	β , deg	γ , deg
Расчет Эксперимент [7]	$7.109 \\ 7.006 \pm 0.005$	$\begin{array}{c} 7.14 \\ 7.07 \pm 0.005 \end{array}$	$12.83 \\ 12.76 \pm 0.01$	93.4 94.1 ± 0.17	$90.35 \\ 90.35 \pm 0.17$	$90.78 \\ 90.95 \pm 0.17$

_

Таблица 2. Постоянные решетки и углы элементарной ячейки низкосимметричной структуры La₂Ge₂O₇ (пр. гр. *P*1)

Таблица 3. Координаты ионов в элементарной ячейке $La_2Ge_2O_7$ в долях постоянных решетки. Низкосимметричная структура (пр. гр. $P\bar{1}$), Z = 4. Расчет РВЕО

Ион	x	у	z
1 La	0.0484	0.3253	0.1186
2 La	-0.0484	-0.3253	-0.1186
3 La	0.1223	0.0787	0.3653
4 La	-0.1223	-0.0787	-0.3653
5 La	0.3288	-0.1749	0.1089
6 La	-0.3288	0.1749	-0.1089
7 La	0.3586	0.2569	-0.3711
8 La	-0.3586	-0.2569	0.3711
9 Ge	0.1510	-0.3855	0.3886
10 Ge	-0.1510	0.3855	-0.3886
11 Ge	0.1548	0.1510	-0.1172
12 Ge	-0.1548	-0.1510	0.1172
13 Ge	0.3719	-0.2558	-0.4025
14 Ge	-0.3719	0.2558	0.4025
15 Ge	0.4920	-0.3196	-0.1715
16 Ge	-0.4920	0.3196	0.1715
17 O	0.0049	0.0024	0.1864
18 O	-0.0049	-0.0024	-0.1864
19 O	0.0050	-0.3350	0.0803
20 O	-0.0050	0.3350	-0.0803
21 O	0.0281	0.2329	-0.4337
22 O	-0.0281	-0.2329	0.4337
23 O	0.0730	0.4116	0.3200
24 O	-0.0730	-0.4116	-0.3200
25 O	0.2228	-0.0695	-0.3867
26 O	-0.2228	0.0695	0.3867
27 O	0.2355	0.0961	0.0061
28 O	-0.2355	-0.0961	-0.0061
29 O	0.2968	-0.2295	0.3212
30 O	-0.2968	0.2295	-0.3212
31 O	0.2957	-0.4348	-0.4996
32 O	-0.2957	0.4348	0.4996
33 O	0.3047	-0.2699	-0.0887
34 O	-0.3047	0.2699	0.0887
35 O	0.3488	0.2152	-0.1891
36 O	-0.3488	-0.2152	0.1891
37 O	0.3538	0.4847	0.1271
38 O	-0.3538	-0.4847	-0.1271
39 O	0.3650	0.1351	0.2130
40 O	-0.3650	-0.1351	-0.2130
41 O	0.3876	-0.4066	-0.2972
42 O	-0.3876	0.4066	0.2972
43 O	0.4166	0.1702	0.4479
44 O	-0.4166	-0.1702	-0.4479

Таблица 4. Заряды ионов в низкосимметричной фазе $La_2Ge_2O_7$ (по Малликену). Расчет РВЕО

Ион	заряд, $ e $	ион	заряд, e
1 La	+2.217	23 O	-1.162
2 La	+2.217	24 O	-1.162
3 La	+2.237	25 O	-1.165
4 La	+2.237	26 O	-1.165
5 La	+2.251	27 O	-1.151
6 La	+2.251	28 O	-1.151
7 La	+2.234	29 O	-1.197
8 La	+2.234	30 O	-1.197
9 Ge	+1.779	31 O	-0.962
10 Ge	+1.779	32 O	-0.962
11 Ge	+1.835	33 O	-1.170
12 Ge	+1.835	34 O	-1.170
13 Ge	+1.784	35 O	-1.213
14 Ge	+1.784	36 O	-1.213
15 Ge	+1.797	37 O	-1.152
16 Ge	+1.797	38 O	-1.152
17 O	-1.206	39 O	-1.157
18 O	-1.206	40 O	-1.157
190	-1.250	41 O	-0.999
20 O	-1.250	42 O	-0.999
21 O	-1.179	43 O	-1.170
22 O	-1.179	44 O	-1.170

Таблица 5. Заряды на связях в низкосимметричной структуре La₂Ge₂O₇ (по Малликену). Расчет РВЕ0

Ионы	Расстояние, Å	Заряд на связи, e
Ge9-O23	1.733	0.293
Ge9-O22	1.766	0.234
Ge9-O29	1.776	0.228
Ge9-O31	1.813	0.208
La3-O43	2.405	0.058
La3-O17	2.465	0.012
La3-O26	2.471	0.027
La3-O23	2.508	0.002
La3-O29	2.576	0.000
La3-O22	2.652	0.012
La3-O39	2.659	0.028
La3-O21	2.831	0.017

