01,07,11

Микроструктура и физико-механические свойства бинарного сплава Al₉₀Gd₁₀ после баротермической обработки

© С.Г. Меньшикова¹, А.А. Шушков¹, В.В. Бражкин²

¹ Удмуртский федеральный исследовательский центр УрО РАН, Ижевск, Россия ² Институт физики высоких давлений РАН, Москва, Троицк, Россия E-mail: svetImensh@mail.ru

Поступила в Редакцию 25 апреля 2022 г. В окончательной редакции 25 апреля 2022 г. Принята к публикации 26 апреля 2022 г.

Методами микроиндентирования, рентгенофазового анализа, оптической и электронной микроскопии исследованы микроструктура и объемные физико-механические свойства (твердость, приведенный модуль упругости, индекс пластичности, упругий параметр восстановления) двух образцов бинарного заэвтектического сплава $Al_{90}Gd_{10}$. Первый образец получен быстрым охлаждением расплава со скоростью 1000 deg/s, при высоком давлении 10 GPa, температура закалки 1800 К. Второй — прессованием исходного образца при высоком давлении 5 GPa без плавления. По сравнению с исходным образцом микроструктура обоих образцов измельченная и уплотненная. Структура исходного образца представлена двумя равновесными фазами α -Al и Al₃Gd. В образце без плавления, кроме фаз α -Al и Al₃Gd, обнаружена фаза составом Gd₅₅Al₄₅, в образце с плавлением — фаза составом $Al_{92}Gd_8$. Особенности морфологии структуры и изменения в фазовом составе образцов, полученных под высоким давлением, приводят к изменению физико-механических свойств исследованного сплава.

Ключевые слова: высокое давление, расплав, фаза, микроструктура, физико-механические свойства, индентирование.

DOI: 10.21883/FTT.2022.08.52683.361

1. Введение

Редкоземельные металлы (РЗМ) успешно используются в качестве легирующих добавок к сплавам, существенно улучшая их эксплуатационные свойства, в том числе при повышенных температурах, а также способствуют измельчению зерна, повышают коррозионную стойкость сплавов. Сплавы Al-P3M обладают высокими конструкционными свойствами, в перспективе — высокорезистивные и энергосберегающие элементы. При концентрациях P3M менее 20% (здесь и далее по тексту at.%) получают материалы в аморфном и аморфнонанокристаллическом состояниях [1]. В последнее время активно исследуются структура и свойства сплавов этих систем.

Система Al-Gd, как и большинство систем Al-P3M, обладает диаграммой эвтектического типа. В твердом состоянии установлено существование пяти стабильных химических соединений: Al₃Gd, Al₂Gd, AlGd, Al₂Gd₃, AlGd₂ [2]. Авторы работы [3] сообщают также о существовании в системе соединения Al₄Gd. В работе [4] сообщается о соединении Al₁₇Gd₂. Все сплавы системы Al-Gd в области, богатой алюминием, полученные в равновесных условиях, состоят из двух стабильных фаз: α -Al и Al₃Gd. Эвтектическая точка соответствует 2% Gd. Растворимость Gd в Al практически отсутствует.

Жидкие сплавы Al-Gd в области небольших содержаний Gd, согласно [5], являются микрогетерогенными, при небольших перегревах выше ликвидуса сохраняются группировки, расположение атомов в которых близко к расположению атомов интерметаллида Al₃Gd. При нагревании эти группировки разрушаются. Авторы [6] также сообщают о формировании в расплавах микрогруппировок атомов, но упорядоченных по типу Al_2Gd , сохраняющихся в расплаве даже при высоких перегревах по отношению к ликвидусу, вплоть до 2000 К. По данным работы [7] структура расплавов состоит из разупорядоченной зоны со случайным образом расположенными группировками типа соединения $Al_x(P3M)_y$. С увеличением содержания РЗМ преобладает взаимодействие разносортных атомов, приводящее к образованию устойчивых комплексов.

Известно, что состояние расплава перед закалкой влияет на структуру и свойства сплавов [8]. Различные экстремальные воздействия, в частности, высокое давление (несколько GPa) оказывает влияние на термодинамику и кинетику затвердевания расплава, приводя к разным изменениям в структуре сплавов [9]. Прогресс в понимании процессов структурообразования, протекающих в стеклообразующих расплавах в области эвтектики, а так же в изучении влияния давления и скорости охлаждения на процессы затвердевания имеет высокую научную значимость и актуальность. Известно, что многие соеди-

Рис. 1. Индентор Берковича (*a*), отпечатки (*b*).

