05,11

Электрические и магнитные свойства монокристаллов SmSb при низких температурах

© Н.Н. Степанов, Г.А. Каменская, М.П. Волков, Н.В. Шаренкова

Физико-технический институт им. А.Ф. Иоффе РАН, Санкт-Петербург, Россия E-mail: natasha.sharenkova@gmail.com

Поступила в Редакцию 5 апреля 2022 г. В окончательной редакции 5 апреля 2022 г. Принята к публикации 11 апреля 2022 г.

На монокристаллах SmSb, полученных синтезом из элементов, проведены измерения электросопротивления R и намагниченности M в зависимости от температуры и магнитного поля. Большое магнетосопротивление наблюдается во всем температурном интервале 2–300 K, существенно увеличиваясь при понижении температуры. На температурной зависимости намагниченности наблюдается особенность при температуре перехода в антиферромагнитное состояние $T_{\rm N} = 2.3$ K. На зависимостях M(H) при температурах ниже 8 K наблюдаются осцилляции де Гааза-ван Альфена, частоты которых не меняются при переходе через $T_{\rm N}$. Линейная экстраполяция зависимости индексов Ландау N от обратной величины индукции магнитного поля 1/B к нулю дает значение $N|_{T=2\,\rm K} = 0.75$, что указывает на наличие фазы Берри и свидетельствует о нетривиальной топологии зон в соединении SmSb.

Ключевые слова: моноантимонид самария, намагниченность, магнетосопротивление, антиферромагнитный фазовый переход, магнитные осцилляции де Гааза-ван Альфена, фаза Берри.

DOI: 10.21883/FTT.2022.08.52692.332

1. Введение

Соединение SmSb относится к семейству редкоземельных моноантимонидов, которые привлекают большое внимание из-за наблюдения в них гигантского магнетосопротивления [1-6]. Последние экспериментальные данные [7] по изучению магнеторезистивного эффекта и магнитных квантовых осцилляций в соединении с промежуточной валентностью катионов SmSb показали возможность существования в этом соединении нетривиальной топологии электронных зон. В работе [7] были исследованы осцилляции Шубникова-де Гааза (SdH) и де Гааза-ван Альфена (dHvA) в монокристаллах SmSb, синтезированных флюсовым методом в расплаве Sn. Анализ индексов уровней Ландау, полученных из эффекта SdH выявил наличие фазы Берри в соединении SmSb, а также существенное отличие температурных зависимостей амплитуд осцилляций в указанных эффектах.

В настоящей работе представлены результаты измерения температурных зависимостей магнетосопротивления и эффекта dHvA в области перехода соединения SmSb в антиферромагнитное состояние (выше и ниже температуры Нееля T_N) и проведен анализ индексов уровней Ландау, полученных из осцилляций dHvA. Измерения были проведены на монокристаллах SmSb, полученных методом синтеза из элементов.

2. Методика экспериментов

Образцы для исследований выкалывались из исходного слитка SmSb синтезированного, в отличие от [7],

методом сплавления элементов (Sm, Sb) в стехиометрической пропорции с последующим гомогенизирующим отжигом, аналогично процессу получения моноантимонида тербия [8] и имели размеры, не превышающие $6 \times 3 \times 3$ mm.

Рентгеноструктурный и рентгенофазовый анализы образцов SmSb проводились на дифрактометре ДРОН-3 (Си K_{α} -излучение, $\lambda_1 = 1.5405$ Å, $\lambda_2 = 1.5443$ Å). Рентгенограммы испытуемых объектов (рис. 1) соответствовали крупноблочному кристаллу, преимущественно ориентированному в направлении [100], со структурным типом NaCl (B1) и параметром кристаллической решетки a = 6.265(2) Å, что хорошо согласуется с данными картотеки (JCPDS#65-7161) для вещества SmSb. Включений других фаз не обнаружено. Характерные размеры областей когерентного рассеяния (ОКР) рентгеновского излучения (L) и величины микронапряжений (ε) в образцах оценивались методом аппроксимации в рамках кинематической теории [9] по отражениям 200 и 600 соответственно. Величина ОКР рентгеновского излучения составляла $L \approx 2695 \pm 265$ Å, величина микронапряжений $\varepsilon \approx 0.002$, что сравнимо с погрешностью измерения параметра кристаллической решетки соединения. Углы разориентации $\Delta \Theta$ атомных плоскостей в направлении [100] были рассчитаны на основании отражения 400 и не превышали 0.02° в этом направлении (рис. 1). Представленные выше данные характеризуют достаточно хорошо сформированные кристаллы SmSb.

Экспериментальные исследования температурных и полевых зависимостей намагниченности (M) и электросопротивления (R) образцов SmSb, проводились на

Рис. 1. Рентгенограммы кристаллического образца SmSb, преимущественно ориентированного в направлении [100]: *a*) дублет 200 (второй порядок отражения); *b*) дублет 400 (четвертый порядок отражения); *c*) дублет 600 (шестой порядок отражения). Цветные линии — гауссовы аппроксимации.

