02

Особенности эффекта Фарадея в редкоземельном ортоалюминате DyAlO₃

© У.В. Валиев¹, М.Е. Малышева¹, Ш.А. Рахимов², О.З. Султонов¹

1 Национальный университет Узбекистана,

100174 Ташкент. Узбекистан

² Бухарский филиал Ташкентского института инженеров ирригации и механизации сельского хозяйства, 200100 Бухара, Узбекистан

e-mail: uygun_valiev@mail.ru

Поступила в редакцию 03.11.2021 г. В окончательной редакции 27.02.2022 г. Принята к публикации 28.02.2022 г.

Исследованы магнитная восприимчивость и эффект Фарадея (ЭФ) монокристаллических образцов DyAlO₃ в температурном интервале $78-300\,\mathrm{K}$ вдоль кристаллографической оси "легкого" намагничивания b ромбического кристалла. Аналогичные исследования проведены в тербиевом ортоалюминате TbAlO₃. Фарадеевское вращение и естественное двулучепреломление, характерные для кристаллов ромбической сингонии, извлекались из температурных и спектральных зависимостей углов поворота большой оси эллипса поляризации светового излучения Θ , измеренных в диапазоне длин волн $440-750\,\mathrm{nm}$. Линейность зависимости константы Верде V от магнитной восприимчивости χ кристалла DyAlO₃ на длине волны $506\,\mathrm{nm}$ позволила рассчитать величину "парамагнитной" постоянной Верде C_p DyAlO₃. Выполнено сравнение величин C_p и "эффективных" частот ω_0 разрешенных переходов, найденных в редкоземельных гранатах RAlG ($R=\mathrm{Tb}^{3+},\mathrm{Dy}^{3+}$), с аналогичными величинами, определенными в кристаллах RAlO₃. Кратко обсуждается вопрос о возможном практическом применении кристаллов RAlO₃, исследованных в данной работе.

Ключевые слова: эффект Фарадея, редкоземельный ортоалюминат, естественное двулучепреломление, эллипс поляризации, магнитная восприимчивость, константа Верде.

DOI: 10.21883/OS.2022.06.52637.2892-21

Введение

Редкоземельные (РЗ) ортоалюминаты представляют собой довольно большую группу парамагнитных кристаллов с общей формулой RAlO3, где R обозначает трехвалентный ион P3 элемента $(Tb^{3+}, Dy^{3+} \text{ и т.п.})$ или иттрия Y^{3+} . Они кристаллизуются в искаженной структуре перовскита, описываемой пространственной группой $D_{2h}^{16} - P_{bmn}$ [1] с низкой симметрией окружения катиона (C_S) в структуре ортоалюмината. В оптическом отношении большинство кристаллов RAlO₃ являются двухосными кристаллами [2] (так же как и РЗ трифториды RF₃ [3,4]) и при их исследовании возникает проблема изучения линейных магнитооптических эффектов на "фоне" большого естественного двулучепреломления [5,6]. При этом наличие большого естественного двулучепреломления ($\sim 10^{-2}$) [6,7] весьма осложняет прецизионные оптические измерения, приводя в итоге к появлению сильно осциллирующих зависимостей углов поворота большой оси эллипса поляризации θ светового излучения как от длины волны и температуры, так и от толщины исследуемого кристалла. Было также обнаружено [3,7], что вследствие отсутствия пропорциональности между толщиной орторомбического кристалла l и амплитудой осцилляционной зависимости угла θ сам угол поворота большой оси эллипса поляризации является довольно малым и не превышает по абсолютной величине несколько угловых минут в реально достижимых магнитных полях ($\sim 10\,\mathrm{kOe})$ в видимой области спектра.