Таблица 6. Ширина запрещенной зоны La₂Ge₂O₇. Расчет с DFT-функционалами различного уровня

Расчет	PBE, eV	B3LYP, eV	PBE0, eV
Структура пирохлора (пр. гр. 227)	2.1	3.9	4.8
Низкосимметричная структура (пр. гр. 2)	3.9	6.0	6.7

Таблица 7. Частоты и типы фононных мод в Г-точке La₂Ge₂O₇ в структуре пирохлора. Обозначения в столбцах "ИК" и "КР": "А" — активная мода, "Г" — неактивная

Тип	ИК	КР	Частота, ст ⁻¹ , расчет	Ионы-участники
F_{2u}	Ι	Ι	53	La ^s , Ge ^w , O1
E_{u}	Ι	Ι	107	La ^S , Ge, O1
F_{1u}	А	Ι	124	La, Ge ^S , O1, O ^{2S}
F_{1u}	Α	Ι	143	La, Ge, O ^{2S}
F_{2u}	Ι	Ι	191	Ge ^s , O1 ^w
F_{1u}	Α	Ι	255	La ^W , Ge, O1 ^S
$B_{\rm u}$	Ι	Ι	264	$Ge^{S}, O1^{W}$
E_{u}	k	Ι	282	La ^w , Ge, O1 ^s
F_{1g}	Ι	Ι	289	O1 ^s
F_{2u}	Ι	Ι	306	Ge ^w , O1 ^s
$B_{\rm u}$	Ι	Ι	331	La
F_{1u}	Α	Ι	334	Ge, O1
F_{2g}	Ι	Α	354	O1 ^s
F_{1g}	Ι	Ι	376	O1 ^S
E_{g}	Ι	Α	385	O1 ^S
E_{u}	Ι	Ι	419	Ge, O1 ^s
F_{1u}	Α	Ι	431	O1 ^S
F _{2g}	Ι	Α	482	O1 ^s , O2
F_{1u}	Α	Ι	499	$O1^{W}, O^{2S}$
F_{1u}	Α	Ι	531	O1 ^s , O2
$A_{\rm g}$	Ι	Α	552	01
$B_{\rm u}$	Ι	Ι	560	01
F_{2u}	Ι	Ι	578	O1 ^s
F_{2g}	Ι	Α	644	$O1^{W}, O^{2S}$
F_{2g}	Ι	Α	664	O1 ^s , O2

Примечание. В последнем столбце: "S" — сильное, "W" — слабое смещение иона в моде. Максимальные смещения ~ 0.04 Å у иона La в низкочастотной моде F_{2u} (53 cm⁻¹), а также у ионов кислорода: О1 в моде F_{2u} (306 cm⁻¹) и О2 в моде F_{1u} (499 cm⁻¹) и моде F_{2g} (644 cm⁻¹). Если величина смещения 0.02–0.04, смещение обозначено "S", если величина смещения не превышает 0.01, то смещение обозначено "W", если менее 0.005 — ион не упоминается в столбце "ионы-участники".

Для структуры пирохлора расчет предсказывает расстояние Ge–O, равное 1.965 Å, тогда как в низкосимметричной структуре расстояния Ge–O от 1.733 до 1.813 Å. Расстояния La–O несколько меньше в структуре пирохлора, чем в низкосимметричной структуре. В структуре пирохлора два иона кислорода на расстоянии 2.237 Å и шесть ионов кислорода на расстоянии 2.604 Å от иона La. В низкосимметричной структуре лантан также находится в окружении 8-ми ионов кислорода, расстояния до которых меняются от 2.405 до 2.831 Å. Можно предположить, что кристаллическое поле на ионе La в низкосимметричной структуре будет слабее, чем в структуре пирохлора.

Результаты расчета зонной структуры представлены на рис. 3-4 и в табл. 6.

Расчет предсказывает непрямую щель как для низкосимметричной структуры, так и для структуры пирохлора. Расчет с функционалами различного уровня предсказывает более широкую щель для низкосимметричной структуры. Наиболее близкую к эксперименту оценку ширины запрещенной щели в соединениях с ионно-ковалентной связью дает функционал B3LYP. Расчет с негибридным функционалом PBE дает заниженную относительно эксперимента величину. Расчет с гибридным PBE0, где доля XФ-обмена больше, чем в B3LYP, дает завышенную величину.

Вблизи потолка валентной зоны находятся преимущественно состояния кислорода. Вблизи дна зоны проводимости — состояния лантана (рис. 3–4).

Результаты расчета фононного спектра $La_2Ge_2O_7$ (в Г-точке) представлены в таблицах 7–8 и на рис. 5–6.

Величины смещений ионов в фононных модах для структуры пирохлора (Z = 2) и для низкосимметричной структуры (Z = 4) показаны на рис. 5–6. В низкосимметричной структуре в элементарной ячейке находится 8 ионов La, 8 — Ge и 28 ионов кислорода. На рис. 6 приведены максимальные и минимальные смещения ионов одного типа (La, Ge, O) в фононных модах.

