07.3 Двухуровневая лазерная генерация в инжекционных микродисках на основе квантовых точек InAs/InGaAs

© И.С. Махов¹, А.А. Бекман², М.М. Кулагина², Ю.А. Гусева², Н.В. Крыжановская¹, А.М. Надточий¹, М.В. Максимов³, А.Е. Жуков¹

¹ Национальный исследовательский университет "Высшая школа экономики", Санкт-Петербург, Россия

² Физико-технический институт им. А.Ф. Иоффе РАН, Санкт-Петербург, Россия

³ Санкт-Петербургский национальный исследовательский Академический университет им. Ж.И. Алфёрова РАН, Санкт-Петербург, Россия

E-mail: makhoviv@gmail.com

Поступило в Редакцию 29 апреля 2022 г. В окончательной редакции 4 мая 2022 г. Принято к публикации 4 мая 2022 г.

> В широком диапазоне инжекционных токов исследованы спектральные зависимости интенсивности электролюминесценции микродискового лазера диаметром 31 µm с активной областью на основе квантовых точек InAs/InGaAs, работающего в непрерывном режиме генерации. Впервые в инжекционном микродисковом лазере продемонстрирована генерация одновременно через основное и возбужденное состояния квантовых точек при высоких уровнях накачки. При слабых уровнях накачки лазерная генерация протекает через основной оптический переход квантовых точек.

> Ключевые слова: микролазер, квантовые точки, двухуровневая генерация, основное состояние, возбужденное состояние.

DOI: 10.21883/PJTF.2022.12.52678.19242

Последнее время значительное внимание уделяется исследованиям и разработке микродисковых и микрокольцевых лазеров с высокодобротными модами шепчущей галереи (МШГ) на основе полупроводниковых соединений A³B⁵ [1]. Такие микролазеры могут найти применение, в частности, в качестве светоизлучающих компонентов в фотонных интегральных схемах. В качестве активной области таких микролазеров могут выступать самоорганизованные квантовые точки (КТ), использование которых позволяет достичь низких значений пороговых плотностей тока [2], стабильной работы при повышенных температурах [3] и высоких предельных частот прямой модуляции [4]. Кроме того, в микролазерах с КТ в качестве активной области существенно нивелирована чувствительность к различного рода эпитаксиальным дефектам и поверхностной рекомбинации [5], что позволяет создавать микролазеры, монолитно или гибридно интегрированные с кремнием [6].

Для лазеров на КТ характерно насыщение оптического усиления, достижимого на основном оптическом переходе. Как было показано ранее для полосковых лазеров на основе КТ, если оптические потери в резонаторе не превышают насыщенного усиления, генерация начинается на длине волны основного перехода [7]. Однако даже в этом случае с ростом тока инжекции выше порога генерации заполнение возбужденных состояний КТ будет возрастать, и в определенный момент возникнет дополнительная линия генерации через возбужденные состояния. Дальнейшее увеличение интенсивности накачки приведет к полному гашению генерации через основной переход, и генерация продолжится только через возбужденные состояния [8]. Двухуровневая генерация, т. е. одновременное излучение сильно разнесенных по длине волны лазерных линий основного и возбужденного состояний, может найти практическое применение для оптической передачи данных со спектральным кодированием информации. В микролазерах на основе КТ, работающих при оптической накачке, ранее наблюдался перескок длины волны генерации на возбужденный оптический переход при уменьшении размера резонатора [9]. Насколько нам известно, о наблюдении генерации через возбужденный переход или о двухчастотной лазерной генерации в инжекционных микролазерах с КТ до настоящего времени не сообщалось.

Лазерная гетероструктура была выращена методом молекулярно-пучковой эпитаксии на подложке *n*⁺-GaAs на буферном слое n^+ -GaAs толщиной 500 nm. КТ структуры были сформированы осаждением 2.5 монослоев InAs с последующим осаждением In_{0.15}Ga_{0.85}As (5 nm). Всего в структуре содержалось десять рядов КТ, разделенных между собой спейсерными слоями нелегированного GaAs толщиной 35 nm. Слои с квантовыми точками были заключены между широкозонными эмиттерными слоями Al_{0.25}Ga_{0.75}As n- и p-типа легирования толщиной 2.5 и 1.5 µm соответственно. Кроме того, в структуре имелся сильнолегированный контактный слой *p*⁺-GaAs толщиной 200 nm. Микродисковые резонаторы из лазерной гетероструктуры диаметром около 31 µm и высотой около $6\,\mu m$ (рис. 1, *a*) были сформированы посредством фотолитографии и плазмохимического травления. Металлические контакты круглой формы к слою *p*⁺-GaAs были сформированы на вершинах микрорезонаторов с

Рис. 1. *а* — полученное методом сканирующей электронной микроскопии изображение микрорезонатора; *b* — спектры спонтанной люминесценции квантовых точек InAs/InGaAs, измеренные при различных токах инжекции (указаны на рисунке). На вставке показано разложение на контуры Гаусса (штриховые линии) спектра люминесценции, измеренного при токе 5 mA.