В настоящее время достаточно детально исследованы оптические и магнитооптические характеристики только ограниченного числа РЗ соединений: ТbAlO₃ [7,8], DyAlO₃ [9], CeAlO₃ [2,10], CeF₃ [4], TbF₃ [3] и PrF₃, NdF₃ [11]. Было показано, что кристаллы трифторидов CeF₃ и NdF₃ принадлежат к тригональной структуре типа тисонита (пространственная группа P-3c1) [1]. Именно поэтому в этих кристаллах удалось детально исследовать эффект Фарадея (ЭФ) на длинах волн лазерного излучения в диапазоне температур от 4.2 до 300 K во внешнем магнитном поле до 15 kOe, направленном вдоль их оптических осей третьего порядка. В дополнение к этому недавно было обнаружено [2,10], что кристаллы CeAlO₃ при комнатной температуре характеризуются тетрагональной симметрией (пространственная группа Р4/ттт). Поэтому вышеупомянутые РЗ кристаллы могут быть использованы в практических приложениях для создания магнитооптических элементов (фарадеевских модуляторов, оптических изоляторов и т.п.), но широкому применению в данном случае препятствует относительно малая величина постоянных Верде [12].

Кристаллическая структура ортоалюминатов $TbAlO_3$ и $DyAlO_3$ (так же как и трифторидов TbF_3 , HoF_3), при-

надлежащая к ромбической сингонии (пространственная группа Рпта) [1], обычно рассматривается как "двухосный кристалл" с оптическими осями, не совпадающими по направлению ни с одной из кристаллографических осей ромбической структуры (a, b, c). Отмеченное обстоятельство очень затрудняет проведение магнитооптических исследований таких низкосимметричных РЗ кристаллов. Действительно, использование подобных анизотропных материалов в магнитооптических экспериментах обычно осуществляется путем предварительной точной ориентации кристалла вдоль одной из оптических осей. В противном случае в кристаллографических направлениях, не совпадающих с какой-либо из оптических осей, ромбическая симметрия кристалла не позволяет реализовать большой эффект Фарадея (ЭФ) изза естественного линейного двулучепреломления [5,7]. Ориентация кристалла TbF₃ вдоль одной из его оптических осей была недавно успешно выполнена в [13], где было найдено, что постоянная Верде V_{OA} вдоль этой оси составила 0.463 min/cm·Oe на длине волны 632 nm при температуре 300 К. Интересно отметить, что найденная выше постоянная Верде V_{OA} совпадает по величине с постоянной Верде Тb₃Ga₅O₁₂, равной 0.46 min/cm·Oe на той же длине волны [14]. В то же время постоянная Верде, найденная из измерений ЭФ в кристалле TbF₃ в том же диапазоне длин волн вдоль кристаллографического направления [100] (ось а ромбического кристалла) и равная 0.55 min/cm·Oe [7,15], не сильно отличается от постоянной V_{OA} . Из приведенного выше сопоставления следует, что в кристаллах РЗ ортоалюминатов, относящихся к той же сингонии, как и рассматриваемый выше трифторид, и обладающими аналогичными магнитными и магнитооптическими характеристиками, может реализоваться подобная ситуация. В этом случае оценка возможного значения постоянной Верде $V_{\rm OA}$, важной для практического применения, может быть выполнена на основе магнитооптических измерений, а не трудоемких кристаллооптических и поляризационнооптических исследований РЗ ортоалюминатов.

Результаты поляризационно-оптических и магнитооптических исследований трифторида тербия [3,13], как и ортоалюмината тербия [7,15], свидетельствуют о том, что кристаллы RF_3 и $RAlO_3$ ($R = Tb^{3+}, Dy^{3+}$ и т.п.) могут быть успешно использованы в практических приложениях вместо применяемых в настоящее время кристаллов тербий-галлиевого граната Tb₃Ga₅O₁₂. На первый взгляд, эта замена может быть сопряжена с определенными трудностями, связанными с ориентацией данных низкосимметричных кристаллов вдоль их оптических осей. Но несомненным преимуществом при разработке магнитооптических устройств в данном случае является тот факт, что их постоянные Верде значительно превышают по абсолютной величине постоянную Верде кристаллов $Tb_3Ga_5O_{12}$ [16]. Кроме того, целесообразность подобной замены тербиевого граната-галлата РЗ ортоалюминатами (или трифторидами) диктуется также тем обстоятельством, что в них концентрация РЗ ионов

оказывается наибольшей по сравнению с другими P3 соединениями. Например, в кристалле TbF_3 концентрация ионов Tb^{3+} является наибольшей и составляет $2 \cdot 10^{22} \ cm^{-3}$. В кристалле DyAlO $_3$ концентрация ионов Dy $^{3+}$ немногим меньше и составляет $1.94 \cdot 10^{22} \ cm^{-3}$, в то время как в кристаллах P3 гранатов $Tb_3Al_5O_{12}$ и Dy $_3Al_5O_{12}$ концентрации ионов тербия и диспрозия близки и составляют соответственно $1.34 \cdot 10^{22}$ и $12.35 \cdot 10^{22} \ cm^{-3}$.

