⁰⁸ Роль эффекта затенения в кинетике роста III—V нитевидных нанокристаллов методом молекулярно-пучковой эпитаксии

© В.Г. Дубровский¹, М.В. Рылькова¹, А.С. Соколовский¹, Ж.В. Соколова^{1,2}, С.В. Микушев¹

¹ Санкт-Петербургский государственный университет, Санкт-Петербург, Россия

² Санкт-Петербургский государственный экономический университет, Санкт-Петербург, Россия E-mail: dubrovskii@mail.ioffe.ru

Поступило в Редакцию 28 марта 2022 г. В окончательной редакции 8 апреля 2022 г. Принято к публикации 11 апреля 2022 г.

Предложена модель роста нитевидных нанокристаллов (ННК) полупроводниковых соединений III–V методом молекулярно-пучковой эпитаксии за счет диффузии адатомов элемента III группы с учетом эффекта затенения. Показано, что данный эффект оказывает существенное влияние на кинетику роста в плотных ансамблях ННК. Получено новое решение для длины ННК как функции их радиуса и эффективной толщины осаждения. Проведено сравнение расчетных и экспериментальных длин ННК InP.

Ключевые слова: нитевидные нанокристаллы, диффузия адатомов, эффект затенения.

DOI: 10.21883/PJTF.2022.11.52606.19202

Нитевидные нанокристаллы (ННК) полупроводниковых соединений III-V (III-V ННК) перспективны для создания нового типа наногетероструктур для фотоники и наноэлектроники, в том числе на кремниевых и других рассогласованных подложках [1-4]. Благодаря эффективной релаксации упругих напряжений III-V ННК могут выращиваться на подложках кремния без формирования дислокаций несоответствия [5,6] в отличие от планарных слоев или наноостровков [7]. Синтез III-V ННК часто осуществляется методом молекулярно-пучковой эпитаксии (МПЭ) по механизму-пар-жидкость-кристалл (ПЖК), где катализатором является либо Au [8], либо Ga [9]. Метод МПЭ позволяет выращивать III-V ННК в отсутствие катализатора по механизму селективной эпитаксии (СЭ) [10]. Иногда механизмы ПЖК и СЭ сосуществуют в пределах одного образца в зависимости от радиуса ННК и условий осаждения [11].

МПЭ-рост III-V ННК на непроцессированных подложках, где капли Аи создаются путем термического отжига, происходит за счет прямого попадания полупроводникового материала в каплю и поверхностной диффузии адатомов элемента III группы [12-15]. В случае МПЭ-роста на процессированных подложках, где капли Аи или Ga осаждаются в регулярный массив отверстий в оксидной маске, механизм формирования III-V ННК зависит от температуры. При высоких температурах наиболее вероятным механизмом является отражение (реэмиссия) адатомов элемента III группы от поверхности оксидной маски [16-18]. При низких температурах не исключается диффузионный рост или комбинация двух механизмов. В обоих случаях важную роль играет эффект затенения [16,18,19], который заключается в блокировке части поверхности подложки и боковой поверхности данного ННК соседними ННК при МПЭ. В работе [18] нами была предложена аналитическая

модель роста ННК с учетом эффекта затенения и потока реэмиссии при МПЭ на отражающих подложках. Цель настоящей работы — построение модели диффузионного роста ННК с учетом эффекта затенения на всех стадиях роста, что отличает наш подход от предложенных ранее моделей роста одиночного ННК [12–15].

Рассматриваемая геометрия представлена на рис. 1. Все ННК имеют одинаковую форму цилиндра радиуса *R* и длины *L*. Дисперсия по размерам будет рассмотрена в отдельной публикации. Пренебрегается возможными эффектами, связанными со вторичным зарождением капель Ga. Контактный угол капель на вершине ННК равен β . Случай $\beta = 0$ соответствует отсутствию капли при СЭ. Поверхностная плотность ННК равна $N = 1/(cP^2)$, где Р — шаг регулярной решетки отверстий при росте на процессированной поверхности, с — геометрический фактор. Рост ННК контролируется потоком элемента III группы $v = v_0 \cos \alpha$ [nm/s], где v_0 — полный поток, α угол пучка по отношению к нормали к поверхности. Предполагается отсутствие десорбции атомов III группы со всех поверхностей. Эффективная толщина осаждения H = vt пропорциональна времени роста t. Рассматривается случай ННК постоянного радиуса R = const и капель постоянного объема $\beta = \text{const}$, как и в работах [12,13,15]. Таким образом, модель применима для любых III-V ННК с длиной, меньшей диффузионной длины адатомов III группы на боковой поверхности, когда отсутствует радиальный рост [12,13,15,18].