вибрационном магнитометре системы PPMS Quantum Design в температурной области 2-300 К и в магнитных полях с индукцией до 14 Т. Измерение магнитной восприимчивости (χ) SmSb осуществлялось в магнитном поле с индукцией 30 mT, направленном параллельно

бо́лышему размеру образца. Электросопротивление R измерялось четырехзондовым методом на постоянном токе величиной I = 2.5 mA.

3. Результаты и их обсуждение

Зависимости электросопротивления R монокристаллического образца SmSb от температуры в магнитном поле с индукцией до 14 T приведены на рис. 2. Из рисунка следует, что зависимость сопротивления от температуры в SmSb носит металлический характер, а также наблюдается большое магнетосопротивление во всей исследованной температурной области.

В работе [10] на зависимости удельного электросопротивления $\rho(T)$ SmSb обнаруживается небольшой

Рис. 2. Зависимости электросопротивления R образца SmSb от температуры T в магнитных полях с индукцией до 14 Т.

Рис. 3. Температурные зависимости обратных магнитных восприимчивостей $1/\chi$ SmSb, 1 — данные настоящей работы; 2 - [10,11]; на вставке — низкотемпературная область зависимости.

Рис. 4. Графики зависимости осцилляционной составляющей магнитного момента M образца SmSb от обратной индукции магнитного поля B при температурах a - T = 2 K; b - T = 3 K.

Рис. 5. *а* — Спектр амплитуд осцилляций dHvA SmSb (в arb. units), при температурах 2, 3, 5 и 8 K, *b* — температурные зависимости амплитуд основных частот осцилляций dHvA *F*_a и *F*_b SmSb (в arb. units).

излом при температуре около 65 К, который авторы [10] объясняют "расщеплением кристаллических электрических полей". В настоящей работе указанная особенность в поведении R(T) также наблюдается, но при более низкой температуре — около 55 К, и по мере роста магнитной индукции внешнего поля она сдвигается в низкотемпературную область на ≈ 10 К. Анализ поведения зависимости электросопротивления R(T) SmSb, включая неподдающиеся в настоящее время объяснению небольшие скачки R в температурной области 220 \div 240 K, будет проведен в последующей работе.

На рис. З приведены графики температурных зависимостей обратной величины магнитной восприимчивости — χ^{-1} SmSb в интервалах 25 ÷ 400 K и 2.05 ÷ 5 K (на вставке) и результаты аналогичных измерений, выполненных в работах [10,11]. При общем сходстве в поведении зависимостей $\chi^{-1}(T)$ и близких значениях полученных величин χ^{-1} в результате настоящих исследований и в работах [10,11] наблюдается и принципиальное отличие. Так, минимум зависимости $\chi^{-1}(T)$ SmSb, связанный с переходом в антиферромагнитное состояние, имеет место при T = 2.31 K, а согласно [11] — при $T \approx 2.8$ K.

При температурах ниже 8 К в сильных магнитных полях наблюдаются осцилляции де Гааза-ван Альфена (dHvA) магнитного момента M(H) монокристаллов SmSb. На рис. 4, *a*, *b* приведены зависимости осцилляционной составляющей магнитного момента $M_{\rm osc}$ испытуемого образца от величины обратной индукции магнитного поля *B* при температурах 2 и 3 К, то есть выше и ниже температуры перехода в антиферромагнитное состояние $T_{\rm N} = 2.1 \div 2.8$ К [10–12].

В результате FFT-анализа были рассчитаны частоты основных осцилляций F_{α} , F_{β} , $F_{2\alpha}$ на зависимостях магнитного момента от величины обратной индукции магнитного поля M(1/B) и их амплитуды (в arb. units) для

Рис. 6. Зависимость индексов Ландау N, полученных из эффекта dHvA от обратной величины индукции магнитного поля при температуре T = 2 K.

четырех температур; полученные результаты приведены на рис. 5. Значения частот и температурная зависимость их амплитуд осцилляций dHvA хорошо совпадают с результатами работы [7]. Однако, в отличие от последней, наблюдается небольшое уширение пиков F_{α} и F_{β} амплитуд осцилляций. По-видимому, в монокристаллах SmSb, полученных методом синтеза из элементов, имеет место небольшая разориентация кристаллических плоскостей в направлении [100], не превышающая, согласно нашим данным $\Delta \Theta \approx 0.02^{\circ}$, которая приводит к небольшой девиации частот и амплитуд осцилляций, и, как следствие, к уширению формы пиков.