Целью настоящей работы является детальное исследование ЭФ в ортоалюминате $DyAlO_3$, оценка постоянной Верде V в кристалле $DyAlO_3$, а также сравнение полученных данных с результатами магнитооптических исследований, проведенных в ортоалюминате $TbAlO_3$ [7,15] и P3 гранатах $Dy_3Al_5O_{12}$ и $Tb_3Al_5O_{12}$ [14].

1. Образцы и методика измерений

Монокристаллы РЗ ортоалюминатов были выращены с использованием метода спонтанной кристаллизации кристаллов из раствора в расплаве в проблемной лаборатории магнетизма МГУ им. М.В. Ломоносова. Ориентация ортоалюмината DyAlO3 вдоль кристаллографического направления [010], так называемой "легкой оси" намагничивания исследуемого кристалла, могла быть выполнена во внешнем магнитном поле (\sim 3 kOe) вследствие значительной анизотропии его магнитных свойств относительно кристаллографических осей a,b,c ромбического кристалла. Затем ориентированные образцы шлифовались абразивными порошками до необходимых толщин и полировались с двух сторон алмазными пастами с постепенно утончающимся зерном (до \sim 1 μ m).

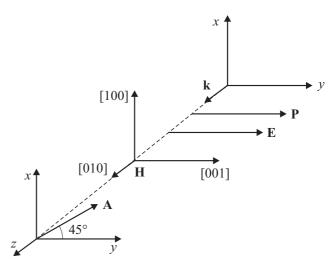
Измерение магнитной восприимчивости χ проводилось на вибрационном магнитометре в температурном интервале $80-300\,\mathrm{K}$ вдоль кристаллографического направления [010] (оси b) ромбического кристалла DyAlO_3 . Фарадеевское вращение извлекалось из температурных и спектральных зависимостей углов поворота θ большой оси эллипса поляризации светового излучения, измеренных при перемагничивании магнитоактивного кристалла во внешнем поле H ($\sim 6\,\mathrm{kOe}$) с частотой 72 Hz вдоль направления [010] в диапазоне длин волн $420-750\,\mathrm{nm}$ и в интервале температур $90-300\,\mathrm{K}$.

На рис. 1 приведена относительная ориентация плоскостей пропускания поляризационных элементов в экспериментальной установке — поляризатора P, анализатора A и осей ромбического кристалла, реализуемая при измерении угла θ в кристалле DyAlO₃.Согласно приведенной на этом рисунке геометрии эксперимента, угол поворота большой оси эллипса поляризации определяется из относительного изменения интенсивности света $\delta = \Delta I/I_0 = \sin 2\theta$, прошедшего систему "поляризаторобразец-анализатор" во внешнем магнитном поле H. Перемагничивание образца приводит к периодическому изменению угла поворота θ с частотой переменного магнитного поля H. Следовательно, световой поток на

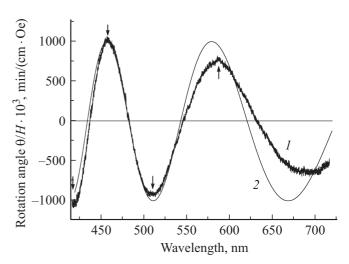
фотоприемнике состоит из двух сигналов: переменного $\Delta I = (I-I_0)$, связанного с поворотом плоскости поляризации света (или поворотом большой оси эллипса поляризации), и постоянного I_0 , интенсивность которого определяется световым потоком, прошедшим через оптическую систему "поляризатор-образец-анализатор" при $H{=}0$.