Из условия материального баланса имеем

$$H = N\pi R^2 L + H_{2D}(1 - NS_c).$$
(1)

Первый член есть объем ННК на единицу площади поверхности, а второй — объем квазидвумерного (2D) слоя, растущего между ННК, со средней толщиной H_{2D} . Площадь S_c , на которой отсутствует 2D-слой,

Рис. 1. Иллюстрация геометрии ансамбля ННК.

равна $S_c = \pi (R + \lambda_s)^2$, где λ_s — диффузионная длина адатомов III группы на поверхности. Возможно, 2D-рост имеет место и в диффузионном кольце [14], тогда $S_c = \varphi \pi (R + \lambda_s)^2$, где φ — доля адатомов, поступающих из диффузионного кольца на вершину ННК. Дифференцируя (1) по времени, получаем

$$v = N\pi R^2 \frac{dL}{dt} + v_{2D}(1 - NS_c), \qquad (2)$$

где v_{2D} — скорость роста 2D-слоя. Если диффузионный сбор идет со всей поверхности подложки ($S_c = 1/N$), скорость вертикального роста ННК и соответствующая ей длина ННК максимальны и равны [16,18]:

$$\left(\frac{dL}{dH}\right)_{\max} = \frac{1}{N\pi R^2} = \frac{cP^2}{\pi R^2},$$
$$L_{\max} = \frac{H}{N\pi R^2} = \frac{cP^2H}{\pi R^2}.$$
(3)

В более реалистичном случае, когда диффузионный сбор идет лишь с части поверхности подложки, можно выделить следующие стадии роста ННК.

Стадия 1 соответствует $v = v_{2D}$, когда эффект затенения не сказывается на росте 2D-слоя. В этом случае из (2) имеем $dL/dH = S_c/(\pi R^2)$ и

$$L = \varphi \left(1 + \frac{2\lambda_s}{R} + \frac{\lambda_s^2}{R^2} \right) H.$$
(4)

Данная стадия роста продолжается до тех пор, пока скорость роста $dL/dH = S_c/(\pi R^2)$ больше, чем скорость роста за счет прямого попадания в каплю и диффузии

адатомов с боковой поверхности ННК (см. выражение (6) далее). Это соответствует длине ННК, меньшей первой критической длины L₁:

$$L < L_1 = \frac{\varphi \pi \cot \alpha \alpha}{2\xi} \frac{(R+\lambda_s)^2}{R} - \frac{\chi \pi R}{2\xi \sin \alpha}.$$
 (5)

Стадия 2 роста ННК описывается обычным в моделировании кинетики формирования одиночного ННК [12–15] уравнением

$$\frac{dL}{dH} = \frac{2\xi \tan \alpha}{\pi R} L + \frac{\chi}{\cos \alpha}, \quad L(H = H_1) = L_1. \quad (6)$$

Здесь ξ — доля адатомов, поступающих с боковой поверхности ННК на его вершину [14], χ — зависящая от углов α и β геометрическая функция [20]. Эффективная толщина осаждения H_1 соответствует длине ННК L_1 . Решение (6) дает экспоненциальный закон удлинения ННК вида [13–15]:

$$L = \left(L_1 + \frac{\chi \pi R}{2\xi \sin \alpha}\right) \exp\left[\frac{2\xi \tan \alpha}{\pi R}(H - H_1)\right] - \frac{\chi \pi R}{2\xi \sin \alpha}.$$
(7)

Стадия 2 продолжается до тех пор, пока $v_{2D} > 0$. Прекращение 2D-роста означает полную блокировку потока на поверхность растущими ННК за счет эффекта затенения. Отсюда находим вторую критическую длину затенения L_* и интервал длин ННК на стадии 2

$$L_1 \leq L \leq L_*, \quad L_* = \frac{\cot \alpha \alpha}{2\xi NR} - \frac{\chi \pi R}{2\xi \sin \alpha}.$$
 (8)

Отметим, что значение L_* (при $\xi = 1$) совпадает с найденным в работе [18].

Письма в ЖТФ, 2022, том 48, вып. 11

Рис. 2. Зависимости длины ННК *L* от эффективной толщины осаждения *H*, рассчитанные на основе выражений (4)–(9) при фиксированных $\alpha = 35^{\circ}$, $\beta = 125^{\circ}$, $\lambda_s = 25$ nm, $\varphi = \xi = 0.3$, c = 1, P = 300 nm для трех различных радиусов ННК *R* (*a*); фиксированном R = 25 nm и различных комбинациях параметров φ и ξ (*b*); фиксированном R = 25 nm и трех различных значениях P(c); фиксированных R = 25 nm, P = 300 nm и трех различных диффузионных длинах $\lambda_s(d)$. Максимальная диффузионная длина 144 nm соответствует диффузионному сбору материала со всей поверхности и подложки, максимальной длине ННК и линейному по времени закону его удлинения.

