01

Влияние фокусировки на взаимное увлечение электронов и фононов и электросопротивление кристаллов калия

© И.Г. Кулеев, И.И. Кулеев

Институт физики металлов УрО РАН, Екатеринбург, Россия E-mail: kuleev@imp.uran.ru

Поступила в Редакцию 28 марта 2022 г. В окончательной редакции 15 мая 2022 г. Принята к публикации 16 мая 2022 г.

Исследовано влияние анизотропии упругой энергии на взаимное увлечение электронов и фононов и электросопротивление кристаллов калия при низких температурах. В гидродинамическом приближении проанализирован обмен импульсом между электронным и тремя фононными потоками, соответствующими трем ветвям колебательного спектра. Учтены актуальные механизмы релаксации импульса фононов: рассеяние на границах образца, дислокациях и в процессах фонон-фононного переброса. Показано, что в предельном случае сильного взаимного увлечения электронов и фононов электросопротивление будет значительно меньше, чем дает теория Блоха-Грюнайзена, а скорости дрейфа фононов и электронов близки и определяются суммарной скоростью релаксации фононов в резистивных процессах рассеяния. В противоположном случае, когда для фононов доминируют резистивные процессы рассеяния, фононная система остается в равновесии, и электросопротивление следует теории Блоха-Грюнайзена. В этом случае скорости дрейфа всех мод различны и гораздо меньше скорости дрейфа электронов.

Ключевые слова: электросопротивление, упругая анизотропия, электрон-фононная релаксация.

DOI: 10.21883/FTT.2022.08.52680.324

1. Введение

В работе проанализировано влияние упругой анизотропии на электрон- фононную релаксацию, взаимное увлечение электронов и фононов и электросопротивление кристаллов калия. Ранее при исследовании этих эффектов для фононов использовалась модель изотропной среды (см. [1-4]). В этой модели только продольные фононы могут принимать участие в электронфононной релаксации. Она использовалась в теории Блоха-Грюнайзена при расчете электросопротивления металлов [5-12]. В работах [13-15] было показано, что это приближение оказалось некорректным для объяснения экспериментальных данных термоэдс увлечения в кристаллах калия [16]. В упруго анизотропных кристаллах распространяются квазипродольные и квазипоперечные фононы (см. [17]). Они имеют отличную от нуля продольную компоненту [17], поэтому в рамках стандартной теории потенциала деформации могут взаимодействовать с электронами. Оказалось, что при низких температурах вклад медленных квазипоперечных мод в термоэдс увлечения кристаллов калия, который ранее не учитывался (см. [1–12]), на порядок величины превышал вклад продольных фононов. Это приближение оказалось недостаточным для объяснения экспериментальных данных [16]. Поэтому в [18] учтено влияние сдвиговых волн на электрон-фононную релаксацию и определена константа электрон-фононного взаимодействия для сдвиговых компонент колебательных мод $E_{0t} = 0.11 \, \text{eV}$. На необходимость учета влияния сдвиговых деформаций на

энергию электронов проводимости в щелочных металлах указывал Займан в [9,19].

В работе [20] проанализировано влияние анизотропии упругой энергии на электрон-фононную релаксацию и электросопротивление кристаллов калия в приближении Блоха-Грюнайзена [6-12]. Учет анизотропии упругой энергии на фононную систему, а также вклада сдвиговых волн в электрон-фононную релаксацию позволили согласовать результаты расчета электросопротивления с данными [21,22] при температурах выше 40 К. Показано, что при температурах, гораздо меньших температуры Дебая ($T \ll \Theta_D$), где сопротивление следовало зависимости $\rho_{e-ph} \approx B_1 T^5$, вклад квазипоперечных фононов в электросопротивление, который ранее не учитывался, в 11.5 раза превышал вклад продольных фононов, а релаксация электронов на сдвиговых волнах в 4 раза превышала вклад продольных фононов. Однако при высоких температурах ($T \gg \Theta_D$), где $\rho_{e-ph} \approx B_2 T$, вклад продольных фононов оказался в 4.5 раза больше, чем суммарный вклад релаксации электронов на быстрой и медленной поперечных модах.

В теории Блоха–Грюнайзена [5–12] предполагалось, что система фононов находится в равновесии: весь импульс, передаваемый электронами фононам за счет нормальных процессов электрон-фононного рассеяния не передается обратно электронам, а релаксирует внутри подсистемы фононов. В отличие от [19] в настоящей работе мы учли наиболее актуальные процессы релаксации фононов: рассеяние на границах образца, дислокациях и в процессах фонон-фононного переброса, и проанализировали взаимное увлечение электронов и фононов в кристаллах калия с различной концентрацией дислокаций. Для решения этой задачи мы воспользовались гидродинамическим приближением [23-25]: рассмотрели релаксацию и обмен импульсами между электронным и тремя фононными потоками, соответствующими трем ветвям фононного спектра. Гидродинамическое приближение позволяет корректно учесть неупругость электрон-фононной релаксации при расчете электросопротивления (см. [19]). В настоящей работе показано, что в предельном случае сильного взаимного увлечения электронов и фононов электросопротивление будет значительно меньше, чем дает теория Блоха-Грюнайзена, а скорости дрейфа фононов всех поляризаций равны и близки к скорости дрейфа электронов. В противоположном предельном случае, когда для фононов доминируют резистивные процессы рассеяния, и фононная система остается в равновесии, то мы имеем предельный случай теории Блоха-Грюнайзена [7-9,20]. Электросопротивление определяется нормальными процессами электрон-фононной релаксации, а скорости дрейфа всех мод различны и гораздо меньше скорости дрейфа электронов.

Электрон-фононная релаксация в упруго анизотропных металлах

При температурах, гораздо меньших температуры Дебая, основной вклад в релаксацию электронов в металлах будут вносить длинноволновые фононы с волновым вектором $q \ll q_D$ (q_D — дебаевский волновой вектор) [26,27]. В связи с этим для фононов мы воспользуемся моделью анизотропного континуума [26,27]. В этой модели спектр фононов $\omega_q^{\lambda} = S^{\lambda}(\theta, \varphi)q$ и фазовая скорость $S^{\lambda}(\theta, \varphi)$ для кристаллов калия определены в работах [13,18], а для векторов поляризации, согласно [17], имеем

$$e_{j}^{\lambda} = \frac{1}{A_{\lambda}} \left\{ \frac{h_{j}}{\psi_{j}^{\lambda}} \right\}, \ A_{\lambda} = \pm \sqrt{\sum_{j} \frac{n_{j}^{2}}{(\psi_{j}^{\lambda})^{2}}}, \ (\mathbf{e}^{\lambda} \mathbf{n}) = \frac{1}{A_{\lambda}} \sum_{j} \frac{n_{j}^{2}}{\psi_{j}^{\lambda}},$$
$$\psi_{j}^{\lambda} = \frac{1}{3} + z_{\lambda} + (k-1)n_{j}^{2}, \ k = (c_{12} + c_{44})/(c_{11} - c_{44}).$$
(1)