В низкосимметричной структуре ионы La проявляют существенное участие в модах с частотами до $\sim 200~{\rm cm^{-1}}$, ионы Ge — в модах с частотами до $\sim 450~{\rm cm^{-1}}$; ионы кислорода участвуют во всем диапазоне частот. Расчет предсказывает щель в фононном спектре между $\sim 600~{\rm u} \sim 670~{\rm cm^{-1}}$. Можно отметить сильное смешивание колебаний.

Спектр высокосимметричной фазы, которая не наблюдается на эксперименте, характерен для структуры пирохлора и содержит значительно меньше частот. Участие кислорода (O1, 48f) также проявляется во всем диапазоне.

В структуре пирохлора La₂Ge₂O₇ имеет соответствующие фононные моды в Г-точке: $\Gamma = A_{1g} + E_g + 2F_{1g} + 4F_{2g} + 3A_{2u} + 3E_u + 8F_{1u} + 4F_{2u}$. Из них одна F_{1u} мода трансляционная, $4F_{2u}$, $3E_u$, $3A_{2u}$, $2F_{1g}$ — "молчащие" моды, не активные ни в ИК, ни в КР. Моды $A_{1g} + E_g + 4F_{2g}$ активны в КР ("рамановские"), $7F_{1u}$ мод активны в ИК.

В низкосимметричной структуре, характеризуемой пр. гр. $P\bar{1}$, La₂Ge₂O₇ имеет соответствующие фононные моды в Г-точке: $\Gamma = 66A_g + 66A_u$. Из них 3 моды A_u трансляционные, остальные моды A_u активны в ИК, и 66 мод A_g активны в КР (табл. 8).

В столбце "Преобладающий тип колебания" (табл. 8) для тех мод, где это возможно, выделен преоблада-

Рис. 3. Зонная структура и плотность электронных состояний La₂Ge₂O₇ в низкосимметричной структуре. Вклады в плотность состояний построены для ионов 1La, 9Ge, 19O (табл. 4), которые имеют минимальный положительный (максимальный отрицательный) заряд среди ионов данного типа (табл. 4). Т. е. построены вклады ионов, которые имеют максимальное количество электронов на своих орбиталях среди ионов данного типа.

Рис. 4. Зонная структура и плотность электронных состояний La₂Ge₂O₇ в структуре пирохлора.

Рис. 5. Смещения ионов в фононных модах La₂Ge₂O₇. Структура пирохлора.

Рис. 6. Смещения ионов в фононных модах La₂Ge₂O₇: *a*) максимальные, *b*) минимальные. Низкосимметричная структура.

		KD	Частота, ст $^{-1}$,	14	Преобладающий
Тип	ИК	KP	расчет	Ионы-участники	тип колебания
$A_{ m g}$	Ι	А	44.9	La ^S , Ge, O ^S	Не определен
$A_{ m g}$	Ι	А	48.4	La ^s , Ge, O ^s	Не определен
$A_{ m u}$	А	Ι	54.8	La ^S , Ge, O ^S	Не определен
$A_{ m u}$	А	Ι	58.2	La ^s , Ge, O ^s	Не определен
Ag	Ι	А	66.4	La ^S , Ge ^S , O ^S	Не определен
$A_{ m g}$	Ι	А	71.7	La ^S , Ge, O ^S	Не определен
$A_{ m u}$	А	Ι	76.6	La ^S , Ge, O ^S	Не определен
$A_{ m g}$	Ι	А	79.6	La ^S , Ge, O ^S	Не определен
$A_{ m u}$	А	Ι	80.3	La ^S , Ge ^W , O ^S	Не определен
$A_{ m g}$	Ι	А	90.1	La, Ge ^s , O ^s	Не определен
$A_{ m u}$	А	Ι	93.4	La, Ge, O ^S	Не определен
$A_{ m g}$	Ι	А	93.7	La ^s , Ge, O	Не определен
$A_{ m g}$	Ι	А	99.4	La, Ge, O	Не определен
$A_{ m g}$	Ι	А	103.7	La, Ge, O	bending (O-La-O)
$A_{ m u}$	А	Ι	104.2	La, Ge, O ^S	bending $(O-La-O)$
A_{u}	А	Ι	110.4	La, Ge, O ^S	bending (O-La-O)
$A_{ m g}$	Ι	А	111.4	La, Ge, O ^S	bending (O-La-O)
$A_{ m u}$	А	Ι	115.6	La, Ge, O	bending (O-La-O)
$A_{ m g}$	Ι	А	116.6	La, Ge, O	bending (O-La-O)
$A_{ m u}$	А	Ι	123.3	La, Ge, O ^S	bending (O-La-O) bending (La-O-Ge)
$A_{ m g}$	Ι	А	131.0	La, Ge, O ^S	bending (O-La-O)
$A_{ m g}$	Ι	А	136.2	La, Ge, O ^S	bending (O-La-O)
A_{u}	А	Ι	137.8	La ^W , Ge, O ^S	bending (O-La-O)
$A_{ m g}$	Ι	А	144.4	La, Ge, O ^S	bending (O-La-O) other (O-Ge-O)
$A_{ m u}$	А	Ι	145.3	La, Ge ^W , O ^S	bending (O-La-O)
$A_{ m u}$	А	Ι	145.7	La ^W , Ge, O ^S	bending (O-La-O)
$A_{ m g}$	Ι	А	150.2	La ^W , Ge, O ^S	bending (O-La-O)
$A_{ m u}$	А	Ι	151.5	La, Ge, O ^S	bending (O-La-O)
$A_{ m g}$	Ι	A	152.5	La ^W , Ge, O ^S	bending (O-La-O) bending (O-Ge-O)
A_{u}	А	Ι	158.6	La, Ge ^w , O ^s	bending (O-La-O)
$A_{ m g}$	Ι	А	159.8	La, Ge, O ^S	bending (O-La-O)
$A_{ m g}$	Ι	A	167.5	La, Ge, O ^S	bending (O-La-O)

