11

Влияние изо- и гетеровалентных замещений катионов на суперионный фарадеевский переход во флюоритовой модификации β-PbF₂

© Н.И. Сорокин

Институт кристаллографии им. А.В. Шубникова ФНИЦ "Кристаллография и фотоника" РАН, Москва, Россия

E-mail: nsorokin1@yandex.ru

Поступила в Редакцию 21 августа 2021 г. В окончательной редакции 21 августа 2021 г. Принята к публикации 4 апреля 2022 г.

По данным измерений ионной проводимости изучено влияние изовалентного $Pb^{2+} \rightarrow Cd^{2+}$ и гетеровалентного $Pb^{2+} \rightarrow Sc^{3+}$ замещений на суперионный фарадеевский переход в твердых растворах $Pb_{1-x}Cd_xF_2$ (x = 0.33) и $Pb_{1-x}Sc_xF_{2+x}$ (x = 0.1) на основе флюоритовой модификации β -PbF₂ с пр. гр. $Fm\bar{3}m$. Фарадеевский (размытый) фазовый переход может быть охарактеризован температурой T_{tr}^{λ} , соответствующей максимуму на кривой теплоемкости, и температурой T_{tr}^{α} , отвечающей началу структурного разупорядочения анионной подрешетки. Обе эти температуры обнаруживаются на температурной зависимости проводимости $\sigma_{dc}(T)$ кристаллов β -PbF₂, Pb_{0.67}Cd_{0.33}F₂ и Pb_{0.9}Sc_{0.1}F_{2.1}. Значения T_{tr}^{λ} и T_{tr}^{α} в твердых растворах по сравнению с матрицей β -PbF₂ ($T_{tr}^{\lambda} = 715 \pm 10$ K, $T_{tr}^{\alpha} = 597 \pm 12$ K) снижаются на 100–110 и 30–45 K для Pb_{0.67}Cd_{0.33}F₂ и Pb_{0.9}Sc_{0.1}F_{2.1} соответственно. Уменьшение температуры T_{tr}^{λ} анионная проводимость флюоритовых кристаллов Pb_{0.67}Cd_{0.33}F₂, Pb_{0.9}Sc_{0.1}F_{2.1} и β -PbF₂, достигает аномально высоких значений $\sigma_{dc} = 1-2$ S/cm (873 K) при энтальпии активации ионного переноса, равной $H_{\sigma} \approx 0.3$ eV.

Ключевые слова: фазовые переходы, фториды, структура флюорита, ионная проводимость, твердые растворы.

DOI: 10.21883/FTT.2022.07.52571.328

1. Введение

Общей особенностью дифторидов MF_2 (M = Ca, Sr, Ba, Cd, Pb) со структурой флюорита (структурный тип CaF₂), а также изоструктурных им кристаллов других химических классов (SrCl₂, K₂S, Li₂O), является существование незадолго до плавления фарадеевского [1,2] (впервые обнаружил М. Фарадей у PbF₂ в 1834 г. [3]) или по терминологии [4] размытого фазового перехода. Такой переход происходит без изменения симметрии (пр. гр. $Fm\bar{3}m$ флюорита сохраняется), инициируется кулоновским взаимодействием заряженных дефектов, обладает λ -образной формой температурной зависимости теплоемкости (на этом основании его приписывают к фазовым переходам II-го рода [5,6]).

Фарадеевский переход в кристаллах MF_2 связывают с термоактивированным процессом структурного разупорядочения анионной подрешетки. В результате этого перехода часть ионов F⁻ из основных позиций (тетраэдрических по катионам) выходит в междоузлия (октаэдрическим по катионам и кубическим по фтору) и появляются вакансии фтора в основных анионных позициях. Образование во флюоритовых фторидах антифренкелевских парных дефектов, состоящих из междоузельного иона Fⁱ и вакансии V[•]_F (обозначения дефектов приводятся в символах Крегера–Винка [7]), доказано

различными методами [8]. Из-за фарадеевского фазового перехода, связанного со структурным разупорядочением анионной подрешетки, флюоритовые кристаллы MF_2 имеют аномально низкие теплоты и энтропии плавления [9,10].