Стадия 3 соответствует росту ННК с максимальной скоростью (3) начиная с длины L_* и эффективной толщины осаждения H_* :

$$L = L_* + \frac{H - H_*}{N\pi R^2} = L_* + \frac{cP^2(H - H_*)}{\pi R^2}, \quad L > L_*.$$
(9)

Этот линейный по времени закон роста имеет универсальный характер и одинаков для адсорбирующих и отражающих подложек в связи с полной блокировкой поверхности подложки и нижней части ННК [18].

На рис. 2, *а* приведены зависимости *L* от *H*, рассчитанные на основе выражений (4)–(9) при фиксированных $\alpha = 35^{\circ}$, $\beta = 125^{\circ}$, $\lambda_s = 25$ nm, $\varphi = \xi = 0.3$, c = 1, P = 300 nm для трех различных радиусов ННК: R = 15, 25 и 50 nm. Зависимости *L*(*H*) представляют собой две прямые линии при малых и больших *H*, соединенные экспоненциальной кривой при промежуточных *H*. При данном *H* длина ННК возрастает при уменьшении его радиуса [12–15]. Рис. 2, *b* показывает, что длина ННК возрастает с увеличением φ и ξ . Рис. 2, *c* демонстрирует увеличение длины с ростом расстояния между ННК *P*, при этом экспоненциальный участок зависимости *L*(*H*) увеличивается при больших *P* за счет увеличения длины затенения. Наконец, рис. 2, *d* показывает, как длина ННК возрастает с увеличением λ_s . Максимальное значение λ_s соответствует диффузионному сбору материала со всей поверхности подложки и максимальной длине ННК.

На рис. 3 представлены экспериментальные результаты измерений длины Au-каталитического HHK InP постоянного радиуса R = 12 nm в зависимости от H [17]. Данный HHK был выращен методом химической пучковой эпитаксии на маскированной поверхности InP(111)B с регулярным массивом отверстий при $\alpha = 45^{\circ}$ и $cP^2 = 30\,625$ nm². Теоретические кривые показывают, что модель отражающей поверхности дает лучшее согла-

Рис. 3. Экспериментальная зависимость длины Au-каталитического HHK InP постоянного радиуса 12 nm, полученная в работе [17] (символы). Кривая *I* соответствует результатам моделирования роста HHK на отражающей подложке [18], кривая *2* получена на основе выражений (4)–(9) настоящей работы при $\alpha = 45^{\circ}$, $\beta = 90^{\circ}$, $\varphi = \xi = 1$, $\lambda_s = 28$ nm и $cP^2 = 30625$ nm², кривые *3* и *4* соответствуют максимальной (при $S_c = 1/N$) и минимальной (при $\lambda_s = 0$) скорости диффузионного роста на адсорбирующей подложке.

сие с экспериментом, чем модель диффузионного роста, поэтому первый механизм роста более вероятен. Такой же вывод был сделан в работе [16] для Ga-каталитических ННК GaP, выращенных методом МПЭ в регулярных массивах отверстий в маске SiO_x на поверхности Si(111). Вместе с тем кривые показывают, что длина ННК при диффузионном росте в тех же условиях может быть как больше, так и меньше, чем при отражении потока In от поверхности, в зависимости от значения диффузионной длины λ_s .

Таким образом, впервые построена модель диффузионного роста ННК с учетом эффектов затенения и получены новые выражения для длины ННК как функции эффективной толщины осаждения, расстояния между ННК и их радиуса. Полученные результаты полезны для описания и управления морфологией III–V ННК, в том числе за счет изменения расстояния между ними при росте на маскированных поверхностях.

Финансирование работы

Работа выполнена за счет гранта Российского научного фонда № 19-72-30004.

Конфликт интересов

Авторы заявляют, что у них нет конфликта интересов.