Таблица 8. Частоты и типы фононных мод в Г-точке La₂Ge₂O₇ в низкосимметричной структуре. Обозначения в столбцах "ИК" и "КР": "А" — активная мода, "I" — неактивная

Таблица 8 (продолжение).

Тип	ИК	КР	Частота, ст ⁻¹ , расчет	Ионы-участники	Преобладающий тип колебания
$A_{ m u}$	А	Ι	168.1	La ^W , Ge, O ^S	bending (O–La–O) other (O–Ge–O)
$A_{ m g}$	Ι	А	176.2	La, Ge, O ^S	bending (O-La-O) bending (O-Ge-O)
A_{u}	А	Ι	183.2	La, Ge, O ^S	bending (O-La-O)
$A_{ m u}$	А	Ι	183.6	La ^w , Ge, O ^S	bending (O-La-O)
$A_{ m g}$	Ι	А	184.8	La ^W , Ge, O ^S	bending (O-La-O)
$A_{ m u}$	А	Ι	188.7	La ^W , Ge, O ^S	bending (O-La-O)
$A_{ m u}$	А	Ι	192.1	La, Ge ^W , O ^S	bending (O–La–O) other (O–Ge–O)
$A_{ m g}$	Ι	А	193.4	La, Ge, O ^S	stretching (O–La) bending (O–La–O)
$A_{ m g}$	Ι	А	198.0	La ^w , Ge, O ^s	bending (O-La-O)
$A_{ m g}$	Ι	А	203.7	Ge, O ^S	bending (O-Ge-O)
$A_{ m u}$	А	Ι	207.1	La ^w , Ge ^w , O ^s	bending (O-La-O)
$A_{ m u}$	А	Ι	208.0	La ^w , Ge ^w , O ^s	bending (O-La-O)
$A_{ m g}$	Ι	А	210.2	La ^W , Ge, O ^S	bending (O–La–O) stretching (O–La)
$A_{ m g}$	Ι	А	212.3	La ^w , Ge ^w , O ^s	bending (O-La-O) bending (O-Ge-O) stretching (O-La)
$A_{ m u}$	A	Ι	215.8	La ^w , Ge, O ^s	stretching (O–La) bending (O–La–O) bending (O–Ge–O)
$A_{ m g}$	Ι	А	216.4	La ^W , Ge, O ^S	stretching (O–La) bending (O–La–O)
$A_{ m u}$	A	Ι	217.7	La ^W , Ge, O ^S	bending (O–La–O) stretching (O–La)
$A_{ m g}$	Ι	А	222.7	Ge, O ^s	bending (O-La-O) bending (O-Ge-O)
$A_{ m u}$	А	Ι	224.1	La ^w , Ge ^w , O ^s	bending (O-Ge-O)
$A_{ m u}$	А	Ι	234.9	La ^W , Ge, O ^S	bending (O-La-O) bending (O-Ge-O)
$A_{ m g}$	Ι	А	237.9	La ^W , Ge ^W , O ^S	bending (O-La-O) other (O-Ge-O)
$A_{ m u}$	A	Ι	238.4	La ^W , Ge, O ^S	other (O–Ge–O)
$A_{ m g}$	Ι	А	240.2	Ge, O ^S	stretching (O–La) bending (O–Ge–O)
$A_{ m g}$	Ι	A	242.8	La ^w , Ge, O ^s	other (O-La-O) bending (O-La-O) bending (O-Ge-O)

Таблица 8 (продолжение).