Постепенное разупорядочение анионной подрешетки сопровождается появлением у кристаллов MF_2 анионной проводимости σ_{dc} . Катионная подрешетка остается упорядоченной и не принимает участия в ионном транспорте. При фарадеевском переходе степень разупорядочения анионной подрешетки довольно низкая $(1-5\% \ [9-13])$, поэтому для описания ионного транспорта можно использовать прыжковую модель движения носителей заряда.

В области фарадеевского перехода на графике Аррениуса $\lg \sigma_{dc} T - 1/T$ для флюоритовых кристаллов имеет место изгиб в сторону уменьшения энтальпии активации электропроводности H_{σ} . Скачок проводимости σ_{dc} при переходе не обнаружен. Температура фарадеевского перехода T_{tr} обычно определяется по максимуму на температурной зависимости теплоемкости T_{tr}^{λ} [4], а также по точке изгиба на температурных зависимостях электропроводности [9,12], упругих постоянных [11] и других свойств. Поскольку фарадеевскому переходу в действительности отвечает некоторый интервал температур, то значения T_{tr} , найденные различными способами, могут отличаться между собой.

Фарадеевский размытый переход относится к структурным фазовым переходам типа "порядок-беспорядок", к которым применима термоактивированная модель двухуровневых систем [14,15]. При рассмотрении размытых (диффузных) переходов в кристаллах необходимо учитывать кинетику фазового превращения. В работе [16] предложено характеризовать размытый фазовый переход двумя параметрами: температурой T_{tr}^{λ} , отвечающей максимуму на кривой теплоемкости и температурой T_{tr}^{α} , отвечающей началу структурного разупрядочения анионной подрешетки. В этой работе показано, что обе эти характеристические температуры обнаруживаются на температурной зависимости ионной проводимости флюоритовых кристаллов MF2. Разность $\Delta T_{tr} = T_{tr}^{\lambda} - T_{tr}^{\alpha}$ отвечает области протяженности фарадеевского перехода и характеризует кинетику фазового перехода.

Флюоритовые кристаллы MF_2 характеризуются двумя структурными формами в рамках одной пр.гр. $Fm\bar{3}m$. При $T < T_{tr}^{\alpha}$ упорядоченные структурные формы $lt-MF_2$ обладают незначительной собственной ионной проводимостью и являются типичными диэлектриками. С увеличением температуры антифренкелевское разупорядочение анионной подрешетки сопровождается ростом ионной проводимости кристаллов MF_2 . При $T > T_{tr}^{\lambda}$ проводимость структурно-разупорядоченных форм $ht-MF_2$ достигает значений $\sigma_{dc} \sim 1$ S/cm [17], практически таких же, как в расплавленном состоянии [18].

В работе [19] высказано предположение, что строение анионных подрешеток гетеровалентных твердых растворов $M_{1-x}R_xF_{2+x}$ (*R* — редкоземельные элементы, комнатные температуры) и структурных модификаций кристаллов ht-MF₂ (высокие температуры) близки. Исследования дефектной структуры кристаллов $M_{1-x}R_xF_{2+x}$ активно проводятся (ссылки в обзорах [20,21]). Высокотемпературных исследований структурных форм кристаллов ht-MF2 немного и выполнены они только для флюоритовой модификации β-PbF₂ [22,23]. Попытки сохранить до комнатной температуры высокотемпературное разупорядоченное состояние ht-MF2 методами термической обработки (закалкой) были неудачными. Это затрудняет проведение сравнения дефектности анионных мотивов кристаллов ht- MF_2 и $M_{1-x}R_xF_{2+x}$ на основании структурных данных.