В экспериментах ошибки измерений величин магнитной восприимчивости не превышали $\sim 2-3\%$, углов фарадеевского вращения 3-5%. Погрешность установки осей исследуемого кристалла была не больше $2-3^\circ$.

2. Экспериментальные результаты и их обсуждение


Как было показано ранее в [5,6], угол поворота большой оси эллипса поляризации θ в кристалле ромбической сингонии связан с недиагональной компонентой тензора диэлектрической проницаемости кристалла ε_{xy} следующим соотношением:

$$tg 2\theta = \sin \chi \sin \Phi = \frac{\varepsilon_{xy}}{\bar{n}\Delta n} \sin \frac{2\pi \Delta nl}{\lambda}, \quad (1)$$


где $\bar{n} \approx (n_{xx} + n_{yy})/2$ — средний показатель преломления кристалла, l — его толщина, λ — длина волны света в вакууме, $\Delta n = n_{xx} - n_{yy}$ — величина естественного кристаллографического двулучепреломления. Из формулы (1) следует, что зависимости угла θ как от длины волны, так и от толщины кристалла имеют осциллирующий вид, причем амплитуда осцилляций пропорциональна ε_{xy} , а их период — величине естественного двулучепреломления Δn [3,6,7,14].

Наглядным примером поведения оптических свойств РЗ ортоалюмината во внешнем магнитном поле служит приведенная на рис. 2 спектральная зависимость [3] угла поворота большой оси эллипса поляризации θ светового излучения, записанная в интервале длин волн 430-720 nm при температуре 300 K вдоль "легкой" оси а кристалла TbAlO₃. Для сравнения на этом же рисунке приведена зависимость от длины волны λ фазового фактора $\sin \Phi = \sin \frac{2\pi \Delta nl}{\lambda}$, рассчитанная при значении параметра $\Delta n = 1.5 \cdot 10^{-2}$ и толщине кристалла $l=1.45\cdot 10^{-2}\,\mathrm{cm}$. Данное сравнение показывает, что рассчитанная зависимость фазового фактора вполне адекватно (хотя и с некоторыми отличиями в длинноволновой части спектра) описывает зависимость от длины волны угла поворота θ большой оси эллипса поляризации в ортоалюминате тербия.

Обработка результатов измерений угла поворота θ с целью восстановления спектральной зависимости постоянной Верде V в TbAlO $_3$ (для данной температуры T) проводилась следующим образом: вначале определялась зависимость от длины волны двулучепреломления Δn в рассматриваемой области спектра. Для этого было

Рис. 1. На рисунке [100], [010] и [001] — индексы Миллера осей ромбического кристалла a,b,c соответственно; **P**, **A** — ориентация плоскостей пропускания поляризатора и анализатора соответственно; **k** — волновой вектор линейно поляризованной волны, лежащий в плоскости yz световой волны **E**; **H** — магнитное поле, параллельное кристаллографическому направлению [010] кристалла.

Рис. 2. Спектральная зависимость величины θ/H в TbAlO₃ (I), записанная при ориентации внешнего магнитного поля $(H=7\,\mathrm{kOe})$ вдоль кристаллографической оси [100] ромбического кристалла толщиной $l=0.0145\,\mathrm{cm}$ [3]. На рисунке также приведена рассчитанная зависимость от длины волны (2) фазового фактора $\sin\Phi$.

необходимо учесть, что фазовый сдвиг между близлежащими экстремумами спектральной зависимости угла θ — положительным и отрицательным максимумами — составляет π радиан для длин волн λ_1 и λ_2 соответственно (на рис. 2 эти экстремумы обозначены стрелками). Тогда из формулы (1) можно получить, что:

$$\Delta\Phi=\Phi_2-\Phi_1=\pi=2\pi\Delta nligg(rac{1}{\lambda_2}-rac{1}{\lambda_1}igg)$$

или

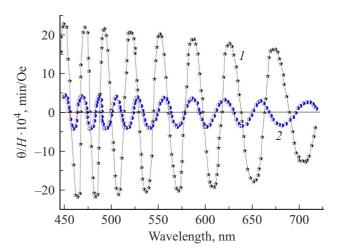
$$\Delta n = \frac{\lambda_2 \lambda_1}{2l(\lambda_2 - \lambda_1)}. (2)$$

где l — толщина кристалла, λ_1 и λ_2 — длины волн экстремумов спектральной зависимости угла θ . Расчет величин Δn , выполненный по формуле (2) с использованием данных рис. 2, показал, что они монотонно возрастают от $\Delta n = 0.013$ в длинноволновой части спектра до 0.016 в коротковолновой части, что указывает на достаточно заметную дисперсию естественного двулучепреломления для рассматриваемого кристалла.