Тип	ИК	КР	Частота, ст ⁻¹ , расчет	Ионы-участники	Преобладающий тип колебания
$A_{ m u}$	А	Ι	247.7	La ^W , Ge ^W , O ^S	bending (O–Ge–O) other (O–La–O)
$A_{ m u}$	А	Ι	264.4	Ge, O ^S	bending (O-La-O) other (O-Ge-O)
A _u 1053gg	А	Ι	270.3	Ge ^W , O ^S	bending (O-La-O) other (O-Ge-O)
Ag	I	А	271.7	Ge ^W , O ^S	stretching (O–La) bending (O–La–O)
$A_{ m g}$	Ι	A	272.7	La ^w , Ge ^w , O	stretching (O–La) bending (O–Ge–O)
$A_{ m u}$	А	Ι	274.2	Ge ^W , O ^S	other (O–Ge–O)
$A_{ m u}$	А	Ι	275.8	Ge ^w , O ^s	bending (O-Ge-O)
$A_{ m g}$	Ι	А	279.4	Ge ^w , O ^s	bending (O-Ge-O)
$A_{ m g}$	I	А	289.4	Ge ^w , O ^s	stretching (O-La) bending (O-La-O) bending (O-Ge-O)
$A_{ m g}$	Ι	А	295.9	Ge ^w , O ^s	bending (O-Ge-O)
$A_{ m u}$	А	Ι	305.1	Ge, O ^S	bending (O-Ge-O)
$A_{ m u}$	А	Ι	306.1	Ge ^w , O ^s	bending (La–O–Ge) bending (Ge–O–La)
$A_{ m g}$	Ι	А	312.0	Ge ^W , O ^S	bending (O-Ge-O)
$A_{ m u}$	А	Ι	323.1	Ge ^W , O ^S	bending (O–La–O) other (O–Ge–O)
$A_{ m g}$	Ι	А	329.1	Ge ^w , O ^s	bending (O-La-O) bending (O-Ge-O)
$A_{ m u}$	А	Ι	340.9	Ge ^w , O ^s	bending (O-Ge-O)
$A_{ m g}$	Ι	А	352.1	Ge ^w , O ^s	bending (O-Ge-La)
$A_{ m g}$	I	А	355.1	Ge ^w , O ^s	stretching (O–La) bending (La–O–La) bending (Ge–O–La)
$A_{ m u}$	А	Ι	357.8	Ge ^W , O ^S	bending (O-Ge-O)
A _u	A	Ι	361.9	Ge ^w , O ^s	stretching (O–La) bending (La–O–Ge) bending (Ge–O–La)
$A_{ m g}$	Ι	А	368.0	Ge ^W , O ^S	bending (O-La-O)
$A_{ m u}$	А	Ι	376.6	Ge, O ^S	bending (Ge–O–La)
$A_{ m u}$	А	Ι	381.7	Ge ^w , O	bending (Ge–O–La)
$A_{ m g}$	Ι	А	388.0	Ge ^w , O ^s	bending (O–Ge–O) bending (Ge–O–La)
$A_{ m u}$	А	Ι	399.5	Ge ^W , O ^S	bending (O-Ge-O)
$A_{ m g}$	Ι	А	404.9	Ge ^w , O	bending (O-Ge-O)
$A_{ m u}$	А	Ι	408.4	0	bending (O-Ge-O)

Таблица 8 (продолжение).

Тип	ИК	КР	Частота, ст ⁻¹ , расчет	Ионы-участники	Преобладающий тип колебания
$A_{ m u}$	А	Ι	412.5	Ge ^w , O ^s	bending (O–Ge–O) bending (Ge–O–La)
$A_{ m g}$	I	A	412.6	Ge ^W , O ^S	bending (O–Ge–O) bending (Ge–O–La)
$A_{ m g}$	Ι	А	420.4	Ge ^w , O	bending (O-Ge-O)
$A_{ m g}$	Ι	А	424.5	Ge ^w , O	stretching (O–La) bending (O–Ge–O)
$A_{ m g}$	Ι	А	425.0	OS	stretching (O–La) bending (O–Ge–O)
$A_{ m u}$	А	Ι	427.0	Ge ^w , O ^s	bending (O–Ge–O) bending (Ge–O–La)
$A_{ m u}$	А	Ι	435.6	Ge ^w , O ^s	stretching (La–O–Ge) bending (Ge–O–La)
$A_{ m u}$	А	Ι	437.3	Ge ^W , O ^S	bending (Ge–O–La)
$A_{ m g}$	Ι	А	443.8	Ge ^W , O ^S	bending (Ge–O–La)
$A_{ m g}$	I	A	461.6	OS	stretching (O–La) bending (Ge–O–La)
$egin{array}{c} A_{ m u} \ A_{ m g} \end{array}$	A I	I A	465.3 469.2	O ^S O	bending (Ge–O–La) stretching (O–La) bending (O–Ge–O)
$A_{ m g}$	Ι	А	479.9	O ^s	stretching (La–O–La) stretching (O–La–O) bending (O–Ge–O)
$A_{ m u}$	A	Ι	495.1	O ^S	stretching (La–O–La) bending (Ge–O–La)
$A_{ m u}$	А	Ι	537.9	Ge ^w , O ^s	bending (O–Ge–O) bending (Ge–O–Ge)
$A_{ m g}$	Ι	А	542.7	Ge ^w , O ^s	bending (Ge–O–Ge)
A_{u}	А	Ι	586.0	Ge ^W , O ^S	bending (Ge–O–Ge)
$A_{ m g}$	Ι	A	591.3	Ge ^W , O ^S	bending (O-Ge-O) bending (Ge-O-Ge)
$A_{ m u}$	А	Ι	675.7	Ge ^W , O ^S	stretching (O-Ge)
$A_{ m g}$	Ι	А	687.4	Ge ^W , O ^S	stretching (O-Ge)
$A_{ m g}$	Ι	А	693.1	Ge ^W , O ^S	stretching (O-Ge)
$A_{ m u}$	А	Ι	693.4	Ge ^W , O ^S	stretching (O-Ge)
$A_{ m u}$	А	Ι	714.3	O ^S	stretching (O-Ge)
$A_{ m g}$	Ι	Α	716.9	O ^S	stretching (O–Ge)
$A_{ m u}$	Α	Ι	730.7	O ^S	stretching (O–Ge)
$A_{ m g}$	Ι	Α	736.4	Ge ^W , O ^S	stretching (O-Ge)
$A_{ m g}$	Ι	А	749.2	Ge ^W , O	stretching (O-Ge)
A_{u}	А	Ι	751.1	Ge ^W , O	stretching (O-Ge)

