Многочастотные синхронные автоколебания в волоконных лазерах с оптомеханическими микроосцилляторами

© Ф.А. Егоров

01.5:09.5

Фрязинский филиал Института радиотехники и электроники им. В.А. Котельникова РАН, Фрязино, Московская обл., Россия

E-mail: egorov-fedor@mail.ru

Поступило в Редакцию 28 марта 2022 г. В окончательной редакции 29 апреля 2022 г. Принято к публикации 1 мая 2022 г.

В эрбий-иттербиевых волоконных лазерах с нелинейными зеркалами на основе наборов оптомеханических микроосцилляторов реализованы режимы многочастотных (до пяти частот) синхронных автоколебаний. Микроосцилляторы выполнены в виде кремниевых микробалок, формирующих решетку с квазиэквидистантным спектром мод упругих колебаний, возбуждаемых за счет давления лазерного излучения. Выявлена существенная зависимость автоколебаний от спектральных свойств зеркал оптического резонатора, которая объяснена в рамках представлений о неоднородном уширении в активном волокне лазера.

Ключевые слова: волоконный лазер, автоколебания, оптомеханический микроосциллятор.

DOI: 10.21883/PJTF.2022.12.52673.19203

В резонаторах Фабри-Перо с оптомеханическими микроосцилляторами (OMO) в роли зеркал фотоиндуцированные упругие деформации (колебания) в ОМО, связанные с обменом энергией между оптическими и механическими модами, приводят к большому разнообразию динамики таких резонаторов [1], в частности к автоколебаниям с частотой F, близкой к собственной частоте f упругих колебаний ОМО. При этом взаимодействие оптического излучения одновременно с несколькими микроосцилляторами приводит к ряду новых интересных явлений [2], позволяющих расширить области применения таких систем. В последние годы значительное развитие получило логичное продолжение этих исследований — лазерная оптомеханика, связанная с изучением взаимодействия лазерного излучения с ОМО в активных (лазерных) резонаторах [3-5]. В них с учетом особенностей лазерной динамики могут быть реализованы разного рода внутренние резонансы, существенно определяющие режимы генерации и характеристики лазерного излучения. В связи с этим особый интерес представляют волоконные лазеры (FL), обладающие наряду с уникальными особенностями широким разнообразием динамических режимов [6]. В лазерных системах FL-OMO [5], в частности, в условиях резонанса ($f \approx f_{rel}$ — частота релаксационных колебаний в FL) возможны синхронные автоколебания (SO), приводящие к модуляции амплитуды, частоты, поляризации генерируемого излучения с частотой упругих колебаний ОМО $F = (1 + \alpha)f$, $\alpha \ll 1$. С учетом зависимости мод упругих колебаний от внешних воздействий на ОМО это открывает возможности для создания FL с управляемой, комбинированной модуляцией параметров излучения, а также автогенераторных волоконно-оптических датчиков, обладающих большим динамическим диапазоном и высокой точностью измерений [1,7,8].

Важной особенностью автоколебательных систем со многими степенями свободы является возможность реализации в них многочастотных SO, приводящих к уменьшению флуктуаций частот автоколебаний [9], что позволяет расширить функциональные возможности и повысить точность устройств на основе подобных систем. Отметим, что на данный момент кроме работы [10], в которой в волоконном лазере с микроосцилляторами впервые были осуществлены режимы двухчастотных автоколебаний, насколько нам известно, других исследований многочастотных SO в лазерах с ОМО не имеется, что объясняет актуальность настоящей работы, являющейся по существу развитием [10]. С учетом особой научнопрактической значимости эрбий-иттербиевых FL [6] исследования здесь проведены с помощью указанных FL и многочастотных ОМО, изготовленных в виде многоэлементной планарной кремниевой структуры, играющей роль зеркала (M) в лазерном резонаторе (рис. 1).