где c_{ij} — упругие модули второго порядка, $\mathbf{n} = \mathbf{q}/q$ = $(\sin \theta \cos \varphi, \sin \theta \sin \varphi, \cos \theta)$ — единичный волновой вектор фонона, z_{λ} — корни уравнения Кристоффеля, определяющие спектр и вектора поляризации (см. подробнее [17]). Значения модулей упругости второго порядка при T = 4.2 К взяты из работы [28]. Индекс поляризации L соответствует продольным фононам, а t_1 и t_2 — соответственно, "быстрой" и "медленной" квазипоперечным колебательным модам. Параметры анизотропии k - 1 в щелочных кристаллах значительно превышают величины для Si (см. таблицу). Поэтому фокусировка фононов и электрон-фононная релаксация в кристаллах калия значительно отличается от полупроводниковых кристаллов (см. подробнее [13–15]). Максимальное значение продольной компоненты медленной квазипоперечной моды t₂ достигает 28%, что в два раза больше, чем для кристаллов кремния, а среднее значение $\langle (\mathbf{e}^{t^2}\mathbf{n})^2 \rangle$, входящее в константу электронфононного взаимодействия, при переходе от кристаллов Si к калию увеличивается в четыре раза (см. таблицу). Увеличение средних значений продольных компонент $\langle (\mathbf{e}^{\lambda}\mathbf{n})^2 \rangle$ приводит к значительному возрастанию вклада квазипоперечных мод в электрон-фононную релаксацию. Как уже отмечалось в [9,19], спектр электронов проводимости с энергией Ферми в кристаллах калия становится анизотропным, и они получают возможность взаимодействовать со сдвиговыми волнами (т.е. с поперечной компонентой квазипоперечных мод). Поскольку в упруго анизотропных кристаллах у всех колебательных мод имеются продольные и поперечные компоненты, то вектора поляризации фононов $e^{\lambda}(q)$ могут быть разложены на продольную $\mathbf{e}^{\lambda}_{\uparrow\uparrow} = \mathbf{n}(\mathbf{e}^{\lambda}\mathbf{n})$ (обусловленную деформациями сжатия и растяжения) и поперечную компонент $\mathbf{e}_{\perp}^{\lambda} = [\mathbf{e}^{\lambda}\mathbf{n}]$ (обусловленную сдвиговыми деформациями решетки) (см. [29]). В работе [18] показано, что фурьекомпонента матричного элемента электрон-фононного взаимодействия в металлах может быть представлена в виде

$$(C_0^{\lambda}(\theta,\varphi))^2 \cong (E_{eff}^{\lambda})^2 \hbar / (S^{\lambda}(\theta,\varphi)\rho),$$

$$(E_{eff}^{\lambda})^2 = (E_{0L}^2(\mathbf{e}^{\lambda}\mathbf{n})^2 + E_{0t}^2([\mathbf{e}^{\lambda}\mathbf{n}]^2)).$$

$$(2)$$

Кроме константы $E_{0L} = 1.41 \text{ eV}$, характеризующей взаимодействие электронов с продольными компонентами, мы ввели константу E_{0t}, характеризующую взаимодействие электронов с поперечными компонентами колебательных мод. Она определена в работе [18] из сопоставления результатов расчета термоэдс увлечения с данными [23] и оказалась на порядок величины меньше, чем E_{0L} ; $E_{0t} = 0.11 \,\text{eV}$. Это не удивительно, так как, согласно оценкам [19], отклонение поверхности Ферми от сферической в кристаллах калия составляет 7%. Такое соотношение констант E_{0L} и E_{0t} существенно отличается от полупроводниковых кристаллов, где благодаря значительно большей анизотропии спектра носителей тока константа E_{0t} на два порядка величины больше, и, как правило, превышает значение E_{0L} [29,30]. Следует отметить, что в отличие от модели изотропной среды, эффективная константа связи $\left(E_{eff}^{\lambda}(heta, arphi)
ight)^{2}$ является функцией углов heta и arphi, зависимости которой определяются квадратами продольных и поперечных компонент векторов поляризаций (см. [18] рис. 2). Для продольных фононов отклонение функции $\left(E_{eff}^{L}(\theta, \varphi)\right)^{2}$ от изотропного распределения не превышает 10%. Однако для медленной поперечной моды величина она меняется достаточно резко для обоих сечений (см. [18] рис. 2).

Упругие модули второго порядка c_{ij} (10¹² dyne/cm²), плотность ρ (g/cm³), параметр анизотропии k - 1 для кристаллов HgSe: Fe и Si, K, Li, Na

Соединение	<i>c</i> ₁₁	C ₁₂	C 44	ρ	k-1	$\langle (\mathbf{e}^L \mathbf{n})^2 \rangle$	$\langle (\mathbf{e}^{t1}\mathbf{n})^2 \rangle$	$\langle (\mathbf{e}^{t^2}\mathbf{n})^2 \rangle$
HgSe:Fe	0.69	0.51	0.23	8.26	0.61	0.99	$6.7\cdot 10^{-4}$	$7.0\cdot10^{-3}$
Si	1.677	0.65	0.804	2.33	0.67	0.99	$7.5 \cdot 10^{-4}$	$7.9 \cdot 10^{-3}$
Κ	0.0457	0.0374	0.0263	0.91	2.284	0.965	0.0028	0.0323
Li	0.148	0.125	0.108	0.55	4.825	0.942	0.0044	0.0536
Na	0.0615	0.0469	0.0592	1.01	45.13	0.902	0.0069	0.0908

Влияние фокусировки на взаимное увлечение электронов и фононов в кристаллах калия

Вычислим поток заряда в металле, обусловленный действием постоянного электрического поля. Исходим из системы кинетических уравнений для неравновесных электронной $f(\mathbf{k}, \mathbf{r})$ и фононной $N^{\lambda}(\mathbf{q}, \mathbf{r})$ функций распределения (см. [2–4,13]):

$$\frac{e}{\hbar} \mathbf{E}_0 \frac{\partial f_{\mathbf{k}}}{\partial \mathbf{k}} + (\mathbf{v}_k \nabla_r) f_{\mathbf{k}} = I_{ei}(f_{\mathbf{k}}) + I_{eph}(f_{\mathbf{k}}, N_q^{\lambda}), \quad (3)$$

$$\mathbf{v}_{q}^{\lambda}\nabla_{r}N_{q}^{\lambda} = -\left(N_{q}^{\lambda} - N_{q\lambda}^{(0)}\right)\nu_{ph}^{(1)\lambda} + I_{phe}(N_{q}^{\lambda}, f_{\mathbf{k}}).$$
(4)

Здесь $\mathbf{v}_k = \partial \varepsilon_k / \hbar \partial \mathbf{k}$, $\mathbf{v}_q^\lambda = \partial \omega_q^\lambda / \partial \mathbf{q}$ — групповые скорости электронов и фононов с поляризацией λ , $N_{q\lambda}^0$ — функция Планка, полная скорость релаксации фононов $v_{ph}^{(1)\lambda} = v_{phB}^\lambda(\theta, \varphi) + v_{phd}^\lambda + v_{phU}^\lambda(q)$ включает все неэлектронные резистивные скорости релаксации, обусловленные рассеянием фононов на границах образца $v_{phB}^\lambda(\theta, \varphi)$, дислокациях v_{phd}^λ и в процессах фонон-фононного переброса $v_{phU}^\lambda(q)$. Интегралы столкновений электронов с примесями I_{ei} , фононами I_{eph} и фононов с электронами I_{phe} определены в [2,14].