Тип	ИК	КР	Частота, ст ⁻¹ , расчет	Ионы-участники	Преобладающий тип колебания
A_{u}	А	Ι	753.0	0	stretching (O-Ge)
$A_{ m g}$	Ι	А	756.8	O ^S	stretching (O-Ge)
Ag	Ι	А	763.9	0	stretching (O-Ge)
A_{u}	A	Ι	766.0	Ge ^w , O	stretching (O-Ge)
Ag	Ι	А	773.6	O ^S	stretching (O-Ge)
A_{u}	А	Ι	777.8	O ^S	stretching (O-Ge)
Ag	Ι	А	778.3	0	stretching (O-Ge)
Ag	Ι	Α	791.1	O ^S	stretching (O-Ge)
A_{u}	A	Ι	795.0	0	stretching (Ge–O–Ge)
$A_{ m u}$	A	Ι	801.1	0	stretching (Ge–O) bending (La–O–Ge)
$A_{ m g}$	I	А	802.8	0	bending (O–La–O) stretching (O–Ge) stretching (O–La–O)
$A_{ m g}$	Ι	А	809.2	O ^S	bending (La–O–Ge) stretching (O–Ge)
A_{u}	А	Ι	810.0	O ^S	stretching (O-Ge)
A_{u}	A	Ι	815.1	O ^S	stretching (O-Ge)
A_{u}	А	Ι	825.8	Ge ^w , O	stretching (O-Ge)
Ag	Ι	A	826.7	Os	stretching (O–Ge) stretching (Ge–O–Ge) bending (La–O–Ge)
$A_{ m u}$	А	Ι	842.4	O ^S	stretching (O–Ge) bending (La–O–Ge)
$A_{ m g}$	Ι	А	848.8	OS	stretching (O-Ge)

Таблица 8 (продолжение).

Примечание. Максимальные смещения ~ 0.03 Å у иона La в низкочастотной моде A_g (71.7 сm⁻¹), а также у иона кислорода 0.05 Å в моде A_g (150.2 сm⁻¹). Если величина смещения 0.02–0.04, смещение обозначено "S"; если величина смещения не превышает 0.01, то смещение обозначено "S"; если менее 0.005 — ион не упоминается в столбце "ионы-участники".

ющий тип колебания — с изменением длины связи ("stretching"), с изменением угла ("bending").

В работе также были рассчитаны упругие постоянные. Расчет был проведен с гибридным функционалом РВЕО. Получен тензор упругих постоянных (GPa) для структуры пирохлора

(312.2	133.8	133.8	0	0	0)
133.8	312.3	133.8	0	0	0
133.8	133.8	312.3	0	0 0	
0	0	0	106.0	0	0
0	0	0	0	106.0	0
0	0	0	0	0	106.0/

и для низкосимметричной структуры

(180.4	69.4	84.3	-0.2	15.7	-2.3	
69.4	204.9	69.4	0.6	6.1	0.9	
84.3	69.4	163.6	15.6	1.2	-1.4	
-0.2	0.6	15.6	22.6	9.2	4.2	
15.7	6.1	1.2	9.2	37.1	-1.0	
_2.30	0.9	-1.4	4.2	-1.0	34.0/	

Для кубической структуры — пирохлора — выполняются условия механической стабильности (критерии Борна):