Письма в ЖТФ, 2022, том 48, вып. 11

Список литературы

- Y. Zhang, A.V. Velichko, H. Aruni Fonseka, P. Parkinson, J.A. Gott, G. Davis, M. Aagesen, A.M. Sanchez, D. Mowbray, H. Liu, Nano Lett., 21, 5722 (2021). DOI: 10.1021/acs.nanolett.1c01461
- V. Khayrudinov, M. Remennyi, V. Raj, P. Alekseev, B. Matveev, H. Lipsanen, T. Haggre, ACS Nano, 14, 7484 (2020). DOI: 10.1021/acsnano.0c03184
- [3] L. Leandro, C.P. Gunnarsson, R. Reznik, K.D. Jöns, I. Shtrom, A. Khrebtov, T. Kasama, V. Zwiller, G. Cirlin, N. Akopian, Nano Lett., 18, 7217 (2018). DOI: 10.1021/acs.nanolett.8b03363
- [4] J. Sun, X. Zhuang, Y. Fan, S. Guo, Z. Cheng, D. Liu, Y. Yin, Y. Tian, Z. Pang, Z. Wei, X. Song, L. Liao, F. Chen, J.C. Ho, Z. Yang, Small, **17**, 2170190 (2021).
 DOI: 10.1002/smll.202170190
- [5] F. Glas, Phys. Rev. B, 74, 121302(R) (2006). DOI: 10.1103/PhysRevB.74.121302
- [6] L.C. Chuang, M. Moewe, C. Chase, N.P. Kobayashi,
 C. Chang-Hasnain, Appl. Phys. Lett., 90, 043115 (2007).
 DOI: 10.1063/1.2436655
- [7] G.E. Cirlin, V.G. Dubrovskii, V.N. Petrov, N.K. Polyakov, N.P. Korneeva, V.N. Demidov, A.O. Golubok, S.A. Masalov, D.V. Kurochkin, O.M. Gorbenko, N.I. Komyak, V.M. Ustinov, A.Yu. Egorov, A.R. Kovsh, M.V. Maximov, A.F. Tsatusul'nikov, B.V. Volovik, A.E. Zhukov, P.S. Kop'ev, Zh.I. Alferov, N.N. Ledentsov, M. Grundmann, D. Bimberg, Semicond. Sci. Technol., **13**, 1262 (1998). DOI: 10.1088/0268-1242/13/11/005
- [8] V.G. Dubrovskii, I.P. Soshnikov, G.E. Cirlin, A.A. Tonkikh, Yu.B. Samsonenko, N.V. Sibirev, V.M. Ustinov, Phys. Status Solidi B, 241, R30 (2004). DOI: 10.1002/pssb.200409042
- [9] C. Colombo, D. Spirkoska, M. Frimmer, G. Abstreiter, A. Fontcuberta i Morral, Phys. Rev. B, 77, 155326 (2008). DOI: 10.1103/PhysRevB.77.155326
- [10] S. Hertenberger, D. Rudolph, M. Bichler, J.J. Finley,
 G. Abstreiter, G. Koblmüller, J. Appl. Phys., 108, 114316 (2010). DOI: 10.1063/1.3525610
- [11] Q. Gao, V.G. Dubrovskii, P. Caroff, J. Wong-Leung, L. Li, Y. Guo, L. Fu, H.H. Tan, C. Jagadish, Nano Lett., 16, 4361 (2016). DOI: 10.1021/acs.nanolett.6b01461
- J. Johansson, M.H. Magnusson, J. Cryst. Growth, 525, 125192 (2019). DOI: 10.1016/j.jcrysgro.2019.125192
- [13] V.G. Dubrovskii, Yu.Yu. Hervieu, J. Cryst. Growth, 401, 431 (2014). DOI: 10.1016/j.jcrysgro.2014.01.015.
- [14] M.C. Plante, R.R. LaPierre, J. Appl. Phys., 105, 114304 (2009). DOI: 10.1063/1.3131676
- [15] J.C. Harmand, F. Glas, G. Patriarche, Phys. Rev. B, 81, 235436 (2010). DOI: 10.1103/PhysRevB.81.235436
- [16] F. Oehler, A. Cattoni, A. Scaccabarozzi, J. Patriarche, F. Glas, J.C. Harmand, Nano Lett., 18, 701 (2018). DOI: 10.1021/acs.nanolett.7b03695
- [17] D. Dalacu, A. Kam, D.G. Austing, X. Wu, J. Lapointe, G.C. Aers, P.J. Poole, Nanotechnology, **20**, 395602 (2009). DOI: 10.1088/0957-4484/20/39/395602
- [18] V.G. Dubrovskii, Nanomaterials, **12**, 253 (2022).DOI: 10.3390/nano12020253
- [19] N.V. Sibirev, M. Tchernycheva, M.A. Timofeeva, J.C. Harmand, G.E. Cirlin, V.G. Dubrovskii, J. Appl. Phys., 111, 104317 (2012). DOI: 10.1063/1.4718434
- [20] F. Glas, Phys. Status Solidi B, 247, 254 (2010).
 DOI: 10.1002/pssb.200945456