$$\begin{split} I_{eph}(f_{\mathbf{k}}, N_{\mathbf{q}}) &= \frac{2\pi}{\hbar} \frac{1}{V} \sum_{\mathbf{q}, \lambda} |C_{q}^{\lambda}|^{2} \Biggl\{ \left[f_{\mathbf{k}+\mathbf{q}}(1-f_{\mathbf{q}})(N_{\mathbf{q}}^{\lambda}+1) - f_{\mathbf{k}-\mathbf{q}}(1-f_{\mathbf{k}-\mathbf{q}})N_{\mathbf{q}}^{\lambda} \right] \delta(\varepsilon_{\mathbf{k}+\mathbf{q}} - \varepsilon_{\mathbf{k}} - \hbar\omega_{q}^{\lambda}) - \left[f_{\mathbf{k}}(1-f_{\mathbf{k}-\mathbf{q}}) + (N_{\mathbf{q}}^{\lambda}+1) - f_{\mathbf{k}-\mathbf{q}}(1-f_{\mathbf{k}})N_{\mathbf{q}}^{\lambda} \right] \delta(\varepsilon_{\mathbf{k}-\mathbf{q}} - \varepsilon_{\mathbf{k}} + \hbar\omega_{q}^{\lambda}) \Biggr\}, \end{split}$$

$$I_{phe} = \frac{4\pi}{\hbar} \frac{1}{V} \sum_{\mathbf{k}} |C_{q}^{\lambda}|^{2} \Big[f_{\mathbf{k}+\mathbf{q}}(1-f_{\mathbf{k}})(N_{\mathbf{q}}^{\lambda}+1) - f_{\mathbf{k}-\mathbf{q}}(1-f_{\mathbf{k}})(N_{\mathbf{q}}^{\lambda}+1) \Big]$$

$$(5)$$

 $-f_{\mathbf{k}}(1-f_{\mathbf{k}+\mathbf{q}})N_{\mathbf{q}}^{\lambda}\Big]\delta(\varepsilon_{\mathbf{k}+\mathbf{q}}-\varepsilon_{\mathbf{k}}-\hbar\omega_{q}^{\lambda}), \quad (6)$ где $|C_{q}^{\lambda}|^{2} = (C_{0}^{\lambda}(\theta,\varphi))^{2}q \cong (E_{eff}^{\lambda})^{2}\hbar/(S^{\lambda}(\theta,\varphi)\rho)q$, а E_{eff}^{λ} определяется выражениями (2). Спектр электронов про-

определяется выражениями (2). Спектр электронов проводимости в кристаллах калия предполагается изотропным, а для фононов используется модель анизотропного континуума [13–15,20].

Рис. 1. Схема, иллюстрирующая релаксацию импульса, полученного электронами от электрического поля в неравновесной электрон-фононной системе.

Схема, описывающая релаксацию импульса квазичастиц в неравновесной электрон-фононной системе приведена на рис. 1. Неравновесный импульс электронов, полученный от электрического поля, релаксирует на примесях и дефектах, а в нормальных процессах электрон-фононного рассеяния часть этого импульса передается фононам и обеспечивает дрейфовое движение фононов. Если весь импульс, переданный фононам полностью релаксирует в резистивных процессах рассеяния фононов: при рассеянии на границах образца, дефектах, дислокациях и в процессах фонон-фононного переброса, то система фононов остается в равновесии, как это предполагается в теории Блоха-Грюнайзена [5-8]. В этом случае нормальные процессы электрон-фононного рассеяния обеспечивают релаксацию электронной системы к дрейфовому локально равновесному состоянию и, соответственно, вместе с примесями и дефектами при $T \gg \Theta_D$ обуславливают линейную по температуре зависимость электросопротивления металла. Поскольку в совершенных кристаллах калия при достаточно низких температурах процессы фонон-фононного переброса выморожены, то только малая часть неравновесного импульса, полученного фононами, релаксирует на примесях, дефектах и дислокациях, а большая часть возвращается обратно в электронную подсистему. В отличии от теории Блоха-Грюнайзена мы учли влияние анизотропии упругой энергии на релаксацию фононов и проанализировали вклады всех колебательных мод в электросопротивление кристаллов калия. Как показано в [13–15,20], основную роль в этой релаксации играют медленные квазипоперечные фононы. Ограничимся линейным приближением по внешним возмущениям и представим функции распределения электронов и фононов в виде [1–4]:

$$f_{\mathbf{k}} = f_0(\varepsilon_k) + \delta f_{\mathbf{k}}, \quad N_{\mathbf{q}}^{\lambda} = N_{q\lambda}^0 + g_{\lambda}(\mathbf{q}), \tag{7}$$

где $f_0(\varepsilon_k)$ и $N_{q\lambda}^0$ — равновесные функции распределения для электронов и для фононов, а δf_k и $g_\lambda(\mathbf{q})$ неравновесные добавки к ним. Линеаризуем интегралы столкновений (3), (4) по этим добавкам. Рассмотрим баланс импульса в системе электронов, взаимодействующих с примесями и фононами в изотермических условиях. Электрическое поле считается достаточно слабым, чтобы можно было ограничиться линейным приближением. Предполагаем, что для подсистем электронов и фононов реализуется дрейфовое-локально равновесное состояние, которое можно описать в гидродинамическом приближении [23–25]:

$$f(\mathbf{k}, \mathbf{u}) = \left(\exp\left(\frac{\varepsilon_k - \xi - \hbar \mathbf{k} \mathbf{u}_e}{k_B T}\right) + 1\right)^{-1}$$
$$= f_0(\varepsilon_k) + \delta f_{\mathbf{k}}, \ \delta f_{\mathbf{k}} = (\hbar \mathbf{k} \mathbf{u}_e) \left(\frac{\partial f_0}{\partial \varepsilon_k}\right). \tag{8}$$
$$N(\mathbf{q}, \mathbf{u}_{\lambda}) = N_{q\lambda}^0 + g_{\lambda}(\mathbf{q}), \quad g_{\lambda}(\mathbf{q}) \left\{\frac{\hbar \mathbf{q} \mathbf{u}_{\lambda}}{k_B T_0}\right\} N_{q\lambda}^0(N_{q\lambda}^0 + 1). \tag{9}$$

Здесь $f_0(\varepsilon_k)$ и $N_{q\lambda}^0$ — функции Ферми и Планка, \mathbf{u}_e и \mathbf{u}_{λ} — дрейфовые скорости электронов и фононов, которые определяются из связанной системы уравнений баланса импульса квазичастиц в неравновесной электронфононной системе. Итак, при гидродинамическом описании электронного переноса в упруго анизотропных металлах электронный поток взаимодействует с тремя фононными, соответствующим трем ветвям фононного спектра. Для получения уравнений баланса умножим уравнения (5) и (6) на $\hbar \mathbf{k}$ и $\hbar \mathbf{q}$ и просуммируем, соответственно, по импульсам электронов и фононов

$$\frac{1}{V} \sum_{k,\sigma} \hbar \mathbf{k} \Big\{ I_{eph}(\delta f_{\mathbf{k}}, N_{q\lambda}^{0}) + I_{eph}(f_{0}(\varepsilon_{k}), g_{\lambda}(\mathbf{q})) \Big\}
= m_{F} n_{e} \sum_{\lambda} \Big\{ u_{e}^{\alpha} v_{eph(\delta f)}^{\lambda}(k_{F}) - \mathbf{u}_{\lambda}^{\alpha} v_{eph(g)}^{\lambda(B)}(k_{F}) \Big\}.$$
(10)

$$\frac{1}{V} \sum_{\mathbf{q}} \hbar \mathbf{q}^{\alpha} \left\{ I_{phe}(\delta f_{\mathbf{k}}, N_{q\lambda}^{0}) + I_{phe}^{\lambda}(f_{0}(\varepsilon_{k}), g_{\lambda}(\mathbf{q})) \right\}$$

$$= m_{F} n_{e} \left\{ \mathbf{u}_{e}^{\alpha} \nu_{phe(\delta f)}^{\lambda}(k_{F}) - u_{\lambda}^{\alpha} \nu_{phe(g)}^{\lambda(B)}(k_{F}) \right\}.$$
(11)