В свете сказанного представляет интерес исследовать фарадеевские фазовые переходы электрофизическим методом, поскольку электропроводность прямо связана с дефектностью анионного мотива флюоритовых кристаллов. Для кристаллов CaF₂, SrF₂ и BaF₂ такие исследования затруднены высокими температурами фазовых переходов. В сравнении с ними флюоритовая модификация β -PbF₂ является наиболее низкоплавкой (температура плавления $T_{fus} = 1098 \pm 5$ K). Для нее значения температуры максимума теплоемкости по данным разных авторов равны 705 [24], 710 [25], 715 [26], 718 [27] и 721 K [28] (среднее значение $T_{tr}^{\lambda} = 715 \pm 10$ K). Температура T_{tr}^{a} , отвечающая началу структурного разупорядочения анионной подрешетки, составляет 597 ± 12 K [16]. Температурный интервал фарадеевского перехода равен $\Delta T_{tr} = T_{tr}^{\lambda} - T_{tr}^{\alpha} \approx 120 \text{ K}$. В случае кристалла β -PbF₂ температурная область фазового перехода доступна нашему эксперименту.

Вопрос о влиянии легирования кристаллов на фарадеевский переход рассматривался на основе анализа данных, полученных методами термического анализа и рассеяния света для твердых растворов $Ca_{1-x}Y_xF_{2+x}$ [29], $Ba_{1-x}La_xF_{2+x}$ [6,30], $Pb_{1-x}R_xF_{2+x}$ (R = La, Yb) [31] и $M_{1-x}U_xF_{2+2x}$ (M = Ba, Pb) [32]. В этих работах обнаружено, что с ростом концентрации примесного компонента происходит, как правило, расширение температурного интервала существования суперионного состояния флюоритовых кристаллов.

Целью настоящей работы являлись анализ высокотемпературных данных по ионной проводимости твердых растворов Pb_{0.67}Cd_{0.33}F₂ и Pb_{0.9}Sc_{0.1}F_{2.1} и изучение влияния изовалентных (Pb²⁺ на Cd²⁺) и гетеровалентных (Pb²⁺ на Sc³⁺) изоморфных замещений на суперионный фарадеевский переход во флюоритовой модификации β -PbF₂.

Выращивание монокристаллов и измерения ионной проводимости твердых растворов Pb_{1-x}Cd_xF₂ и Pb_{1-x}Sc_xF_{2+x}

В квазибинарных PbF₂-CdF₂ системах и PbF₂-ScF₃ [33] образуются изовалентный Pb_{1-x}Cd_xF₂ и гетеровалентный Pb_{1-x}Sc_xF_{2+x} твердые растворы со структурой флюорита. В системе PbF2-CdF2 реализуется полный изоморфизм компонентов ($0 \le x \le 1$), а в системе PbF2-ScF3 имеет место частичный изоморфизм компонентов ($0 \le x \le 0.15$). Выбор составов исследуемых кристаллов Pb_{0.67}Cd_{0.33}F₂ (состав отвечает минимуму на кривой плавкости) и Pb_{0.9}Sc_{0.1}F_{2.1} связан с тем, что они обладают максимальными значениями σ_{dc} среди твердых растворов $Pb_{1-x}Cd_xF_2$ и $Pb_{1-x}Sc_xF_{2+x}$ [34,35]. сравнительного анализа нами выполнены Для измерения электропроводности монокристалла β-PbF₂, легированного небольшим количеством скандия.

Монокристаллы Pb_{1-x}Cd_xF₂ (x = 0.33), Pb_{1-x}Sc_xF_{2+x} (x = 0.1) и β -PbF₂, получены из расплава методом направленной кристаллизации Бриджмена в графитовых тиглях во фторирующей атмосфере продуктов пиролиза политетрафторэтилена [35–37]. Скорость опускания тигля в ростовой зоне равна 3.5 mm/h, скорость охлаждения кристаллов составляла 50–100 К/min. Кристаллы не содержали рассеивающих свет включений кислородсодержащих фаз. Содержание примеси кислорода в них было менее 10^{-3} mass.% [35]. Принадлежность выращенных кристаллов к структурному типу флюорита (пр.гр. $Fm\bar{3}m$, Z = 4) подтверждена рентгенографически (дифрактометры HZG-4 и Philips PW1710, излучение CuK α , внутренний стандарт Si). Параметры элементарной ячейки для кубических кристаллов

Рb_{0.67}Cd_{0.33}F₂, Pb_{0.9}Sc_{0.1}F_{2.1} и β -PbF₂, (±0.005 Å) составляют a = 5.7575, 5.875 и 5.940 Å соответственно. Химический состав твердых растворов Pb_{0.67}Cd_{0.33}F₂ и Pb_{0.9}Sc_{0.1}F_{2.1} соответствовал составу исходной шихты: расхождения концентрации компонентов (PbF₂, CdF₂, ScF₃) не превышали ±1 mol.%.