В рассматриваемой лазерной системе FL–OMO генерируемое излучение ($\lambda_s \approx 1.54 \,\mu$ m) взаимодействует одновременно с несколькими микроосцилляторами, выполненными в виде упругих колебательных элементов — кремниевых микробалок с двусторонним жестким защемлением на опорах (MB_i, *i* = 1–13), образующих осесимметричную решетку. MB_i имеют одинаковую толщину *h* $\approx 6 \,\mu$ m, но разные длины и ширины (*l_i*, *b_i*). Лазерное возбуждение поперечных волн в MB_i, сформированных на общей кремниевой эпитаксиальной пластине с помощью анизотропного травления, происходит за счет силы давления света (в отличие от фототермического эффекта в [10]) благодаря высокому коэффициенту отражения ($R_s \approx 0.9$) многослойной (SiO₂ + ZrO₂)

интерференционной пленки, нанесенной на поверхности МВ_i. Отражающая поверхность ОМО расположена в фокальной плоскости автоколлимационной системы с цилиндрической линзой, формирующей линейное световое пятно (LLS) с размерами (D; d) \approx (380; 12 μ m), которое в зависимости от угла ориентации φ и расстояния l_0 до его центра может пересекать до пяти микробалок, взаимодействующих с лазерным излучением. Необходимая взаимная ориентация лазерного пучка и ОМО обеспечивалась с помощью микропозиционера. Сравнительно большое расстояние между MB: $(h \ll (z; H) \approx (60; 200 \,\mu m))$ позволяет пренебречь при колебаниях взаимным влиянием MB_i через упруговязкие возмущения в зонах опор и окружающей среде. Ввиду ужесточения условий синхронизации с ростом разброса частот биений и числа осцилляторов [9] особо отметим квазиэквидистантный спектр ОМО — близость разностей (Δ_n) собственных частот ($f_{n,i}$) для *n*-й моды поперечных колебаний соседних $MB_i: \Delta_n = f_{n,i+1} - f_{n,i}$, $\Delta_n \ll f_{n,i}$. Это реализовано путем вариации длин i = 1 - 7; MB_i : I. $l_i = 4(1 + 0.002(i - 1))$ mm, II. $l_i = 4(1 + 0.014(i - 7))$ mm, i = 8-13. Для указанных групп MB_i при n = 5, 6 в эксперименте получены оценки величин: І. $(\Delta_5^{I}; \Delta_6^{I}) \approx (0.3 - 0.5; 0.6 - 0.8)$ kHz; II. $(\Delta_5^{\text{II}}; \Delta_6^{\text{II}}) \approx (2.4-3; 3.5-4)$ kHz; собственные частоты $(f_{5,i}; f_{6,i}) \approx (65-78; 96-118) \,\text{kHz},$ MBi мол их механические добротности $Q_{5,i}$; $Q_{6,i} \ge 300$ (на воздухе). Большой диапазон ширин MB_i $(b_1; b_{13}) = (20; 210 \, \mu m)$ с учетом условий $\Delta_5^{I}, \Delta_5^{II} \ge f_{5,i}/Q_{5,i}, \Delta_6^{I}, \Delta_6^{II} \ge f_{6,i}/Q_{6,i},$ исключающих перекрытие резонансных линий этих мод, позволяет выбирать различные наборы разночастотных МВ_i, взаимодействующих с лазерным излучением.

Отметим ряд особенностей FL-OMO.

1. Колебания MB_i определялись путем фурьеанализа эффективного коэффициента отражения M: $R_{eff}(t) = V_3(t)/V_2(t)$, который измерялся с помощью волоконного разветвителя с короткими длинами выходов $S_{1,2,3} \ll cf^{-1}$ в условиях сложной динамики излучения, падающего на OMO, $P_s(t) \propto V_2(t)$.

2. Активной средой служит эрбий-иттербиевое активное волокно (AF) с накачкой в многомодовую оболочку [6], что исключает распространение излучения накачки ($\lambda_p \approx 976$ nm) в оптическом резонаторе FL.

3. В качестве зеркала M_0 применялись как широкополосные отражатели (BBR, $\Delta \lambda_1 \approx 80$ nm) в виде интерференционных пленок на торцах волокон с коэффициентами отражения $R_s = 0.5-0.9$, так и узкополосные ($\Delta \lambda_2 \approx 0.6$ nm) волоконные брэгговские решетки, $R(\lambda_s) = 0.6-0.95$ (FBG).