Первые члены в выражениях (10) и (11) учитывают передачу импульса от неравновесных электронов к фононам, а вторые — от неравновесных фононов к электронам. Отметим, что скорости релаксации в электронфононных и фонон-электронных процессах рассеяния равны: $v_{eph(\delta f)}^{\lambda}(k_F) = v_{phe(\delta F)}^{\lambda}(k_F), v_{eph(g)}^{\lambda(B)} = v_{phe(g)}^{\lambda(B)}$. Они могут быть представлены в виде

$$\begin{split} \nu_{eph(\delta f)}^{\lambda}(k_{F}) &= \nu_{phe(\delta f)}^{\lambda}(k_{F}) = \frac{m_{F}}{24\pi^{4}\hbar^{3}n_{e}} \int d\Omega |C_{0}^{\lambda}|^{2}(q_{T\lambda})^{5} \\ &\times \int dZ_{q}^{\lambda}(Z_{q}^{\lambda})^{4}N_{q\lambda}^{0} \int dy_{\mathbf{k}} \Big[(f_{0}(y_{\mathbf{k}})) \left(1 - f_{0}(y_{\mathbf{k}} + Z_{q}^{\lambda})\right) \Big] \\ &= \frac{m_{F}}{24\pi^{4}\hbar^{3}n_{e}} \frac{1}{\rho} \left(\frac{k_{B}T}{\hbar} \right)^{5} \Phi_{\Omega}^{\lambda} \cdot J_{eph(\delta f)}(Z_{D}^{\lambda}), \\ \Phi_{\Omega}^{\lambda} &= \left\langle \frac{(E_{eff}^{\lambda})^{2}}{[S^{\lambda}(\theta, \phi)]^{5}} \right\rangle = \int_{0}^{\pi} \sin(\theta) d\theta \int_{0}^{2\pi} d\varphi \frac{(E_{eff}^{\lambda})^{2}}{[S^{\lambda}(\theta, \phi)]}, \\ q_{T}^{\lambda} &= (k_{B}T)/(\hbar S^{\lambda}(\theta, \phi)), \\ J_{eph(\delta f)}^{\lambda} &= J_{phe(\delta f)}(Z_{D}^{\lambda}) = \int_{0}^{Z_{D}^{\lambda}} dZ_{q}^{\lambda}(Z_{q}^{\lambda})^{4}N_{q\lambda}^{0} \\ &\times \int dy_{\mathbf{k}} \Big[(f_{0}(y_{\mathbf{k}})) \left(1 - f_{0}(y_{\mathbf{k}} + Z_{q}^{\lambda})\right) \Big] \\ \nu_{eph(g)}^{\lambda(B)} &= \nu_{phe(g)}^{\lambda(B)} &= \frac{m_{F}}{24n_{e}\pi^{4}\hbar^{3}} \int d\Omega_{q}(q_{T}^{\lambda})^{5} |C_{0}^{\lambda}| \\ &\times \int_{0}^{Z_{q}^{\lambda}} dZ_{q}^{\lambda} Z_{q}^{\lambda} \Big\{ N_{q\lambda}^{0}(N_{q\lambda}^{0} + 1) \int dy_{\mathbf{k}} \Big[f_{0}(y_{\mathbf{k}}) - f_{0}(y_{\mathbf{k}} + Z_{q}^{\lambda}) \Big] \Big\} \\ &= \frac{m_{F}}{24n_{e}\pi^{4}\hbar^{3}} \frac{1}{\rho} \left(\frac{k_{B}T}{\hbar} \right)^{5} \Phi_{\Omega}^{\lambda} \cdot J_{phe(g)}(Z_{D}^{\lambda}), \\ J_{phe(g)}(Z_{D}^{\lambda}) &= \int_{0}^{Z_{qD}^{\lambda}} dZ_{q}^{\lambda} Z_{q}^{\lambda^{4}} \Big\}$$
(13)

Гидродинамическое приближение позволяет нам ввести функции распределения наиболее эффективных фононов для в электрон-фононных и фонон-электронных процессов рассеяния:

$$\Phi_{eph(\delta f)}(Z_q^{\lambda}) = (Z_q^{\lambda})^4 N_{q\lambda}^0 \int dy_{\mathbf{k}} \bigg[\Big(f_0(y_{\mathbf{k}}) \big(1 - f_0(y_{\mathbf{k}} + Z_q^{\lambda}) \big) \Big) \bigg],$$

$$\Phi_{phe(g)}(Z_q^{\lambda}) = (Z_q^{\lambda})^4 N_{q\lambda}^0 (N_{q\lambda}^0 + 1)$$

$$\times \int dy_{\mathbf{k}} \bigg[f_0(y_{\mathbf{k}}) - f_0 \big(y_{\mathbf{k}} + Z_q^{\lambda} \big) \bigg]. \quad (14)$$

Не трудно убедится из формул (14), что функции наиболее эффективных для электрон-фононных $\Phi_{eph(\delta f)}(Z_q^{\lambda})$ и фонон-электронных $\Phi_{phe(g)}(Z_q^{\lambda})$ процессов рассеяния совпадают. Поэтому скорости релаксации импульса в электрон-фононных и фонон-электронных процессах

Рис. 2. Функции распределения наиболее эффективных фононов от параметра Z_q^{λ} : кривая $I - \Phi_{eph(el)}(Z_q^{\lambda}) = (Z_q^{\lambda})^{4N_q^{\lambda}}$ для упругого рассеяния электронов, кривая $2 - \Phi_4(Z_q^{\lambda}) = (Z_q^{\lambda})^4 N_q^{\lambda} (N_q^{\lambda} + 1)$ (для теплоемкости), кривая $3 - \Phi_{eph(\delta f)}(Z_q^{\lambda})$ для неупругого рассеяния электронов, пунктирная кривая $4 - \Phi_5(Z_q^{\lambda}) = (Z_q^{\lambda})^5 N_q^{\lambda} (N_q^{\lambda} + 1)$ определяет распределение фононов при решении задачи вариационным методом [8-12], кривая $5 - для \Phi_6(Z_q^{\lambda}) = (Z_q^{\lambda})^6 N_q^{\lambda} (N_q^{\lambda} + 1)$ фонон-фононных процессов переброса.

рассеяния оказывается равными: $v_{eph(\delta f)}^{\lambda}(k_F) = v_{phe(g)}^{\lambda(B)}$. При этом интегральные части уравнений баланса (10) и (11) будут равны и пропорциональны разности дрейфовых скоростей электронов и фононов:

$$m_F n_t \sum_{\lambda} v_{eph(\delta f)}^{\lambda}(k_F) \Big\{ \mathbf{u}_e^{\alpha} - \mathbf{u}_{\lambda}^{\alpha} \Big\}.$$
(15)

Таким образом, если скорости дрейфа электронов и фононов совпадают, то электрон-фононное взаимодействие не вносит вклад релаксацию импульса электронов и фононов.

Рассмотрим роль неупругости электрон-фононной релаксации в металлах. В монографиях [24,25] полагалось, что неупругостью электрон-фононного рассеяния в металлах можно пренебречь, поскольку энергия Ферми гораздо больше энергии фонона $\hbar \omega_a^{\lambda}$ и $k_B T$. В монографиях Займана [14,16] утверждалось, что, поскольку энергия падающего и рассеянного фонона лежат в пределах теплового размытия энергии Ферми, то они отличаются на величину порядка $k_B T$, которая гораздо меньше ε_F , поэтому можно пренебречь их различием. Естественно, что энергии Ферми є в металлах при гелиевых температурах на 4-5 порядков больше энергии термически возбужденных фононов $\hbar \omega_a^{\lambda}$ и $k_B T$, однако эти соображения не имеют отношения к критерию учета или пренебрежения неупругостью электрон-фононного рассеяния. Дело в том, что в интегралы электрон-фононных столкновений входят функции Ферми $f_0(\varepsilon_{\mathbf{k}} \pm \hbar \omega_q^{\lambda})$. Параметр неупругости $Z_a^{\lambda} = \hbar \omega_a^{\lambda} / k_B T$ должен сравниваться не с отношением