 $C_{11} > |C_{12}|,$

Условие	Значение левой части
$C_{11} > 0$	180
$C_{22} > 0$	205
$C_{33} > 0$	164
$C_{44} > 0$	23
$C_{55} > 0$	37
$C_{66} > 0$	34
$\lfloor C_{11} + C_{22} + C_{33} + 2(C_{12} + C_{13} + C_{23}) \rfloor > 0$	986
$(C_{33}C_{55} - C_{35}^2) > 0$	6071
$(C_{44}C_{66} - C_{46}^2) > 0$	763
$(C_{22} + C_{33} - 2C_{23}^2) > 0$	239
$(C_{22}(C_{33}C_{55} - C_{35}^2) + 2C_{23}C_{25}C_{35} - C_{23}^2C_{55} - C_{25}^2C_{33}) > 0$	1082101
$ \begin{split} &\{2[C_{15}C_{25}(C_{33}C_{12}-C_{13}C_{23})+C_{15}C_{35}(C_{22}C_{13}-C_{12}C_{23})\\ &+C_{25}C_{35}(C_{11}C_{23}-C_{12}C_{13})]-[C_{15}^2(C_{22}C_{33}-C_{23}^2)\\ &+C_{25}^2(C_{11}C_{33}-C_{13}^2)+C_{35}^2(C_{11}C_{22}-C_{12}^2)]+C_{22}g\}>0,\\ &\text{где }g=C_{11}C_{22}C_{33}-C_{11}C_{23}^2-C_{22}C_{13}^2-C_{33}C_{12}^2+2C_{12}C_{13}C_{23}\\ &(g=3801225.9) \end{split} $	788680879

Таблица 9. Условия механической стабильности для моноклинной структуры [16] La₂Ge₂O₇

Таблица 10. Объемный модуль, модуль сдвига, и др. La₂Ge₂O₇, GPa. (Расчет РВЕ0)

Структура	Схема расчета	Объемный модуль	Модуль Юнга	Модуль сдвига	Коэффициент Пуассона	$G_{ m H}/B_{ m H}$	A^{U}
	Фойгта	193.3	254.2	99.2	0.281		
Пирохлора	Peycca	193.3	252.7	98.5	0.282	0.51	0.036
	Хилла	193.3	253.4	98.9	0.282		
	Фойгта	109.6	109.0	40.8	0.334		
Низкосимметричная	Peycca	106.8	83.6	30.5	0.370	0.33	1.715
	Хилла	108.2	96.4	35.7	0.351		

$$C_{11} > 0,$$

 $C_{44} > 0,$
 $(C_{11} + 2C_{12}) > 0.$

Таким образом, расчеты предсказывают для La₂Ge₂O₇ устойчивую структуру пирохлора, но менее выгодную по энергии, чем низкосимметричная структура. Условия механической стабильности для низкосимметричной, моноклинной структуры [16] также выполняются (табл. 9).

Результаты расчета упругих модулей приведены в табл. 10.

В табл. 10 приведены модули упругости, коэффициент Пуассона, универсальный индекс анизотропии $A^{\rm U}$ для La₂Ge₂O₇. Отношение объемного модуля к модулю сдвига G/B, величина коэффициента Пуассона говорят о том, что $La_2Ge_2O_7$ в низкосимметричной структуре относится к пластичным материалам, а в структуре пирохлора ближе к хрупким [17].

Расчет упругих модулей в приближениях Фойгта и Реусса (табл. 10) дает близкие результаты для структуры пирохлора, тогда как для низкосимметричной структуры эти результаты существенно различаются. Соответственно, значительно отличается от нуля и величина универсального индекса анизотропии A^{U} [18] (1) для низкосимметричной структуры

$$A^{\rm U} = 5 \, \frac{G_{\rm V}}{G_{\rm R}} + \frac{B_{\rm V}}{B_{\rm R}} - 6. \tag{1}$$

В формуле (1) G_V , G_R , B_V , B_R — модуль сдвига и модуль объемного сжатия, рассчитанные в приближени-

Рис. 7. Зависимость модуля Юнга (в GPa) от направления в кристалле для La₂Ge₂O₇: *a*) структура пирохлора, *b*) низкосимметричная структура.

Таблица 11. Твердость по Виккерсу, GPa

Структура	Низкосимметричная		
пирохлора	структура		
11.1	3.3		

ях Фойгта и Реусса. Чем сильнее анизотропия упругих свойств, тем больше отличие индекса A^{U} от нуля.

Анизотропия упругих свойств в низкосимметричной структуре проиллюстрирована на рис. 7.

Для оценки твердости перхлоратов в работе [17] была успешно использована формула, выражающая твердость по Виккерсу H_V через объемный модуль упругости и модуль сдвига. Эта эмпирическая формула была предложена в работе [19], исходя из того, что для поликристаллических образцов наблюдались корреляции между твердостью по Виккерсу и отношением модулей сдвига и объемного сжатия G/B. Она имеет вид

$$H_{\rm V} = C \, \left(\frac{G}{B}\right)^m G^n. \tag{2}$$

В формуле (2) H_V — твердость по Виккерсу, G — модуль сдвига, B — модуль объемного сжатия, C — коэффициент пропорциональности. В работе [19] были определены параметры этой формулы, которые позволили описать твердость большого ряда соединений, более сорока, с различным типом химической связи, ионной и ковалентной

$$H_{\rm V} = 0.92 \, \left(\frac{G}{B}\right)^{1.137} G^{0.708}.$$
 (3)

В формуле (3) используются модуль сдвига G и модуль объемного сжатия B, рассчитанные в приближении Хилла. Расчет твердости (3) предсказывает, что твердость La₂Ge₂O₇ в низкосимметричной структуре меньше, чем в структуре пирохлора (табл. 11).