Средняя мощность лазерного излучения, падающего на ОМО, могла варьироваться в пределах $\bar{P}_s = 0-25 \text{ mW}$ за счет регулировки мощности непрерывного излучения накачки P_p , что с учетом вариации длины L волоконно-оптического резонатора FL (без заметных изменений потерь) позволяет управлять также частотой $f_{rel}(P_p, L)$. Представленные далее результаты

получены при разных резонансных условиях: $f_{rel} \approx f_{5,i}$, т.е. f_{rel} в резонансе с 5-й гармоникой MB_i, либо $f_{rel} \approx f_{6,i}$, при этом ограничимся данными, полученными при $\varphi = 90^{\circ}$ (LLS ортогонально MB_i). Для эффективного возбуждения колебаний ОМО, приводящих к модуляции R_{eff} , LLS располагалось либо вдоль оси симметрии ОМО, проходящей через центральные пучности нечетных мод, либо на ближайших к этой оси пучностях четных мод (наиболее близких друг к другу). Поскольку R_{eff} определяется интерференцией волн, отраженных от всех облучаемых MB_i, зависимости фазовых набегов указанных волн от угла в между осью лазерного пучка и нормалью к поверхности ОМО приводят к сложному виду $R_{eff}(\theta)$ и зонам возбуждения многочастотных SO в виде областей (θ_1, θ_2) в пределах дифракционной расходимости пучка $\sim \lambda_s/b_{
m max} \leqslant 3\cdot 10^{-2}$ rad, где $b_{\max} = \max\{b_i - b_k\}.$

На рис. 1 показаны осциллограмма и фурье-спектр сигнала $V_2(t) \propto P_s(t)$ в режиме двухчастотных автоколебаний (SO(2)) в схеме с широкополосным зеркалом ($R_s \approx 0.8$), когда лазерное излучение взаимодействует с двумя MB_i: ($b_9; b_{10}$) = (90; 115 μ m), $\Delta_5^{II} \approx 3$ kHz в условиях $f_{rel} \approx (f_{5,9}; f_{5,10}) \approx (72; 69$ kHz). SO(2) возникают при $P_p > P_{th}(2)$ — пороговое значение, которому соответствует $\bar{P}_s \approx 12$ mW. Гребенчатый спектр $P_s(t)$ имеет частотный интервал $\Delta \nu \approx \Delta_5^{II}$. Примечательно, что огибающая $P_s(t)$ качественно сходна с огибающей, приведенной в работе [10]. Подобные гребенчатые спектры SO(2) наблюдаются также в условиях резонанса $f_{rel} \approx f_{6,i}$, при этом $\Delta \nu \approx \Delta_6^{I}(\Delta_6^{II})$. Отметим, что при $f_{rel} \approx f_{5,i}(f_{6,i})$ SO(2) может иметь место и в том случае, когда LLS пересекает более двух микробалок.

Трех-, четырех- и пятичастотные режимы (SO(3)-SO(5)) получены с помощью микробалок I группы и широкополосных отражателей в роли M_0 . На рис. 2, *a*, *b* показаны огибающая и спектр $P_s(t)$, соответствующие SO(3) при

$$f_{rel} \approx (f_{6,5}; f_{6,6}; f_{6,7}) \approx (104.7; 104; 103.2 \,\text{kHz}),$$

когда излучение взаимодействует с тремя МВ_i: $(b_5; b_6; b_7) = (40; 50; 60 \,\mu\text{m})$. Огибающая $P_s(t)$ с ожидаемым периодом $T(3) \approx (\Delta_6^{I})^{-1} \approx 1.2 \,\mathrm{ms}$ имеет сложную структуру с одним побочным максимумом между двумя главными; квазисплошной спектр $P_s(t)$ содержит несколько линий, близких к f_{6,5}; f_{6,6}; f_{6,7} и проявляющихся более четко при высоком спектральном разрешении. Возбуждение SO(3) происходит в мягком режиме при $P_p > P_{th}(3) > P_{th}(2)$, где порог $P_{th}(3)$ весьма чувствителен не только к поперечным, но и к продольным смещениям LLS, что, вероятно, связано с неоднородностью погонной мощности излучения вдоль LLS. Огибающая и спектр $P_s(t)$, показанные на рис. 3, a, соответствуют SO(4), возникающим при взаимодействии лазерного излучения с четырьмя $\mathrm{MB}_i~(b_5;\,b_6;\,b_7;\,b_8)=(40;\,50;\,60;\,70\,\mu\mathrm{m})$ в условиях $f_{rel} \approx f_{5,i}$. В данном случае в пределах периода