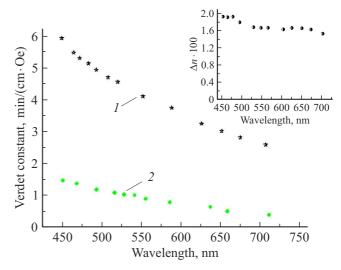
Далее воспользуемся тем обстоятельством, что угол удельного фарадеевского вращения α_F/l (т.е. угол вращения плоскости поляризации света, рассчитанный на единицу длины образца) непосредственно связан с недиагональной компонентой тензора диэлектрической проницаемости среды ε_{xy} следующим хорошо известным соотношением [17]:

$$\frac{\alpha_F}{l} = \frac{\pi}{\lambda} \frac{\varepsilon_{xy}}{\bar{n}}.$$
 (3)

Комбинируя формулы (1) и (3), а также учитывая, что выражение для угла фарадеевского вращения может быть записано так же как $\alpha_F = VlH$, где V — постоянная Верде, нетрудно получить окончательное выражение для постоянной Верде ортоалюмината в виде соотношения


$$V = 2\left(\frac{\theta}{H}\right) \frac{\pi}{\lambda} \Delta n,\tag{4}$$

позволяющего провести восстановление постоянной Верде исследуемого ортоалюмината при определенной температуре и длине волны. В итоге получаем, что в ортоалюминате тербия постоянная Верде, измеренная на длине волны $632\,\mathrm{nm}$ вдоль "легкой" оси а ромбического кристалла, равна $0.9\,\mathrm{min/cm\cdot Oe}$ при $T=300\,\mathrm{K}$. Например, при расчете постоянной Верде $\mathrm{TbAlO_3}$ на длине волны $\lambda=632\,\mathrm{nm}$ (рис. 2) по формуле (4) используется среднее значение величины


$$\left(\frac{\bar{\theta}}{H}\right) = \frac{1}{2} \left[\left(\frac{|\theta|}{H}\right)_{\lambda_1} + \left(\frac{|\theta|}{H}\right)_{\lambda_2} \right],$$

где λ_1 и λ_2 — длины волн соответствующих близлежащих экстремумов (положительного и отрицательного) спектральной зависимости величины (θ/H) и среднее значение параметра двулучепреломления $\Delta n = 1.3 \cdot 10^{-2}$ для рассматриваемого интервала длин волн. В итоге получаем, что в ортоалюминате тербия постоянная Верде, измеренная на длине волны 632 nm вдоль "легкой" оси а ромбического кристалла, равна 0.9 min/cm-Ое при $T=300~\mathrm{K}$, что почти в два раза превышает постоянную Верде тербиевого гранатагаллата [14].

Восстанавливая аналогично предыдущему из спектральных зависимостей углов θ (рис. 3), измеренных

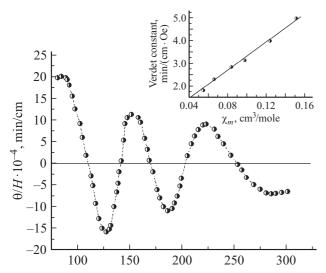

Рис. 3. Спектральные зависимости величины θ/H , измеренные при T=90 (I) и $300\,\mathrm{K}$ (2) вдоль оси b ромбического кристалла DyAlO₃ толщиной $l=0.42\,\mathrm{cm}$.

Рис. 4. Спектральные зависимости постоянной Верде ортоалюмината DyAlO₃, измеренные при $T=90\,\mathrm{K}$ (I) и $300\,\mathrm{K}$ (2) вдоль оси оси b ромбического кристалла. На вставке: спектральная зависимость величины Δn , найденная при $T=90\,\mathrm{K}$.