нения хорошо синтезируются под высоким давлением, а ряд из них вообще невозможно получить без использования техники высокого давления. При этом образуются новые структуры (кристаллы, стекла, гели), новые фазы с новыми уникальными свойствами, невозможные в отсутствии внешних воздействий. Механизм воздействия высоких давлений и температур на структуру и свойства сплавов в разных системах различен [10–14].

В выбранной модельной системе Al-Gd ожидали влияние высокого давления на кинетику процесса формирования как стабильных, так и метастабильных фаз. Цель работы заключалась в исследовании микроструктуры, фазового состава и физико-механических свойств сплава состава Al₉₀Gd₁₀, полученного после баротермической обработки.

2. Материалы и методы исследования

Слиток составом $Al_{90}Gd_{10}$ получали сплавлением металлов в корундовых тиглях в печи Таммана. Исходными компонентами служили элементы с содержанием основного металла: алюминий — 99.999, гадолиний — 99.9 масс.%. Химический анализ слитка показал, что содержание основных компонентов соответствовало заданному составу в пределах $\pm 0.25\%$ от номинального. Полученный слиток рассматривали как исходный образец.

Образцы для исследований получали в камере высокого давления типа "тороид" [15]. Первый образец получен быстрым охлаждением расплава со скоростью 1000 deg/s при высоком давлении 10 GPa (образец с плавлением), температура закалки 1800 К. Второй — прессованием исходного образца при высоком давлении 5 GPa (образец без плавления). В качестве среды, передающей давление, использовали твердое тело — алгетский камень. Нагрев и плавление образца проводили пропусканием переменного тока через образец, помещенный в тигель из гексагонального нитрида бора. Значение температуры рассчитывали на основе показаний тиристора, по мощности тока. Фазовый состав образцов определяли методом рентгеноструктурного анализа (РСА) на установке Дрон-6 в Си-К α -излучении. Для определения химического, элементного состава, морфологии и размера структурных составляющих сплава использовали систему Quattro S — Санирующий Электронный Микроскоп (СЭМ) со стандартным детектором DBS (детектор направленного обратного рассеяния) ABS/CBS. Ошибка в определении процентного содержания элементов в образцах не более 5%.

Измерения и расчет физико-механических характеристик исследуемых образцов проводили на комплексной системе измерений Nanotest 600 с использованием индентора Берковича (трехгранная алмазная пирамида с углом при вершине 65.3° и радиусом закругления ~ 200 nm) (рис. 1).

Для оценки степени упрочнения материала использовали отношение твердости к приведенному модулю упругости H/E_r . Величина H/E_r характеризует способность материала изменять свою форму и размер в процессе деформации, а также может служить качественной сравнительной характеристикой сопротивления материалов деформации при механическом нагружении, таким образом отображать его структурное состояние [16]. Расчет твердости и приведенного модуля упругости проводили в соответствии с методикой Оливера-Фарра [17]. Твердость и приведенный модуль упругости определяли по анализу кривой разгрузки и глубине отпечатка, на основе получаемой в процессе испытаний диаграммы нагрузки-разгрузки внедрения алмазного индентора. Время нагрузки и разгрузки точки индентирования 10 s. Вследствие измерения объемных свойств, к образцам прикладывали максимальную силу 200 mN. Время задержки при максимальной силе нагружения 10 s. Расстояние между точками индентирова-

Рис. 2. Микроструктура исходного слитка (a), спрессованного под высоким давлением 5 GPa без плавления (b), полученного из расплава под высоким давлением (1800 K, 10 GPa, 1000 deg/s) (c).

Рис. 3. Рентгеноспектральный микроанализ фазы, обогащенной Gd, в образце, спрессованном под высоким давлением 5 GPa без плавления.

ния 100 μ m. Для каждого образца проводили не менее 30 измерений. Также рассчитывали параметр упругого восстановления ERP (Elastic recovery parameter), как отношение разности максимальной и пластической глубин к пластической глубине проникновения алмазного индентора. Рассчитывали параметр индекса пластичности PI (Plasticity Index), как отношение величины работы, затрачиваемой на формирование пластической деформации $W_{\rm pl}$ к общей работе ($W_{\rm pl} + W_{\rm el}$), где $W_{\rm el}$ работа, затрачиваемая на формирование упругой деформации.