 $|\varepsilon_F/(k_BT)$, а с величиной $y_k = (\varepsilon_k - \varepsilon_F)/(k_BT)$. Для электронов на уровне Ферми $y_k = 0$, а в пределах теплового размытия уровня Ферми $|k_k| \le 1$. Релаксация импульса электронов обеспечивается всеми термически активированными фононами, а их распределение определяется функциями распределения наиболее эффективных для электрон-фононной релаксации $\Phi_{eph(\delta f)}(Z_q^{\lambda}) = \Phi_{phe(g)}(Z_q^{\lambda})$ (см. (14)). Как видно из рис. 2, эта функция (кривая 1) достигает максимума при $Z_q^{\lambda} = 5$ и быстро убывает при $Z_q^{\lambda} > 12$ за счет функции распределения Планка. Следует отметить, что она практически совпадает со штриховой кривой 4, которая определяет выражение для функции распределения наиболее эффективных фононов $\Phi_5(Z_q^{\lambda})$ при решении задачи вариационным методом (см. [5-10], а также рис. 2, кривые 3, 4). Пренебрегая неупругостью электрон-фононного рассеяния $Z^\lambda_q o 0$, мы получаем $\Phi_{eph(el)}(Z^\lambda_q)^4 N^\lambda_q$ (см. рис. 2, кривая 2). Расчет интегралов по Z_q^{λ} при низких температурах дает $J^{\lambda}_{eph(\delta f)}=124.4$, а в упругом приближении $J_{eph(el)}^{\lambda} = 24.9$. Таким образом, учет неупругости электрон-фононного рассеяния приводит к увеличению электросопротивления в 5 раз, по сравнению упругим приближением. Следует отметить, что для теплоемкости функция распределения термически активированных фононов, согласно [14-16], определяется выражением $\Phi_{tepl}(Z_q^{\lambda}) = (Z_q^{\lambda})^4 N_q^{\lambda}(N_q^{\lambda} + 1)$. Она достигает максимума при $Z_q^{\lambda} = 4$ и отлична от нуля в интервале $1 < Z_q^{\lambda} < 9$ (см. рис. 2, кривая 2). Итак, при низких температурах наиболее актуальные для электросопротивления фононы распределены в интервале $1 < Z_q^\lambda < 12$ с максимумом при $Z_q^\lambda \approx 5$. Для них неравенство $Z_q^{\lambda} \ll 1$ не выполняется. Более того, для актуальных фононов в области теплового размытия уровня Ферми $|y_k| \leq 1$ выполняется противоположное неравенство: $y_k = (\varepsilon_k - \varepsilon_F)/(k_B T) \ll Z_q^{\lambda}$. Поэтому основной вклад в электросопротивление при низких температурах вносят не "вертикальные" переходы $\hbar \omega_a^\lambda \approx k_B T$ или "горизонтальные" $\hbar \omega_a^\lambda \gg k_B T$ переходы по терминологии Займана [14,16], а "косые" переходы, для которых $k_BT \leq \hbar \omega_q^\lambda \leq 12k_BT$ (см. рис. 3). Итак, гидродинамическое приближение позволяет корректно учесть неупругость электрон-фононного рассеяния в металлах.

Для рассеяния электронов на примесях имеем:

$$\frac{1}{V}\sum_{\mathbf{k},\sigma}\hbar\mathbf{k}I_{ei}(f_{\mathbf{k}}) = -\frac{1}{V}\sum_{\mathbf{k},\sigma}\hbar\mathbf{k}(\hbar\mathbf{k}\mathbf{u})\nu_{ei}(k)\left(\frac{\partial f_{0}}{\partial\varepsilon_{k}}\right)$$
$$= -\mathbf{u}^{\alpha}m_{F}n_{e}\cdot\nu_{ei}(k_{F}).$$
(16)

Из уравнений (7) и (8) для полных уравнений баланса импульса в изотермических условиях $\nabla_{\alpha} T(r) = 0$ получим систему четырех алгебраических уравнений для

скоростей дрейфа:

$$e\mathbf{E}_{\alpha}n_{e} = m_{F}n_{e}\left[\nu_{ei}(k_{F})\mathbf{u}_{e}^{\alpha} + \sum_{\lambda}\nu_{eph(\delta f)}^{\lambda}(k_{F})\left\{\mathbf{u}_{e}^{\alpha} - \mathbf{u}_{\lambda}^{\alpha}\right\}\right] - \mathbf{u}_{\lambda}^{\alpha}R_{\lambda} + m_{F}n_{e}\left(\mathbf{u}_{e}^{\alpha} - \mathbf{u}_{\lambda}^{\alpha}\right)\nu_{phe(\delta f)}^{\lambda}()k_{F} = 0.$$
(17)

Из (17) выразим скорость дрейфа фононов через дрейфовую скорость электронов:

$$\mathbf{u}_{\lambda}^{\alpha} = \mathbf{u}_{e}^{\alpha} \frac{m_{F} n_{e}^{\alpha} v_{phe(\delta f)}^{\lambda(2)}(k_{F})}{\left\{ R_{\lambda} + m_{F} n_{e} v_{phe(g)}^{\lambda(B)}(k_{F}) \right\}}$$
$$= \mathbf{u}_{e}^{\alpha} \frac{1}{\left\{ 1 + R_{\lambda}/m_{F} n_{e} v_{phe(g)}^{\lambda(B)}(k_{F}) \right\}}.$$
(18)

Как и должно быть: направление потока электронов совпадает с направлением потока фононов и противоположно направлению электрического тока. Очевидно, что при выполнении неравенства $\lfloor R_{\lambda}/(m_F n_e v_{phe(g)}^{\lambda(B)}) \rfloor \ll 1$ скорость дрейфа моды λ будет близка к скорости дрейфа электронов $\mathbf{u}_{\lambda}^{\alpha} \cong \mathbf{u}_{e}^{\alpha}$. Величина R_{λ} включает все неэлектронные механизмы релаксации импульса фононов: рассеяние на границах, дислокациях и в процессах фонон-фононного переброса:

$$R_{\lambda} = \frac{(k_B T)^4}{3(2\pi\hbar)^3} J_5(Z_q^{\lambda}) \left\langle \frac{\nu_{phB}^{\lambda}(\theta,\varphi)}{\left(S^{\lambda}(\theta,\varphi)\right)^5} \right\rangle$$

+ $\frac{\nu_{phd}^*(k_B T)^5}{\hbar 3(2\pi\hbar)^3} J_5(Z_q^{\lambda}) \left\langle \frac{1}{\left(S^{\lambda}(\theta,\varphi)\right)^5} \right\rangle$
+ $\frac{(k_B T)^7}{\hbar^3 3(2\pi)^3} A_U^{\lambda} \cdot \exp\left(-\frac{C_U^{\lambda}}{T}\right) \cdot J_6^{\lambda}(Z_D^{\lambda}) \left\langle \frac{1}{\left(S^{\lambda}(\theta,\varphi)\right)^5} \right\rangle.$ (19)

Скорости релаксации фононов $v_{phB}^{\lambda}(\theta, \varphi)$ при диффузном рассеянии на границах образцов с круглым, квадратным и прямоугольным сечениями определены в [17], величина $v_{phd}^{*\lambda}$ — в работах [24]. Для процессов переброса коэффициент C_U^{λ} определяется температурой Дебая для каждой моды: $C_U^{\lambda} \cong T_D^{\lambda}/\delta_{\lambda}$, где подгоночный параметр $\delta_{\lambda} \approx 2-3$, для оценки коэффициента A_U^{λ} мы пользуемся способом [17,31].