помощью металлизации AgMn/Ni/Au. Сплошной металлический *n*-контакт AuGe/Ni/Au был нанесен со стороны предварительно утоньшенной подложки.

Для измерений выколотая пластина с несколькими микрорезонаторами припаивалась на медный теплоотвод. Электрическое соединение с *p*-контактом микролазеров осуществлялось с помощью микрозонда Be-Cu. Питание микролазеров осуществлялось стабилизированным источником/измерителем постоянного тока Keithley 2401. Излучение от микролазеров собиралось микрообъективом Mitutoyo MPlan x50 и линзой направлялось в оптическое волокно. Измерение спектров люминесценции микролазеров проводилось при комнатной температуре с использованием оптического анализатора спектра Yokogawa AQ6370C (спектральное разрешение 0.2 nm).

В ходе проведения исследований были измерены спектры электролюминесценции квантовых точек InAs/InGaAs в широком диапазоне токов инжекции. В спектрах спонтанной люминесценции (рис. 1, b) наблюдается несколько интенсивных пиков, типичных для квантовых точек InAs/InGaAs [10]. Разложение полосы люминесценции, измеренной при токе 5 mA, на контуры Гаусса (см. вставку к рис. 1, b) позволяет более явно проследить наличие нескольких полос излучения, связанных с оптическими переходами с участием основного и трех возбужденных состояний в KT, а также полосы, связанной с люминесценцией квантовой ямы InGaAs, покрывающей слои с KT (отмечены на рис. 1, b стрелками GS, ES1, ES2, ES3 и InGaAs соответственно).

Начало лазерной генерации в микролазере характеризуется появлением узких высокоинтенсивных линий стимулированного излучения вблизи длины волны 1250 nm (что соответствует основному переходу в КТ) с пороговым значением тока инжекции около 11 mA. В спектрах лазерного излучения, измеренных вблизи

Рис. 2. Спектры люминесценции микродискового лазера, измеренные вблизи порога лазерной генерации с участием основного (a) и первого возбужденного (b) состояний квантовых точек. Кривые на обоих фрагментах смещены по вертикальной оси для наглядности, масштаб осей различен.

Рис. 3. *а* — зависимость спектрального положения наиболее интенсивных лазерных мод от тока инжекции. На вставке показаны спектры излучения микродискового лазера при различных токах инжекции. Кривые смещены по вертикальной оси для наглядности. *b* — зависимости от тока инжекции интенсивности стимулированного излучения, определенной как площадь "под кривой", для лазерных мод при переходах с участием основного (кружки) и возбужденного (квадраты) состояний квантовых точек.

порога генерации (рис. 2, *a*), наблюдается несколько МШГ с характерным межмодовым интервалом около 4.3 nm. Рост тока инжекции приводит также к незначительному (0.081 nm/mA) смещению моды в длинноволновую сторону (рис. 3, *a*), что связано с саморазогревом микролазера. Используя экспериментально полученный коэффициент для спектрального смещения моды с температурой 0.075 nm/K, можно определить коэффициент, отражающий величину нагрева микролазера с током, равный около 1.1 К/mA. При дальнейшем увеличении тока происходит последовательное переключение лазерной генерации между модами в длинноволновую сторону, а длина волны остается в пределах основного перехода.

При больших инжекционных токах помимо лазерной генерации на основном переходе в спектре возникает лазерная линия вблизи длины волны 1191 nm, что соответствует первому возбужденному переходу КТ. Спектры излучения микродискового лазера, измеренные вблизи порога лазерной генерации для возбужденного перехода в КТ, представлены на рис. 2, *b*. Пороговый ток двухуровневой генерации составляет около 46 mA. Лазерная генерация с участием возбужденных состояний КТ также характеризуется присутствием нескольких МШГ в спектре излучения с характерным межмодовым интервалом около 3.8 nm.

В диапазоне токов 46–50 mA одновременно сосуществуют две линии стимулированного излучения, вызванные переходами с участием основного и возбужденного состояний квантовых точек (рис. 3, *a* и *b*). При токах, незначительно превышающих порог двухуровневой генерации, лазерные линии основного и возбужденного переходов имеют сопоставимую интенсивность. При токах инжекции выше 50 mA существует только линия стимулированного излучения, вызванная возбужденными переходами в квантовых точках (вставка на рис. 3, a, а также рис. 3, b).