3. Результаты и их обсуждение

3.1. Микроструктура

На рис. 2 для сравнения представлена микроструктура исходного слитка (a), спрессованного под высоким давлением 5 GPa без плавления (b) и полученного из расплава под высоким давлением (1800 K, 10 GPa, 1000 deg/s) (c). Согласно данным PCA, структура исходного слитка представлена двумя равновесными фазами: α -Al, Al₃Gd (type D0.19, гексаг. hP8/3). На рис. 2, *а* видны белые крупные первичные кристаллы фазы Al₃Gd, вокруг которых сформирована пластинчато-стерженьковая эвтектика (α -Al + Al₃Gd). Фазовый состав образца соответствует равновесной фазовой диаграмме сплава [2]. Из рис. 2 видно, что в образцах, полученных под высоким давлением, микроструктура более дисперсная, по сравнению с исходным образцом. Помимо этого, в каждом из образцов кроме фаз α -Al и Al₃Gd, обнаружены другие фазы. В образце без плавления в небольшом количестве — фаза составом Gd₅₅Al₄₅

Таблица 1. Элементный анализ фазы, обогащенной Gd

Элемент	mass.%	at.%
Al	12.5	45.0
Gd	87.5	55.0

Таблица 2	. Элементный	анализ фазы	, обогащенной	Al
-----------	--------------	-------------	---------------	----

Элемент	mass.%	at.%
Al	64.9	92.0
Gd	35.1	8.0

Рис. 4. Рентгеноспектральный микроанализ фазы, обогащенной Al, в образце, полученном из расплава под высоким давлением (1800 K, 10 GPa, 1000 deg/s).

Рис. 5. Концентрационные карты распределения элементов в образцах. а — образец с плавлением, b — образец без плавления.

Характеристика	Исходный образец эвтектика + интерметаллид	Исходный образец эвтектика	Исходный образец интерметаллид	Образец без нагрева	Образец с нагревом
H, GPa E_r, GPa H/E_r PI W_{pl}, nJ	$\begin{array}{c} 3.500 \pm 2.440 \\ 76.870 \pm 8.070 \\ 0.028 \pm 0.029 \\ 0.800 \pm 0.190 \\ 173.480 \pm 78.410 \end{array}$	$\begin{array}{c} 0.830 \pm 0.094 \\ 74.230 \pm 4.460 \\ 0.011 \pm 0.009 \\ 0.910 \pm 0.009 \\ 218.96 \pm 19.501 \end{array}$	$\begin{array}{c} 6.170 \pm 0.750 \\ 84.040 \pm 11.380 \\ 0.073 \pm 0.007 \\ 0.505 \pm 0.122 \\ 50.040 \pm 12.210 \end{array}$	$\begin{array}{c} 1.030 \pm 0.331 \\ 78.910 \pm 7.820 \\ 0.013 \pm 0.003 \\ 0.890 \pm 0.027 \\ 191.440 \pm 29.034 \end{array}$	$\begin{array}{c} 1.270 \pm 0.440 \\ 60.440 \pm 12.080 \\ 0.021 \pm 0.005 \\ 0.820 \pm 0.040 \\ 168.801 \pm 28.350 \end{array}$
W _{el} , nJ ERP	$\begin{array}{c} 28.220 \pm 14.211 \\ 0.099 \pm 0.103 \end{array}$	$\begin{array}{c} 20.550 \pm 1.317 \\ 0.037 \pm 0.003 \end{array}$	$\begin{array}{c} 49.030 \pm 12.210 \\ 0.265 \pm 0.266 \end{array}$	$\begin{array}{c} 22.840 \pm 3.680 \\ 0.044 \pm 0.011 \end{array}$	$\begin{array}{c} 35.241 \pm 6.091 \\ 0.072 \pm 0.019 \end{array}$

Таблица 3. Значения физико-механических характеристик исследуемых образцов

Рис. 6. Твердость H (GPa) эвтектики (α -Al + Al₃Gd) (A) и интерметаллида Al₃Gd (B) в исходном образце.

(рис. 3) в форме мелких кубоидов, формирующихся вокруг крупных кристаллов, в табл. 1 приведен ее элементный анализ. В образце с плавлением — фаза составом Al₉₂Gd₈ (рис. 4). Ее элементный анализ

представлен в табл. 2. На рис. 5 приведены концентрационные карты распределения элементов в обоих образцах. Таким образом, фазовый состав образца меняется.

3.2. Физико-механические свойства

Табл. 3 демонстрирует физико-механические характеристики исследуемых образцов. Для образцов, полученных под высоким давлением, рассматривали только усредненные значения свойств, вследствие дисперсности их структуры.