Фокусировка фононов и электросопротивление кристаллов калия

Из системы уравнений (17) найдем скорости дрейфа электронов и фононов:

$$\mathbf{u}_{e}^{\alpha} = \frac{e \mathbf{E}_{\alpha} m_{F}}{\tilde{\nu}_{eR}(k_{F})},$$
$$\tilde{\nu}_{eR}(k_{F}) = \left\{ \nu_{ei}(k_{F}) + \sum_{\lambda} \nu_{eph(\delta f)}^{(\lambda)}(k_{F}) \left[1 - \frac{1}{1 + K_{U}^{\lambda}} \right] \right\},$$
(20)

$$\mathbf{u}_{\lambda}^{\alpha} = \frac{e\mathbf{E}_{\alpha}m_{F}}{\tilde{\nu}_{eR}(k_{F})} \frac{m_{F}n_{e}^{\alpha}v_{phe(\delta f)}^{\lambda(2)}(k_{F})}{\left\{R_{\lambda} + m_{F}n_{e}v_{phe(g)}^{\lambda(B)}(k_{f})\right\}}$$
$$= \frac{e\mathbf{E}_{\alpha}m_{F}}{\tilde{\nu}_{eR}(k_{F})} \frac{1}{\left\{1 + K_{U}^{\lambda}\right\}},$$
$$K_{U}^{\lambda} = \left[R_{\lambda}/(m_{F}n_{e}v_{phe(g)}^{\lambda(B)}).\right]$$
(21)

Вычислим ток проводимости и определим электросопротивление кристаллов калия:

$$J = -|e|\mathbf{u}^{\alpha}n_{e} = -\frac{e^{2}n_{e}}{\tilde{\nu}_{eR}(k_{F}) \cdot m_{F}} \mathbf{E}_{\alpha},$$

$$\rho_{xx} = \frac{\tilde{\nu}_{eR}(k_{F}) \cdot m_{F}}{e^{2}n_{e}}$$

$$= \left(\frac{m_{F}}{e^{2}n_{e}}\right) \left[\sum_{\lambda} \frac{\nu_{eph(\delta f)}^{(\lambda)}(k_{F})K_{U}^{\lambda}}{1 + K_{U}^{\lambda}}\right].$$
(22)

Как видно из (22), весь эффект от частичной передачи неравновесного импульса от фононов к электронам определяется коэффициентом K_U^{λ} и сводится к перенормировке эффективной скорости релаксации электронов на фононах за счет резистивных механизмов релаксации фононов. Рассеяние на примесях обеспечивает выход электросопротивления на постоянное значение. Мы не будем рассматривать этот эффект, а проанализируем влияние релаксации фононов в резистивных процессах на обмен импульсом внутри электрон-фононной системы и электросопротивление кристаллов калия. Очевидно, что в случае слабого рассеяния фононов в неэлектронных механизмах релаксации $K_U^{\lambda} \ll 1$ электросопротивление кристаллов калия будет значительно меньше, чем дает теория Блоха–Грюнайзена:

$$\rho_{xx} \cong \left(\frac{m_F}{e^2 n_e}\right) \left[\sum_{\lambda} \nu_{eph(\delta f)}^{(\lambda)}(k_F) K_U^{\lambda}\right] \ll \rho_{xx}^{BG}$$
$$= \left(\frac{m_F}{e^2 n_e}\right) \left[\sum_{\lambda} \nu_{eph(\delta f)}^{(\lambda)}(k_F)\right].$$
(23)

В этом пределе доминируют нормальные процессы электрон-фононной релаксации как для электронов, так и для фононов. При этом большая часть импульса неравновесных электронов, переданная фононам, возвращается обратно в электронную систему. В итоге мы получаем довольно любопытный результат: в условиях сильного взаимного увлечения электронов и фононов электросопротивление уже не зависит от электронфононной релаксации, а будет полностью определяться резистивными механизмами релаксации фононов: рассеянием на границах, дислокациях и в процессах фононфононного переброса:

$$\rho_{xx} \cong \left(\frac{m_F}{e^2 n_e}\right) \sum_{\lambda} \nu_{eph(\delta f)}^{(\lambda)}(k_F) \left[R_{\lambda} / (m_F n_e \nu_{phe(g)}^{\lambda(B)}) \right] \\
= \left(\frac{1}{e^2}\right) \left[\sum_{\lambda} R_{\lambda} \right].$$
(24)

В этом скорости дрейфа фононов всех поляризаций равны и совпадают со скоростью дрейфа электронов. Они определяются скоростью релаксации импульса фононов в резистивных процессах рассеяния:

$$u_e^{\alpha} \approx u_{\lambda}^{\alpha} \approx \frac{eE_{\alpha}m_F}{\tilde{\nu}_{eR}(k_F)} \approx eE_{\alpha}m_F / \sum_{\lambda} R_{\lambda}.$$
 (25)

В противоположном предельном случае $K_U^{\lambda} \gg 1$ большая часть дрейфового импульса, полученного от электронов, релаксирует в резистивных процессах рассеяния внутри фононной системы. Этот случай реализуется при повышении температуры, когда доминируют процессы фонон-фононного переброса. Фононная система остается в равновесии, и мы переходим к приближению Блоха– Грюнайзена [5–8]:

$$\rho_{xx} \cong \left(\frac{m_F}{e^2 n_e}\right) \left[\sum_{\lambda} \nu_{eph(\delta f)}^{(\lambda)}(k_F) \left(1 - (K_U^{\lambda})^{-1}\right)\right]$$
$$\approx \left(\frac{m_F}{e^2 n_e}\right) \left[\sum_{\lambda} \nu_{eph(\delta f)}^{(\lambda)}(k_F)\right] = \rho_{xx}^{BG}.$$
(26)

В этом случае скорости дрейфа всех мод различны и гораздо меньше скорости дрейфа электронов:

$$\mathbf{u}_{e}^{\alpha} = \frac{e\mathbf{E}_{\alpha}m_{F}}{\tilde{\nu}_{eR}(k_{F})} \cong \frac{e\mathbf{E}_{\alpha}m_{F}}{\sum_{\lambda} \nu_{eph(\delta f)}^{(\lambda)}(k_{F})},$$
$$\mathbf{u}_{\lambda}^{\alpha} = \frac{e\mathbf{E}_{\alpha}m_{F}}{\tilde{\nu}_{eR}(k_{F})} \frac{1}{\{1+K_{U}^{\lambda}\}} \approx \frac{e\mathbf{E}_{\alpha}m_{F}}{K_{U}^{\lambda}\sum_{\lambda} \nu_{eph(\delta f)}^{(\lambda)}(k_{F})},$$
$$u_{e}^{\alpha}/K_{U}^{\lambda} \ll u_{e}^{\alpha}.$$
(28)

Проанализируем температурные зависимости коэффициента перенормировки эффективной скорости релаксации электронов на фононах K_U^{λ} . Как видно из рисунка 3, рассеяние фононов на границах образца не может обеспечить равновесие фононной системы: только малая часть неравновесного импульса, полученного фононами, релаксирует на границах, а большая часть возвращается обратно в электронную подсистему. Для кристаллов калия без дислокаций предельный случай $K_U^{\lambda} \ll 1$ реализуется для медленной t_2 -моды в интервале температур 1 K < T < 5 K, для *L*-фононов в интервале 1 K < T < 15 K (см. рис. 3, кривые 2, 2*a*). Поскольку при низких температурах в электросопротивлении доминирует медленная t2-мода, то для кристаллов калия предельный случай сильного взаимного увлечения может быть реализован только в интервале 1 K < T < 5 K. Как видно из рисунка 3, медленные t2-фононы значительно сильнее рассеиваются на дислокациях, чем L-фононы. Для кристаллов калия с минимальной концентрацией дислокаций $N_d = 0.03$ при $T < 15 \,\mathrm{K}$ коэффициент K_U^L гораздо меньше единицы (см. рис. 3, кривые 3). Поэтому для L-фононов может быть реализован случай сильного взаимного увлечения. В принятой нами модели мы

Рис. 3. Температурные зависимость коэффициента $K_U^{\lambda} = \left[R_{\lambda} / (m_F n_e v_{phe-g}^{\lambda(B)}) \right]$ в кристаллах калия лля *1, 2, 3, 4*) и медленных *t*₂-фононов продольных (кривые (кривые 1а, 2а, 3а, 4а). Кривые 1, 1а — для граничного рассеяния, кривые 2, 2а — для граничного рассеяния и процессов переброса, кривые 3, За — для рассеяния на границах, дислокациях с минимальной концентрацией $N_d = 0.03$ и в процессах переброса, кривые 4, 4*a* для рассеяния на границах, дислокациях с максимальной концентрацией N_d = 0.55 и в процессах переброса.