Из анализа осцилляционных кривых M(1/B) были получены зависимости индексов N уровней Ландау от величины обратной индукции магнитного поля при температурах 2 и 3 К, то есть ниже и выше T_N . На рис. 6 приведен график функции N(1/B) для температуры T = 2 К. Линейная экстраполяция N(1/B) к нулю $(B
ightarrow \infty)$ дает значение N = 0.75 для $T = 2 \,\mathrm{K}$ и N = 0.73 для T = 3 К. На основании анализа результатов экспериментальных исследований можно прийти к заключению, что: во-первых, совпадающие в пределах погрешности величины, полученные экстраполяцией значений N|1/B-0 при температурах выше и ниже температуры Нееля T_N, свидетельствуют об отсутствии перестройки электронного спектра соединения в результате АФП, во-вторых, эти значения близки к величине N = 0.52, рассчитанной в работе [7] аналогичным методом на основании измерений эффекта SdH в сильных магнитных полях, и, следовательно, совокупность данных, представленных в настоящей работе и в [7], указывает на наличие фазы Берри в соединении SmSb, свидетельствуя о нетривиальной топологии энергетических зон последнего.

4. Заключение

На монокристаллах SmSb, полученных синтезом из элементов, проведены измерения R(T, H) и M(T, H). Температурная зависимость сопротивления характеризует металлический характер электропереноса в этом соединении, при этом, во всем температурном интервале наблюдается большое магнетосопротивление R(H). На температурных зависимостях магнитного момента и магнитной восприимчивости наблюдаются особенности при температуре перехода в антиферромагнитное состояние $T_{\rm N} = 2.3 \, {\rm K}$. Обращает на себя внимание весьма низкая T_N SmSb по сравнению с таковой у других антиферромагнитных антимонидов РЗЭ (см. [13]). Возможное объяснения этого факта заключается в состоянии промежуточной валентности катионов самария $\nu \approx 2.7+$ [14]. Поскольку одно из флуктуирующих валентных состояний катионов Sm ⁷F₀, является немагнитным, требуются достаточно низкие температуры для упорядочивания магнитных моментов и формирования антиферромагнитной фазы.

На зависимостях M(H) при температурах ниже 8 К наблюдаются осцилляции dHvA, частоты которых не меняются при переходе через температуру антиферромагнитного упорядочения, что свидетельствует о неизменности строения зонного спектра материала в результате АФП перехода по обе стороны его границы. Линейная экстраполяция зависимости индексов Ландау Nот обратной величины индукции магнитного поля 1/Bк нулю дает значение $N|_{T=2K} = 0.75$, что указывает на наличие фазы Берри и свидетельствует о нетривиальной топологии зон в соединении SmSb.

Благодарности

Авторы выражают благодарность Р.В. Парфеньеву за интерес к работе, полезную дискуссию и высказанные замечания.

Конфликт интересов

Авторы заявляют об отсутствии у них конфликта интересов

Список литературы

- M.B. Mullen, B. Lüthi, P.S. Wang. Phys. Rev. B 10, 1, 186 (1974).
- [2] S. Ozeki, Y. Ohe, Y.S. Kwon, Y. Haga, O. Nakamura, T. Suzuki, T. Kasuya. Physica B 171, 286 (1991).
- [3] Chun-Gang Duan, I.F. Sabirianov, W.-N. Mei, P.A. Dowben, S.S. Jaswal, E.Y. Tsymbal. J. Phys.: Condens. Matter 19, 315220 (2007).
- [4] M. Zeng, Ch. Fang, G. Chang, Yu-An Chen, T. Hsieh, A. Bansil, H. Lin, L. Fu. Physics arXiv: Mesoscale and Nanoscale Physics: 1504.03492 (2015).
- [5] Xu Duan, Fan Wu, Jia Chen, Peiran Zhang, Yang Liu, Huiqiu Yuan, Chao Cao. Commun. Phys. 1, 71 (2018).

- [6] Linda Ye, T. Suzuki, Ch.R. Wicker, J.G. Checkelsky. Phys. Rev. B 97, 081108(R) (2018).
- [7] Wu Fan, Guo Chunyu, M. Smidman, J. Zhang, Ye Chen, J. Singleton, Huiqiu Yuan. npj Quantum Mater. 4, 20 (2019).
- [8] М.П. Волков, Н.Н. Степанов. ФТТ 61, 1470 (2019).
- [9] Ю.Д. Ягодкин, С.В. Добаткин. Завод. лаб. Диагностика материалов 7338 (2007).
- [10] F. Hulliger, B. Natterer, K.Z. Rüegg. Z. fur Physik B Condens. Matter 32, 37 (1978).
- [11] R.B. Beeken, E.D. Cater, R.L. Graham, D.C. Henry, Wm.R. Savage, J.W. Schweitzer, K.J. Sisson. In: Rare Earths Mod. Sci. Technol. 2 / Ed. W.E. Wallace. Springer-Verlad US, Boston, MA (1980). P. 415.
- [12] K.Tanaka, N.Takeda, Y.S. Kwon, N. Sato, T. Suzuki, T. Komatsubara. Physica B 186–188, 150 (1993).
- [13] F.P. Missell, R.P. Guertin, S. Foner. Solid State Commun. 23, 369 (1977).
- [14] M. Campagna, E. Bucher, G.K. Wertheim, L.D. Longinotti. Phys. Rev. Lett. 33, 165 (1974).

Редактор Д.В. Жуманов