Из табл. З видно, что среднее значение твердости (H) исходного сплава $Al_{90}Gd_{10}$, рассчитанное по данным измерения твердости (H) интерметаллида Al_3Gd и эвтектики (α -Al + Al_3Gd) составляет ~ 3.5 GPa. На рис. 6 представлена отдельно твердость интерметаллида Al_3Gd и эвтектики (α -Al + Al_3Gd). Основной вклад в значение твердости вносит интерметаллид, значение твердости интерметаллида в 7.4 раза выше значения твердости эвтектики. При этом, как видно из табл. 3, индекс пластич-

Рис. 7. Зависимость прикладываемой силы от глубины проникновения индентора в образец без плавления в фазу $Gd_{55}Al_{45}(a)$, другие точки образца (*b*).

ности (PI) интерметаллида Al₃Gd ниже почти в два раза индекса пластичности (PI) эвтектики (α Al + Al₃Gd), т.е. деформация носит более упругий характер, что объясняет высокое значение твердости интерметаллида Al₃Gd. Для обоих образцов, полученных под высоким давлением, индекс пластичности (PI) близок к индексу пластичности (PI) эвтектики (α Al + Al₃Gd) исходного образца. Параметр упругого восстановления (ERP) в образце с плавлением выше, чем в образце без плавления в 1.6 раз.

Исследования показали, что среднее значение твердости (H) образца с плавлением¹ в 1.2 раза выше, чем в образце, спрессованном без нагрева, тогда как среднее значение приведенного модуля упругости (E_r) в 1.3 раза ниже. При этом отношение степени упрочнения (H/E_r) образца с плавлением выше, чем в образце, спрессованном без нагрева, в 1.6 раза. В образце без плавления, учет фазы Gd₅₅Al₄₅ приводит к повышению среднего значения твердости образца почти в 10 раз, а приведенного модуля упругости в 2.4 раза, поскольку твердость данной фазы, как показали испытания, составляет ~ 10 GPa. В микроскопе системы измерений Nanotest 600 данная фаза, Gd₅₅Al₄₅, плохо отслеживается и попасть в нее четко алмазным индентором составило немало усилий. На рис. 7 приведены кривые нагрузки-разгрузки для измерения с твердостью ~ 10 GPa и, для сравнения, 19 измерений в других точках образца. Видно, что максимальная глубина проникновения алмазного наконечника для измерения с полученным значением твердости $\sim 10\,\mathrm{GPa}$ существенно ниже ($h_{\text{max}} = 963.37 \text{ nm}$) по сравнению со средним значением максимальной глубины для 19 точек $(h_{\rm max} = 3039.25 \, {\rm nm})$, что приводит к высокому значению твердости. Для образца с плавлением в обнаруженную фазу Al₉₂Gd₈ алмазным индентором попасть не удалось.

4. Заключение

Таким образом, нами исследованы физико-механические характеристики образцов, полученных под высоким давлением, в сравнении с исходным образцом. Прогресс в понимании процессов структурообразования, протекающих в стеклообразующих расплавах типа Al-P3M (P3M — редкоземельный металл), к которому относится исследованный в настоящей работе сплав Al90Gd10, в области эвтектики, а так же в изучении влияния давления и скорости охлаждения на процессы их затвердевания имеет высокую научную и практическую значимость, т.к. решается фундаментальная проблема современного материаловедения в приборостроении — исследование процессов, приводящих к повышению прочностных свойств материалов, механизмов упрочнения и разработка на этой основе эффективных технологий получения высокопрочных материалов. Без подобных материалов невозможно дальнейшее развитие машиностроения, авиации и космической техники,

судостроения, добывающей промышленности, атомной энергетики. В условиях высоких давлений и температур при затвердевании расплава наблюдаются физические и химические процессы, протекание которых в обычных условиях затруднительно или невозможно из-за термодинамических ограничений.

Для сплава Al₉₀Gd₁₀ выполненные исследования показывают, что воздействие высокого давления приводит к изменению фазового состава, влияет на микроструктуру и физико-механические свойства сплава. В сплаве обнаружено формирование новых фаз, изучение которых требует дополнительных исследований. Структура получаемых под давлением образцов измельченная и уплотненная с высокими механическими свойствами, что обусловлено дисперсионным и зернограничным упрочнением. Дисперсионное упрочнение достигается за счет выделения в результате барической обработки сплава обнаруженной дисперсной фазы с высокими значениями твердости и приведенного модуля упругости. Зернограничное упрочнение обусловлено тем, что границы зерен служат препятствиями для движения таких несовершенств, как дислокации. Если в зерне с благоприятной ориентировкой достигается напряжение, необходимое для работы источника дислокаций, раньше, чем в соседнем зерне, тогда в благоприятно ориентированном зерне происходит вначале движение, а затем и скопление дислокаций, пришедших к границе зерна. Возникающие поля напряжений накладываются на внешние: это может привести к тому, что в соседних зернах будет достигнуто напряжение текучести. Таким способом распространяется пластическая деформация в соседние зерна. Процесс затрудняется, когда размер зерна уменьшается, что наблюдается в нашем случае, число скопившихся на границах зерен дислокаций уменьшается, уменьшаются поля напряжений, но главное — увеличивается набор разориентировок зерен, что суммарно делает границы более эффективным препятствием.