4. Заключение

В результате расчетов *ab initio* исследован комплекс свойств низкосимметричной структуры La2Ge2O7. Показано, что низкосимметричная структура La2Ge2O7 (пр. гр. Р1) более энергетически выгодна, чем структура пирохлора, что соответствует имеющимся экспериментальным данным по рентгеноструктурному анализу. Впервые исследован фононный спектр и упругие свойства La₂Ge₂O₇. Расчеты предсказывают щель в фононном спектре низкосимметричной структуры между ~ 600 и $\sim 670 \,\mathrm{cm}^{-1}$. Определены частоты и типы фундаментальных колебаний. Показано, что в низкосимметричной структуре ионы La проявляют существенное участие в модах с частотами до $\sim 200\,{
m cm^{-1}}$. ионы Ge — в модах с частотами до $\sim 450\,\mathrm{cm}^{-1}$. ионы кислорода участвуют во всем диапазоне частот. Расчеты предсказывают, что La2Ge2O7 в низкосимметричной структуре относится к пластичным материалам. Согласно расчетам, твердость по Виккерсу La2Ge2O7 в низкосимметричной структуре значительно меньше, чем в структуре пирохлора. Расчеты зонной структуры предсказывают, что ширина запрещенной щели в низкосимметричной структуре значительно больше, чем в структуре пирохлора (6.0 и 3.9 eV соответственно расчет с функционалом B3LYP).

Финансирование работы

Работа выполнена при поддержке Министерства образования и науки РФ (проект № FEUZ-2020-0054).

Конфликт интересов

Авторы заявляют, что у них нет конфликта интересов.

Список литературы

- G. Bocquillon, C. Chateau, J. Loriers. In: Proceed. 14th Rare Earth Res. Conf. / Eds G.J. Mc Carthy, J.J. Rhyne, H.B. Silber. Plenum Publishing Corporation, N.Y. (1980).
- [2] E. Morosan, J.A. Fleitman, Q. Huang, J.W. Lynn, Y. Chen, X. Ke, M.L. Dahlberg, P. Schiffer, C.R. Craley, R.J. Cava. Phys. Rev. B 77, 22, 224423 (2008).
- [3] Q. Li, S. Zhang, W. Lin, W. Li, Y. Li, Z. Mu, F. Wu. Spectrochim. Acta A 228, 117755 (2020).
- [4] K. Stadnicka, A.M. Glazer, M. Koralewski, B.M. Wanklyn. J. Phys. Condens. Matter 2, 22, 4795 (1990).
- [5] I. Yaeger, R. Shuker, B.M. Wanklyn. Phys. Status Solidi B 104, 2, 621 (1981).
- [6] Л.Н. Демьянец, А.Н. Лобачев, Г.А. Емельченко. Германаты редкоземельных элементов. Наука, М. (1980). 152 с.
- [7] Ю.И. Смолин, Ю.Ф. Шепелев, Т.В. Упатова. Докл. АН СССР 187, 2, 322 (1969).
- [8] J. Yang, M. Shahid, M. Zhao, J. Feng, C. Wan, W. Pan. J. Alloys. Compd. 663, 834 (2016).
- [9] Materials Project. Электронный ресурс. Режим доступа: https://materialsproject.org/materials/mp-621945/#
- [10] Materials Project. Электронный ресурс. Режим доступа: https://materialsproject.org/materials/mp-21532/#
- [11] J.P. Perdew, M. Ernzerhof, K. Burke. J. Chem. Phys. 105, 22, 9982 (1996).
- [12] А.В. Арбузников. Журн.структурн. химии 48, 5 (2007).
- [13] F. Corá. Mol. Phys. 103, 18, 2483 (2005).
- [14] G. Sophia, P. Baranek, C. Sarrazin, M. Rerat, R. Dovesi. Systematic influence of atomic substitution on the phase diagram of ABO3 ferroelectric perovskites. Unpublished work (2013). Электронный ресурс. Режим доступа: http://www.crystal.unito.it/Basis_Sets/tin.html
- [15] Energy-consistent Pseudopotentials of the Stuttgart/Cologne Group. Электронный ресурс. Режим доступа: http://www.tc.uni-koeln.de/PP/clickpse.en.html
- [16] Z.J. Wu, E.J. Zhao, H.P. Xiang, X.F. Hao, X.J. Liu, J. Meng. Phys. Rev. B 76, 5, 054115 (2007).
- [17] Д.В. Корабельников, Ю.Н. Журавлев. ФТТ 58, 6, 1129 (2016).
- [18] S.I. Ranganathan, M. Ostoja-Starzewski. Phys. Rev. Lett. 101, 5, 055504 (2008).
- [19] X.Q. Chen, H.Y. Niu, D.Z. Li, Y.Y. Li. Intermetallics 19, 9, 1275 (2011).
- [20] Y. Tian, B. Xu, Z. Zhao. Int. J. Refract. Met. Hard Mater. 33, 93 (2012).

Редактор Е.В. Толстякова