Рис. 1. Схема лазерной системы FL–OMO. 1 — эрбий-иттербиевое активное волокно, $l_{AF} \approx 3 \text{ m}; 2$ — лазерный диод накачки с многомодовым волоконным выходом 3; 4 — неподвижное зеркало (M_0) ; 5 — брэговская решетка (FBG); 6 — отражатель излучения накачки (M_p) ; 7 — одномодовый волоконный разветвитель (90:10); 8, 9 — фотоприемники (InGaAs); 10 — коллиматор; 11 — ОМО (зеркало M); 12 — микропозиционер; 13 — радиочастотный анализатор спектра; 14 — осциллограф; 15 — цилиндрическая линза; 16 — кремниевая эпитаксиальная пластина с ОМО; 17 — микробалка (i = 4).

Рис. 2. Осциллограмма огибающей (a) и фурье-спектр (b) мощности лазерного излучения $P_s(t)$ в режиме SO(3) в условиях $f_{rel} \approx (f_{6,5}; f_{6,6}; f_{6,7}) \approx (104.7; 104; 103.2 \text{ kHz}); \text{ MB}_i: (b_5; b_6; b_7) = (40; 50; 60 \,\mu\text{m}).$

огибающей $T(4) \approx (\Delta_5^{\rm I})^{-1} \approx 2.7 \,\mathrm{ms}$ имеются два побочных максимума. Спектр $P_s(t)$ имеет максимум при $\nu_{\rm max} \approx f_{5,6} \approx 75 \,\mathrm{kHz}$ (вставка на рис. 3, *a*) и является практически сплошным, его ширина в несколько раз превышает интервал $(f_{5,5}; f_{5,8})$, что, вероятно, связано

с генерацией в данной нелинейной системе комбинационных частот $f_{5,6} \pm k\Delta_5^{I}$, k = 1, 2, ... На рис. 3, *b* представлена огибающая $P_s(t)$, полученная в режиме SO(5) в условиях $f_{rel} \approx f_{5,i}$, спектр в этом случае также является сплошным. Здесь в пределах периода оги-

Рис. 3. a — осциллограмма огибающей $P_s(t)$ в режиме SO(4) (на вставке — спектр $P_s(t)$ в диапазоне 60–90 kHz); b — осциллограмма огибающей $P_s(t)$ в режиме SO(5) в условиях $f_{rel} \approx f_{5,i}$.

бающей $T(5) \approx (\Delta_5^{I})^{-1} \approx 4 \,\mathrm{ms}$ находятся три побочных максимума (импульса). Следует отметить высокую чувствительность SO(4) и, особенно, SO(5) к возмущениям системы, в частности параметров (l_0, θ) , что приводит к срывам SO и нестабильным "пичковым" режимам с огибающей $P_s(t)$ в виде случайных групп импульсов с разной амплитудой и длительностью. Это, вероятно, вызвано нарушением синхронизации мод ОМО из-за случайных "сбоев" фаз.