вдоль "легкой" оси b ромбического кристалла при T=90 и $300\,\mathrm{K}$, аналогичные зависимости для углов фарадеевского вращения, нетрудно найти спектральные зависимости постоянных Верде V и двулучепреломления Δn ортоалюмината $\mathrm{DyAlO_3}$ (рис. 4). Из приведенных на этом рисунке экспериментальных данных следует, что с уменьшением длины волны наблюдается монотонное возрастание величин Δn при $T=90\,\mathrm{K}$ (вставка к рис. 4).

Также было обнаружено (рис. 5), что при понижении температуры образца период осцилляций угла θ уменьшается вследствие слабо возрастающего с понижением температуры естественного кристаллографического

Рис. 5. Температурные зависимости величины θ/H , измеренные вдоль оси b в DyAlO₃ на длине волны 510 nm. На вставке: восстановленная на данной длине волны зависимость постоянной Верде V DyAlO₃ от молярной магнитной восприимчивости χ , измеренной вдоль оси b орторомбического кристалла.

двулучепреломления 1 . При этом отчетливо видно, что амплитуда осцилляций угла θ резко возрастает, что соответствует, согласно формуле (1), росту угла удельного фарадеевского вращения, непосредственно связанного с недиагональной компонентой тензора диэлектрической проницаемости среды ε_{xy} формулой (3).

Из детального рассмотрения приведенных выше экспериментальных данных сразу следует отметить, что постоянная Верде V, измеренная вдоль "легкой" оси bромбического кристалла DyAlO₃ на длине волны 632 nm при $T = 300 \,\mathrm{K}$, составляет $0.662 \,\mathrm{min/cm \cdot Oe}$, т.е. почти в 1.5 раза превышает постоянную Верде тербиевого граната-галлата. Особый интерес представляют достаточно резкие зависимости постоянной Верде DyAlO₃ от длины волны и температуры, приведенные на рис. 4. Они, на наш взгляд, свидетельствуют о значительном вкладе в ЭФ кристалла ортоалюмината диспрозия так называемого "парамагнитного" механизма магнитооптической активности (МОА), зависимость от частоты которого описывается частотным фактором $\omega^2/\omega_0^2 - \omega^2$ [14–19]. Поэтому полагая, что в ЭФ рассматриваемого РЗ соединения существенную роль играет "парамагнитный" механизм МОА (С-член ЭФ [18,19]) из частотной зависимости обратной постоянной Верде

Параметры C и λ_0 P3 ионов Tb³⁺ и Dy³⁺ в кристаллах гранатов и ортоалюминатов

РЗ соединение	λ_0 , nm	$C \times 10^3$, min/cm·Oe
ТbAlO ₃ [7,8,15] Тb ₃ Al ₅ O ₁₂ [14] DyAlO ₃ [настоящая работа] Dy ₃ Al ₅ O ₁₂ [14]	192 ± 3 264 ± 2 190 ± 5 210 ± 3	5.5 ± 0.2 4.0 ± 0.05 6.8 ± 0.3 3.78 ± 0.04

 $1/V \sim (\omega_0^2 - \omega^2/\omega^2)$, измеренной при $T = 90 \, \mathrm{K}$, нетрудно определить так называмую "эффективную" частоту разрешенных оптических переходов в ионах Dy^{3+} . Она оказалась равной $\omega_0 = 99 \cdot 10^{14} \, \mathrm{s}^{-1} \ (\lambda_0 = 190 \, \mathrm{nm}).$ С другой стороны, учитывая ярко выраженную температурную зависимость наблюдаемого магнитооптического эффекта в DyAlO₃, можно построить зависимость постоянной Верде V от магнитной восприимчивости χ (вставка к рис. 5) для длины волны 506 nm, измеренную при направлении внешнего поля H вдоль оси bдиспрозиевого ортоалюмината. Из детального рассмотрения рис. 5 следует, что в пределах экспериментальной погрешности данная зависимость оказывается линейной, что позволяет с учетом частотной зависимости ЭФ в DyAlO₃ представить выражение для константы Верде V в следующем виде:

$$V = (C_p \chi + D) \frac{\omega_2}{(\omega_0^2 - \omega^2)},\tag{5}$$

где V — константа Верде, ω — световая частота, C_P — так называемая "парамагнитная" постоянная Верде [7,15,19], D — вклад "смешивания" основного и возбужденного мультиплетов РЗ иона Dy^{3+} во внешнем магнитном поле [15,18,19]. Анализ экспериментальных данных, приведенных на рис. 3, с использованием формулы (4) показал, что вклад "смешивания" D оказывается довольно малым, и в дальнейшем рассмотрении его можно не учитывать. В таблице выполнено сопоставление величин C_p и ω_0 , найденных из измерений ЭФ как в РЗ ортоалюминатах $\mathrm{DyAlO_3}$ и $\mathrm{TbAlO_3}$ [7,15], так и в РЗ гранатах $\mathrm{Dy_3Al_5O_{12}}$ и $\mathrm{TbAl_5O_{12}}$ [14].

Из сравнения "эффективных" частот ω_0 (а точнее, длин волн λ_0), найденных в РЗ ортоалюминатах, с аналогичными данными, полученными в РЗ гранатах [14], видно, что в структуре RAIO₃ длины волн разрешенных переходов сдвигаются в коротковолновую область спектра ($< 200 \, \mathrm{nm}$) по сравнению с РЗ гранатами. Кроме того, согласно [19,20], "парамагнитные" постоянные Верде C_p РЗ соединений прямо пропорциональны силам осцилляторов разрешенных переходов f и обратно пропорциональны частотам ω_0 .

Величины произведений $C_p\omega_0$, с одной стороны, позволяют оценить различия сил осцилляторов ионов Tb^{3+} и Dy^{3+} в одном и том же кристаллическом окружении. С другой — оценить возможное изменение параметра f одного и того же иона, вызванное понижением

 $^{^{-1}}$ При измерении температурных зависимостей углов поворота θ в интервале температур 90—300 K (рис. 5) для некоторых длин волн (в том числе для $\lambda=506$ nm) из спектрального диапазона 400—750 nm длины волн выбирались из условия совпадения положения экстремумов углов θ при T=90 и 300 K. При расчете температурной зависимости постоянной Верде по формуле (4) на выбранных длинах волн используются средние значения величин $\Delta n=(\Delta n_{90}+\Delta n_{300})/2$ как для положительного, так и для отрицательного экстремумов угла θ на данной длине волны.

симметрии кристаллического окружения от D_2 (гранат) к C_S (ортоалюминат). Проведенные оценки демонстрируют почти двукратное возрастание сил осцилляторов рассматриваемых выше РЗ ионов в структуре ортоалюмината по сравнению с гранатом. При этом соотношение величин f ионов Dy^{3+} и Tb^{3+} остается приблизительно одним и тем же (~ 1.2) как в кристаллах ортоалюминатов, так и в гранатах. Подобные сильные вариации в найденных силах осцилляторов f рассматриваемых P3ионов обусловлены не кажущимися изменениями радиальных интегралов $\langle 4f/r/5d \rangle$, квадратам которых они пропорциональны [20], а связаны именно с приближенным характером рассмотрения "парамагнитного" вклада в ЭФ3, игнорирующим вклады других микроскопических механизмов МОА (диамагнитного [17,18], "смешивания" возбужденных состояний во внешнем поле H [18]) в магнитооптику ионов Dy^{3+} и Tb^{3+} в кристаллах $RAlO_3$.

Заключение

Измерены спектральные и температурные зависимости ЭФ в ортоалюминате диспрозия DyAlO₃, дополненные измерениями зависимости от температуры его магнитной восприимчивости. Полученная константа Верде V, измеренная вдоль "легкой" оси b ромбического кристалла DyAlO₃ на длине волны 632 нм при $T = 300 \,\mathrm{K}$, составила $0.662 \,\mathrm{min/cm \cdot Oe}$, что почти в 1.5 раза превышает постоянную Верде Тb₃Ga₅O₁₂, равную 0.46 min/cm·Oe на той же длине волны. Обнаружено, что в ЭФ TbAlO₃ и DyAlO₃ существенную роль играет "парамагнитный" механизм МОА. Установлено, что учет вклада данного механизма ЭФ в магнитооптику РЗ ионов Dy^{3+} и Tb^{3+} в кристаллах ортоалюминатов при игнорировании вкладов других механизмов МОА [17,18] экспериментально проявляется как в сдвиге длин волн разрешенных переходов в коротковолновую область спектра (< 200 nm), так и в почти двукратном возрастании сил осцилляторов этих переходов по сравнению с гранатом.