рассчитали температурные зависимости электросопротивления кристаллов калия с различной концентрацией дислокаций и сравнили результаты расчета с экспериментальными данными (см. рис. 4, кривые 1, 2, 3). Значения концентраций взяты из работ [16,20], в которых измерялась термоэдс, но не электросопротивление. Как видно из рисунка, для кристаллов калия с максимальной концентрацией дислокаций $N_d = 0.55$ температурные зависимости электросопротивления близки к рассчитанным в приближении Блоха-Грюнайзена. Для нее доминируют резистивные процессы рассеяния фононов: при низких температурах за счет дислокаций, а при высоких — за счет процессов переброса (см. рис. 3, кривые 4, 4*a*). Для t_2 -моды коэффициент $K_{II}^{t_2} \gg 1$. Практически весь импульс, поступающий от электронов в t2-моду, при низких температурах релаксирует на дислокациях, а при высоких — в процессах переброса. Для этих кристаллов соотношение вкладов в электросопротивление имеет вид: ρ_{e-ph}^{t2} : ρ_{e-ph}^{L} ; ρ_{e-ph}^{t1} = 0.94 : 0.035 : 0.025. Для них доминируют резистивные процессы рассеяния фононов: при низких температурах за счет дислокаций, а при высоких — за счет процессов переброса (см. рис. 3, кривые 4а). Для этой моды коэффициент $K_{II}^{t_2} \gg 1$. Поэтому t_2 -мода находится в равновесии, и для нее реализуется режим Блоха-Грюнайзена. Для кристаллов калия с минимальной концентрацией дислокаций $N_d = 0.03$ (с деформацией $\varepsilon = 0.027$) вклад медленной t2-моды в электросопротивление возрастает

Рис. 4. Температурные зависимости электросопротивления кристаллов калия: кривые 1, 1a, 1b, 1c — результаты для теории Блоха-Грюнайзена; кривые 2, 2a, 2b, 2c — для кристаллов с максимальной концентрацией дислокаций $N_d = 0.55$; кривые 3, 3a, 3b, 3c — для кристаллов с минимальной концентрацией дислокаций $N_d = 0.03$; кривые 1a, 2a, 3a — вклады L-фононов, кривые 1b, 2b, 3b — вклады медленных поперечных, кривые 1c, 2c, 3c — вклады быстрых квазипоперечных фононов. Символы — экспериментальные данные из работ [21,22,34,35].

до 95%, а соотношение вкладов имеет вид: ρ_{e-ph}^{t2} : ρ_{e-ph}^{L} ; $\rho_{e-ph}^{t1} = 0.95 : 0.01 : 0.04$. При этом вклад сдвиговой компоненты t_2 -моды возрастает от 32% в модели Блоха– Грюнайзена до 56%. Для этих кристаллов $K_u^L \approx 0.5$, и скорость релаксации *L*-фононов в неэлектронных механизмах рассеяния сравнима со скоростью релаксации на электронах. В связи с этим эффект взаимного увлечения слабо выражен. Он оказывает незначительное влияние на полное электросопротивление (см. рис. 4, кривые 1, 2).

Однако с повышением температуры вклад L-фононов в электросопротивление быстро возрастает и при $T > 30 \,\mathrm{K}$ становится больше вклада медленной t_2 -моды. При этом коэффициент становится гораздо больше единицы при $T > 40 \,\mathrm{K}$ (см. рис. 3 и 5). Следует отметить, что с повышением температуры главную роль начинают играть процессы фонон-фононного переброса, и при $T > 40 \,\mathrm{K}$ результаты расчета электросопротивления кристаллов калия с различной концентрацией дислокаций хорошо согласуются и с теорией Блоха-Грюнайзена и с результатами измерений для чистых образцов [21,22,32,33]. В модели Блоха Грюнайзена было показано, что при низких температурах T < 10 К вклад медленной t2-моды в электросопротивление оказался на порядок величины больше, чем вклад продольных фононов, соотношение вкладов имеет вид: ρ_{e-ph}^{t2} : ρ_{e-ph}^{L} ; $\rho_{e-nh}^{t1} = 0.9: 0.08: 0.02$ (см. [20]). Доминирующая роль медленной поперечной моды в электросопротивлении кристаллов калия при низких температурах обусловлена

тем, что она имеет минимальную фазовую скорость и, соответственно, максимальный волновой вектор при фиксированной энергии фонона (см. [20], рис. 1) и в связи с этим она вносит максимальный вклад в электросопротивление. Как видно из формулы (12), отношение коэффициентов $\Phi_{\Omega}^{\lambda}(T)$ для медленной t_2 -моды и *L*-фононов имеет вид:

$$\Phi_{\Omega}^{t2}/\Phi_{\Omega}^{L} = \left\langle \left(E_{eff}^{t2}(\theta, \varphi) \right)^{2} \right\rangle / \left\{ S^{t2}(\theta, \varphi) \right\}^{6} / \left\langle \left(E_{eff}^{L}(\theta, \varphi) \right)^{2} / \left\{ S^{L}(\theta, \varphi) \right\}^{6} \right\rangle.$$
(29)

Квадрат эффективной константы связи продольных фононов с электронами $(E_{eff}^L)^2$ в 25 раз больше, чем для медленной поперечной моды. Однако в направлениях типа [110] фазовая скорость t2-моды в 4 раза меньше, чем для продольных фононов, а отношение усредненных значений дает $\langle S^L \rangle / \langle S^{t2} \rangle = 2.54$. Шестая степень этого отношения дает величину на два порядка большую. В результате вычисления угловых средних в формуле (29) имеем: $\Phi_{\Omega}^{t2}/\Phi_{\Omega}^{L} \cong 11.5$. Для термически возбужденных фононов с одной и той же энергией волновой вектор *t*₂-моды в 2.5 раза больше, чем для продольных фононов, поэтому их вклад в релаксацию электронного импульса на порядок величины превышает вклад продольных фононов. Следует отметить значительную роль релаксация электронов на сдвиговой компоненте t2-моды, которая обеспечивает 32% электросопротивления кристаллов калия и в 4 раза превышает вклад продольных фононов. Однако с повышением температуры вклад продольных

Рис. 5. Температурные зависимости относительных вкладов в электросопротивление кристаллов калия $\rho_{e-ph}^{\lambda}(T)/\rho_{e-ph}(T)$ для медленных квазипоперечных фононов — кривые 2, 2a, 2b, для *L*-фононов — 1, 1a, 1b, для сдвиговой компоненты t_2 -моды — кривые 3, 3a, 3b; для кристаллов с минимальной концентрацией дислокаций $N_d = 0.03$ — кривые 1, 2, 3, для кристаллов с максимальной концентрацией дислокаций $N_d = 0.55$ — кривые 1b, 2b, 3b, расчет согласно теории Блоха-Грюнайзена — кривые 1a, 2a, 3a.

фононов возрастает значительно быстрее, чем вклад медленной t_2 -моды и при температуре выше 30 K он уже преобладает (см. рис. 5). С дальнейшим повышением температуры при $T \ge T_D^L$ вклад продольных фононов доминирует и при комнатной температуре он достигает 82%, тогда как вклад медленной t_2 -моды уменьшается до 15%, а вклад быстрой поперечной моды составляет всего 3% (см. рис. 5).

