02,12

Superconductivity and Phase Diagram in the Nanostructured Eutectic Ga—Ag Alloy

© D.V. Smetanin¹, M.V. Likholetova¹, E.V. Charnaya¹, M.K. Lee^{2,3}, L.J. Chang², E.V. Shevchenko¹, Yu.A. Kumzerov⁴, A.V. Fokin⁴

¹ Physics Department, St. Petersburg State University,

St. Petersburg, Russia

² MOST Instrument Center at NCKU,

Tainan, Taiwan

³ Department of Physics, National Cheng Kung University,

Tainan, Taiwan

⁴ loffe Institute,

St. Petersburg, Russia

E-mail: e.charnaya@spbu.ru

Received: April 22, 2022 Revised: April 22, 2022 Accepted: April 25, 2022

Here, we present a study of superconductivity in the Ga-Ag alloy embedded into porous template with pore diameter of 10 nm. The composition was close to the eutectic point in the gallium-rich range. We measured DC and AC magnetizations for temperatures from 1.8 to 10 K and magnetic fields up to 6 T. Three superconducting transitions were found at temperatures 7.05, 6.08, and 2.65 K in contrast to the bulk counterpart. Upper critical field lines were obtained. Activation barriers were evaluated from the AC data. The temperatures of the superconducting transitions were ascribed to emergence of β - and t-Ga and of an intermetallic different from bulk Ag_3Ga_2 .

Keywords: nanostructured Ga-Ag eutectic alloy, superconducting transitions, segregated phases, DC and AC susceptibility.