Благодарности

Выражаем благодарность А.И. Попову и V. Nekvasil за полезное обсуждение результатов данной работы.

Финансирование работы

Работа выполнена при поддержке Министерства инноваций Республики Узбекистан (грант FZ-202009143).

Конфликт интересов

Авторы заявляют, что у них нет конфликта интересов.

Список литературы

- [1] S. Geller, V.B. Bala. Acta Cryst., 9, 1019 (1956).
- [2] Feiyun Guo, Qiyuan Li, Huaimin Zhang, Xiongsheng Yang, Zhen Tao, Xin Chen, Jianzhong Chen. Crystals (MDPI), 9, 245 (2019).
- [3] U.V. Valiev, D.N. Karimov, G.W. Burdick, R. Rakhimov, V. Penovich, D. Fu. J. Appl. Phys., 121, 243105 (2017).
- [4] Kenta Nakagawa, Toru Asahi. Sci. Rep., 9, 18453 (2019).
- [5] Р.В. Писарев. *Физика магнитных диэлектриков* (Наука, Ленинград, 1974).
- [6] М.В. Четкин, Ю.И. Щербаков. ФТТ, 11 (6), 1620 (1969).
- [7] U.V. Valiev, A.A. Uzokov, S.A. Rakhimov, J.B. Gruber, K.L. Nash, D.K. Sardar, G.W. Burdick. J. Appl. Phys., 104, 073903 (2008).
- [8] В. Валиев, М.М. Лукина, К.С. Саидов. ФТТ, 41 (11), 2047 (1999).
- [9] У.В. Валиев, Д.Р. Джураев, Е.Е. Малышев, К.С. Саидов. Опт. и спектр., **86** (5), 789 (1999).
- [10] P. Arhipov, S. Tkachenko, I. Gerasymov, O. Sidletskiy, K. Hubenko, S. Vasyukov, N. Shiran, V. Baumer, P. Mateychenko, A. Fedorchenko, Y. Zorenko, Y. Zhydachevskii, Kh. Lebbou, M. Korjik. J. Cryst. Growth, 430, 116 (2015).
- [11] J. Picard, H. Le Gall, C. Leycuras, P. Feldmann. C.R. Acad. Sci. Paris, Ser. B, 288, 221 (1979).
- [12] A.V. Starobor, E.A. Mironov, O.V. Palashov. Opt. Lett., 44, 1297 (2019).
- [13] A.V. Starobor, E.A. Mironov, O.V. Palashov, A.G. Savelyev, D.N. Karimov. Laser Phys. Lett., 18, 115801 (2021).
- [14] K.M. Mukimov, B. Yu. Sokolov, U.V. Valiev. Phys. Stat. Sol. A, 119, 307 (1990).
- [15] У.В. Валиев, А.А. Клочков, М.М. Лукина, М.М. Турганов. Опт. и спектр., **63** (3), 543 (1987).
- [16] D. Vojna, O. Slezák, A. Lucianetti, T. Mocek. Appl. Sci., 9, 3160 (2019).
- [17] A.K. Zvezdin, A.V. Kotov. Modern Magneto-Optics and Magnetooptical Materials (IOP Publishing, Bristol/Philadelphia, 1997).
- [18] У.В. Валиев, А.К. Звездин, Г.С. Кринчик, Р.З. Левитин, К.М. Мукимов, А.И. Попов. ЖЭТФ, 85 (7), 311 (1983).
- [19] У.В. Валиев, А.И. Попов, Б.Ю. Соколов. Опт. и спектр., **61** (5), 1141 (1986).
- [20] P.W.Y. Lung. J. Phys. C., 4, 820 (1971).