В экспериментах, где роль зеркала M₀ играют BBR или FBG, установлено, что в условиях $f_{rel} \approx f_{5,i}(f_{6,i})$: 1) в схемах с FBG даже с высоким отражением $R(\lambda_s) = 0.95$ при вариациях P_p в пределах рабочего диапазона возбуждались лишь SO(2) с низким отношением сигнал/шум, тогда как в случае BBR с минимальным значением $R_s = 0.5$ возбуждались также SO(3) и SO(4); 2) при равных коэффициентах отражения BBR и FBG порог возбуждения SO(2) в схеме с FBG на 30-40% выше, чем для BBR. Эти особенности можно объяснить влиянием неоднородного уширения в АF. Как известно [11], в эрбиевых АF ширина спектра однородного усиления $\Delta \lambda_h \ll \Delta \lambda_{ase}$, где $\Delta \lambda_{ase}$ — ширина спектра суперлюминесценции (усиления), в АF $(\Delta \lambda_h; \Delta \lambda_{ase}) \approx (0.5; 20 \,\mathrm{nm}),$ поэтому в схемах с FBG, имеющих ширину $\Delta \lambda_2 \approx 0.6$ nm, колебания ОМО приводят к модуляции лишь малой части спектра излучения в лазерном резонаторе $\sim (\Delta \lambda_h^2 + \Delta \lambda_2)^{1/2} / \Delta \lambda_{ase} \ll 1$, что может объяснить низкую эффективность FBG при возбуждении SO в данных лазерных системах.

Таким образом, в волоконных лазерах с оптомеханическими микроосцилляторами впервые осуществлены многочастотные (до пяти частот) синхронные автоколебания, которые приводят к уникальным модуляционным характеристикам генерируемого лазерного излучения.

Финансирование работы

Работа выполнена в рамках госзадания ИРЭ им. В.А. Котельникова РАН.

Конфликт интересов

Автор заявляет, что у него нет конфликта интересов.

Список литературы

- B.B. Li, L. Ou, Y. Lei, Y.C. Liu, Nanophotonics, 10 (11), 27 (2021). DOI: 10.1515/nanoph-2021-0256
- M.F. Colombano, G. Arregui, N.E. Capuj, A. Pitanti, J. Maire, A. Griol, B. Garrido, A. Martinez, C.M. Sotomayor-Torres, D. Navarro-Urrios, Phys. Rev. Lett., **123** (1), 017402 (2019). DOI: 10.1103/PhysRevLett.123.017402
- [3] D. Princepe, G.S. Wiederhecker, I. Favero, N.C. Frateschi, IEEE Photon. J., 10 (3), 4500610 (2018).
 DOI: 10.1109/JPHOT.2018.2831001
- [4] X. Xi, J. Ma, X. Sun, Phys. Rev. A, 99 (5), 05383 (2019).
 DOI: 10.1103/PhysRevA.99.053837
- [5] Ф.А. Егоров, В.Т. Потапов, Квантовая электроника, 50 (8), 734 (2020). [F.A. Egorov, V.T. Potapov, Quantum Electron., 50 (8), 734 (2020). DOI: 10.1070/QEL17116].
- [6] V.V. Ter-Mikirtychev, Fundamentals of fiber lasers and fiber amplifiers, 2nd ed. (Springer, 2019).
 DOI: 10.1007/978-3-319-02338-0-9
- [7] E. Buks, I. Martin, Phys. Rev. E, 100 (3), 032202 (2019).
 DOI: 10.1103/PhysRevE.100.032202
- [8] Ф.А. Егоров, В.Т. Потапов, Фотон-экспресс, № 7, 3 (2018). http://fotonexpres.ru/bez-rubriki/vyshel-iz-pechatifoton-ekspress-7

- [9] П.С. Ланда, *Нелинейные колебания и волны*, 2-е изд. (ЛИБРОКОМ, М., 2010).
- [10] В.Д. Бурков, Ф.А. Егоров, В.Т. Потапов, ЖТФ. 75 (1), 70 (2005). [V.D. Burkov, F.A. Egorov, V.T. Potapov, Tech. Phys., 50 (1), 69 (2005). DOI: 10.1134/1.1854826].
- [11] С.К. Моршнев, Н.И. Старостин, Я.В. Пржиялковский, А.И. Сазонов, Квантовая электроника, **50** (10), 904 (2020). [S.K. Morshnev, N.I. Starostin, Ya.V. Przhiyalkovsky, A.I. Sazonov, Quantum Electron., **50** (10), 904 (2020). DOI: 10.1070/QEL17347].