Полученные в работе результаты в очередной раз подтверждают эффективность влияния экстремальных воздействий, а именно, сочетание высоких давлений, температур и быстрой закалки на структуру и свойства получаемых материалов.

Благодарности

Авторы выражают искреннюю признательность д.ф.-м.н. В.И. Ладьянову, д.ф.-м.н. А.В. Вахрушеву за ценные советы в ходе выполнения работы, а также И.К. Аверкиеву за помощь в выполнении элементного анализа образцов.

Финансирование работы

Работа выполнена при частичной финансовой поддержке гранта РНФ № 22-22-00674.

¹ сравнение проводится без учета обнаруженной фазы Gd₅₅Al₄₅

Электронно-микроскопические исследования и исследования физико-механических свойств выполнены с использованием оборудования ЦКП "Центр физических и физико-химических методов анализа, исследования свойств и характеристик поверхности, наноструктур, материалов и изделий" УдмФИЦ УрО РАН, Ижевск.

Образцы под высоким давлением получены в ИФВД РАН, Москва, Троицк.

Конфликт интересов

Авторы заявляют, что у них нет конфликта интересов.

Список литературы

- [1] I. Inoue. Prog. Mater. Sci. 43, 365 (1998).
- [2] Диаграммы состояния двойных металлических систем. / Под ред. Н.П. Лякишева. Машиностроение, М. (1996). Т. 1. 991 с.
- [3] O.J.C. Runnals, R.R. Boucher. J. Less-Common Met. 13, 4, 431 (1967).
- [4] I. Pop, N. Dihoiu, M. Coldea, C. Hagan. J. Less-Common Met. 64, 1, 63 (1979).
- [5] С.В. Голубев, В.И. Кононенко. Расплавы 6, 100 (1991).
- [6] V. Sidorov, O. Gornov, V. Bykov, L. Son, R. Ryltsev, S. Uporov, V. Shevchenko, V. Kononenko, K. Shunyaev, N. Ilynykh, G. Moiseev, T. Kulikova, D. Sordelet. Mater. Sci. Eng. 449, 586 (2007).
- [7] С.В. Голубев, В.И. Кононенко. Расплавы 2, 5, 35 (1988).
- [8] И.Г. Бродова, П.С. Попель, Н.М. Барбин, Н.А. Ватолин Расплавы как основа формирования структуры и свойств алюминиевых сплавов. УрО РАН, Екатеринбург. (2005). 369 с.
- [9] Г.Е. Абросимова, А.С. Аронин. ФТТ 59, 11, 2227 (2017).
- [10] С.В. Попова, О.А. Сазанова, В.В. Бражкин, Н.В. Каляева, М.Б. Кондрин, А.Г. Ляпин. ФТТ 48, 11, 2057 (2006).
- [11] E.V. Dedyaeva, T.K. Akopyan, A.G. Pedalko, G.V. Talanova, G.I. Zabarev, A.D. Izotov, A.N. Suchkov, V.T. Fedotov, L.I. Shorneva. Inorg. Mater. 52, 10, 1077 (2016).
- [12] R. Xu Mater. Lett. 59, 22, 2718 (2005).
- [13] S.-W. He, Liu Yuanqing, S. Guo. Heat Treatment Met. 34, 11, 47 (2009).
- [14] В.О. Есин, А.С. Кривоносова, И.Ж. Саттыбаев, Т.Г. Федорова, В.А. Сазонова. ФММ 107, 6, 631 (2009).
- [15] В.В. Бражкин. Фазовые превращения в неупорядоченных конденсированных средах при высоком давлении. Докт.дис. физ.-мат. наук. М. (1996). 256 с.
- [16] Ю.А. Хохлова, Д.А. Ищенко, М.А. Хохлов. Техническая диагностика и неразрушающий контроль 1, 30 (2017).
- [17] W. Oliver, G.M. Pharr. J. Mater. Res. 7, 6, 1564 (1992).

Редактор Т.Н. Василевская