Из сравнения результатов расчета с данными эксперимента [21,22,32,33] видно, что при температурах выше 40 К они хорошо согласуются (см. рис. 4). Это объясняется тем, что весь импульс получаемый фононами в нормальных процессах электрон-фононного рассеяния релаксирует внутри фононной системы главным образом за счет процессов фонон-фононного переброса. Эти процессы активируются при температурах порядка $\theta_D^{\lambda}/\gamma$, где $\gamma \sim (2-3)$. Этот результат свидетельствует, что учет влияния анизотропии упругой энергии на фононную систему, а также вклада сдвиговых волн в электрон-фононную релаксацию позволяют согласовать результаты расчета электросопротивления с данными [21,22,32,33] без использования подгоночных параметров. Однако с понижением температуры ниже 40 К расхождение данных эксперимента [21,22,32,33] с результатами расчета для образцов для образцов калия с различной концентрацией дислокаций возрастает и достигает максимума при T ~ 7-8 K. Это связано с тем, что процессы фонон-фононного переброса вымораживаются, но возрастает роль процессов электронфононного переброса, которые не учитываются в настоящей работе. Температура активации этих процессов составляет 10-20 К, а максимальную роль они играют в интервале 5-10 К [34,35]. Согласно данным по термоэдс [18], а также анализу [35,36] процессы электронфононного переброса вымораживаются при температурах T < 4-5 K, а при T < 2 K уже доминируют нормальные процессы электрон-фононного рассеяния. Итак, при температурах ниже 30 К учет взаимного увлечения электронов и фононов приводит только к увеличению расхождения результатов расчета и экспериментальных данных. Для их согласования необходимо учитывать процессы электрон-фононного переброса. Очевидно, что анализ роли процессов электрон-фононного переброса с учетом анизотропии спектра фононов представляют самостоятельную проблему, требующую отдельного рассмотрения.

5. Заключение

Исследовано влияние фокусировки фононов на взаимное увлечение электронов и фононов в кристаллах калия. Основные результаты можно сформулировать следующим образом.

1. В предельном случае сильного взаимного увлечения электронов и фононов, когда доминируют нормальные процессы электрон-фононной релаксации как для электронов, так и для фононов электросопротивление будет значительно меньше, чем дает теория Блоха– Грюнайзена. Оно определяется резистивными механизмами рассеяния фононов: на границах, дислокациях и в процессах фонон-фононного переброса. В этом пределе (1) скорости дрейфа фононов всех поляризаций равны и близки к скорости дрейфа электронов; (2) они определяются суммарной скоростью релаксации фононов в резистивных процессах рассеяния.

2. В противоположном предельном случае, когда для фононов доминируют резистивные процессы рассеяния, то фононная система остается в равновесии. Мы имеем предельный случай теории Блоха–Грюнайзена [5–9]: электросопротивление определяется нормальными процессами электрон-фононной релаксации. В этом случае скорости дрейфа фононов для всех мод различны и гораздо меньше скорости дрейфа электронов.

3. Исследована роль неупругости электрон-фононной релаксации в условиях взаимного увлечения электронов и фононов. Определены функции распределения наиболее актуальных для релаксации импульса фононов механизмов рассеяния: в процессах электрон-фононной релаксации, а также для рассеяния фононов на границах, дислокациях и в процессах фонон-фононного переброса. Показано, что скорости релаксации импульса в электрон-фононных и фонон-электронных процессах рассеяния совпадают.

4. Проанализирована роль сдвиговых волн в электросопротивлении кристаллов калия. Показано, что релаксация электронов на сдвиговой компоненте медленной t_2 -моды в приближении Блоха–Грюнайзена при температурах $T \ll \Theta_D$ обеспечивает 32% полного электросопротивления, что в 4 раза превышает вклад *L*-фононов. В режиме сильного взаимного увлечения электронов и фононов для кристаллов калия с минимальной концентрацией дислокаций $N_d = 0.03$ вклад сдвиговой компоненты t_2 -моды в электросопротивление возрастает до 56%.

Очевидно, что теория электронного переноса в металлах нуждается в существенной переработке, связанной с учетом влияния анизотропии упругой энергии на динамические характеристики фононов.

Финансирование работы

Работа выполнена по плану РАН в рамках темы "Функция" № АААА-А19-119012990095-0.

Конфликт интересов

Авторы заявляют об отсутствии конфликта интересов.

Список литературы

- [1] Р.Н. Гуржи, А.И. Копелиович. УФН 133, 33 (1981).
- [2] И.Г. Ланг, С.Т. Павлов. ЖЭТФ 63, 1495 (1972).
- [3] И.Г. Кулеев. ФТТ 42, 1952 (2000).
- [4] Л.Э. Гуревич, И.Я. Коренблит. ФТТ 6, 856 (1962).

- [5] F. Bloch. Zs. Phys. **59**, 208 (1930).
- [6] E. Gruneisen. Ann. Phys. 40, 5, 543 (1941).
- [7] A. Sommerfeld, H. Bete. Elektronen Theorie der Mettale. Handbuch der Physik. Bd. 24/2 (1934).
- [8] A.H. Wilson. The Theory of Metals. Cambridge (1953).
- [9] J. Zyman. Electrons and Phonons. Oxford, N.Y. (1960).
- [10] F.J. Blatt. Physics of electron conductivity in solids. Mcgrawhill book company (1968).
- [11] J. Zyman. Principles of the theory of solids. Cambridge University Press (1972).
- [12] А.И. Ансельм. Введение в теорию полупроводников. Наука, М. (1978) 616 с.
- [13] И.И. Кулеев, И.Г. Кулеев. ЖЭТФ 156, 56 (2019).
- [14] I.I. Kuleyev, I.G. Kuleyev. J. Phys.: Condens Matter 31, 375701 (2019).
- [15] И.И. Кулеев, И.Г. Кулеев. ФММ 122, 83 (2021).
- [16] R. Fletcher. Phys. Rev. B 36, 3042 (1987).
- [17] И.Г. Кулеев, И.И. Кулеев, С.М. Бахарев, В.В. Устинов. Фокусировка фононов и фононный транспорт в монокристаллических наноструктурах. Изд-во УМЦ УПИ, Екатеринбург (2018). 256 с.
- [18] И.И. Кулеев, И.Г. Кулеев. ФММ 121, 1011 (2020).
- [19] J.M. Zyman. Phil. Mag. 4, 371 (1959).
- [20] I.G. Kuleyev, I.I. Kuleyev. Chin. J. Phys. 72, 351 (2021).
- [21] J.W. Ekin, B.W. Maxfield. Phys Rev. B 4, 4215 (1971).
- [22] T.C. Chi. J. Phys. Chem. Ref. Data 8, 339 (1979).
- [23] В.П. Силин. Введение в кинетическую теорию газов. Наука, М. (1971).
- [24] Х.М. Бикин, И.И. Ляпилин. Неравновесная термодинамика и физическая кинетика. УрО РАН, Екатеринбург (2009).
- [25] Г. Рёпке. Неравновесная статистическая механика. Мир, М. (1990).
- [26] Ф.И. Федоров. Теория упругих волн в кристаллах. Наука, М. (1965).
- [27] И.Г. Кулеев, И.И. Кулеев. ФТТ 49, 3, 422 (2007).
- [28] B. Truel, C. Elbaum, B.B. Chick. Ultrasonic methods in solid state physics. Academic Press, N.Y.–London (1969).
- [29] Ю.П. Кардона М. Основы физики полупроводников. Физматлит, М. (2002).
- [30] C. Herring, E. Vogt. Phys. Rev. 101, 944 (1956).
- [31] Р. Берман. Теплопроводность твердых тел. Мир, М. (1979).
- [32] D. Gugan. Proc. R. Soc. Lond. A 325, 223 (1971).
- [33] J.S. Dugdale. D. Gugan, Proc. R. Soc. Lond. A 270, 186 (1962).
- [34] M. Kaveh, N. Wiser. Phys. Rev. B 9, 4053 (1974).
- [35] F.J. Blatt, P.A. Schroeder, C.L. Foiles, D. Greig. Thermoelectric power of metals. Plenum press, N. Y.–London (1976).
- [36] P. Trofimenkoff, J.W. Ekin. Phys. Rev. B 4, 2392(1971).

Редактор Т.Н. Василевская