Относительно узкий диапазон токов, в котором наблюдается двухуровневая генерация, мы связываем с саморазогревом микролазера, достигающим 60 градусов относительно комнатной температуры при высоких уровнях инжекции. Представляется логичным, что уменьшение разогрева лазера вследствие улучшения отвода тепла от активной области, выполненное, например, посредством монтажа микролазера *p*-контактом вниз или же посредством переноса микролазера на кремниевую подложку [11], приведет к более позднему загибу ватт-амперной характеристики микролазера, а также расширению диапазона токов, в котором наблюдается одновременная лазерная генерация с участием основного и возбужденного состояний квантовых точек.

Таким образом, в работе представлены результаты исследований, впервые экспериментально демонстрирующие возможность достижения двухчастотной лазерной генерации с участием основного и возбужденного состояний квантовых точек в инжекционных микродисковых лазерах.

Финансирование работы

Исследование характеристик структур проведено в рамках Программы фундаментальных исследований НИУ ВШЭ. Изготовление структур выполнено при поддержке Министерства науки и высшего образования РФ в рамках проекта 0791-2020-0002.

Конфликт интересов

Авторы заявляют, что у них нет конфликта интересов.

Список литературы

- A.E. Zhukov, N.V. Kryzhanovskaya, E.I. Moiseev, M.V. Maximov, Light Sci. Appl., 10, 80 (2021). DOI: 10.1038/s41377-021-00525-6
- E.I. Moiseev, N.V. Kryzhanovskaya, F.I. Zubov, M.S. Mikhailovskii, A.N. Abramov, M.V. Maximov, M.M. Kulagina, Yu.A. Guseva, D.A. Lifshits, A.E. Zhukov, Semiconductors, 53 (14), 1888 (2019). DOI: 10.1134/S106378261914015X
- [3] N.V. Kryzhanovskaya, E.I. Moiseev, Yu.V. Kudashova, F.I. Zubov, A.A. Lipovskii, M.M. Kulagina, S.I. Troshkov, Yu.M. Zadiranov, D.A. Lifshits, M.V. Maximov, A.E. Zhukov, Electron. Lett., **51** (17), 1354 (2015). DOI: 10.1049/el.2015.2325
- Y. Wan, D. Inoue, D. Jung, J.C. Norman, C. Shang,
 A.C. Gossard, J.E. Bowers, Photon. Res., 6 (8), 776 (2018).
 DOI: 10.1364/PRJ.6.000776
- [5] A. Fiore, M. Rossetti, B. Alloing, C. Paranthoën, J.X. Chen,
 L. Geelhaar, H. Riechert, Phys. Rev. B, 70 (20), 205311 (2004). DOI: 10.1103/PhysRevB.70.205311
- [6] A.E. Zhukov, N.V. Kryzhanovskaya, E.I. Moiseev, A.S. Dragunova, M. Tang, S. Chen, H. Liu, M.M. Kulagina, S.A. Kadinskaya, F.I. Zubov, A.M. Mozharov, M.V. Maximov, Materials, 13 (10), 2315 (2020). DOI: 10.3390/ma13102315
- [7] A. Marcus, J.X. Chen, C. Paranthoën, A. Fiore, Appl. Phys. Lett., 82 (12), 1818 (2003). DOI: 10.1063/1.1563742
- [8] M.V. Maximov, Yu.M. Shernyakov, F.I. Zubov, A.E. Zhukov, N.Yu. Gordeev, V.V. Korenev, A.V. Savelyev, D.A. Lifshits, Semicond. Sci. Technol., 28 (10), 105016 (2013). DOI: 10.1088/0268-1242/28/10/105016
- [9] M.V. Maximov, N.V. Kryzhanovskaya, A.M. Nadtochiy, E.I. Moiseev, I.I. Shostak, A.A. Bogdanov, Z.F. Sadrieva, A.E. Zhukov, A.A. Lipovskii, D.V. Karpov, J. Laukkanen, J. Tommila, Nanoscale Res. Lett., 9 (1), 3266 (2014). DOI: 10.1186/1556-276X-9-657
- [10] M.V. Maximov, A.M. Nadtochiy, S.A. Mintairov, N.A. Kalyuzhnyy, N.V. Kryzhanovskaya, E.I. Moiseev, N.Yu. Gordeev, Yu.M. Shernyakov, A.S. Payusov, F.I. Zubov, V.N. Nevedomskiy, S.S. Rouvimov, A.E. Zhukov, Appl. Sci., **10** (3), 1038 (2020). DOI: 10.3390/app10031038
- [11] F. Zubov, M. Maximov, E. Moiseev, A. Vorobyev, A. Mozharov, Yu. Berdnikov, N. Kalyuzhnyy, S. Mitairov, M. Kulagina, N. Kryzhanovskaya, A. Zhukov, Opt. Lett., 46 (16), 3853 (2021). DOI: 10.1364/OL.432920