Ионная статическая проводимость σ_{dc} кристаллов определялась методом импедансной спектроскопии в диапазоне частот $1-10^7$ Hz (импедансметры Solartron 1260 и Tesla BM-507). Ориентировку монокристаллических образцов относительно кристаллографических осей не проводили, поскольку они обладают кубической симметрией и анизотропия электропроводности в них отсутствует. Измерения зависимостей $\sigma_{dc}(T)$ проводили в интервале от комнатной температуры (293 K) до 873 K в атмосфере азота N₂ или вакуума (~ 1 Pa). Подробное описание экспериментальных установок и результаты кондуктометрических исследований кристаллов опубликованы в [34,36–39].

3. Фарадеевский фазовый переход в изовалентном твердом растворе $Pb_{1-x}Cd_xF_2$ (x = 0.33)

Температурная зависимость ионной проводимости $\sigma_{dc}(T)$ для изовалентного твердого раствора Рb0.67Сd0.33F2 показана на рис. 1. Наблюдается высокотемпературная аномалия на зависимости $\sigma_{dc}(T)$, которая связана с проявлением фарадеевского фазового перехода. Анализ σ_{dc} -данных показывает, что характеристические температуры перехода составляют $T_{tr}^{\lambda} \approx 620 \,\mathrm{K}$ $T_{tr}^{\alpha} \approx 510 \,\mathrm{K}$, протяженность перехода равна И $\Delta T_{tr} \approx 110$ К. На рис. 1 для сравнения приведена зависимость $\sigma_{dc}(T)$ для флюоритовой модификации β-PbF₂, содержащей небольшое количество скандия. кристалла В случае β -PbF₂ температуры И протяженность перехода составляют $T_{tr}^{\lambda} \approx 720 \,\mathrm{K},$ $T_{tr}^{\alpha} \approx 620 \,\mathrm{K}$ и $\Delta T_{tr} \approx 100 \,\mathrm{K}$ соответственно. Полученные результаты для кристалла β-PbF₂ хорошо совпадают с литературными данными [16,24-28].

В твердом растворе $Pb_{0.67}Cd_{0.33}F_2$ по сравнению с матрицей β -PbF₂ значения T_{tr}^{λ} и T_{tr}^{α} снижаются на 100–110 K, что приводит к увеличению интервала существования высокотемпературной *ht*-фазы вниз по температуре. Уменьшение значений T_{tr}^{λ} и T_{tr}^{α} наблюдалось также методом термического анализа для твердого раствора близкого состава Pb_{0.6}Cd_{0.4}F₂ [26], для которого фарадеевский переход происходит в температурной области 400–600 K.

В интервалах $T < T_{tr}^{\alpha}$ и $T > T_{tr}^{\lambda}$ кондуктометрические данные для $Pb_{0.67}Cd_{0.33}F_2$ и β -PbF₂ удовлетворяют уравнению Аррениуса—Френкеля:

$$\sigma_{dc}T = \sigma_0 \exp(-H_\sigma/kT),$$

где σ_0 — предэкспоненциальный множитель электропроводности и H_{σ} — энтальпия активации ионного транспорта. Параметры σ_0 и H_{σ} приведены в табл. 1.

Рис. 1. Температурная зависимость ионной проводимости для (*I*) изовалентного твердого раствора $Pb_{0.67}Cd_{0.33}F_2$ ($T_{tr}^{\alpha} \approx 510 \text{ K}$ и $T_{tr}^{\lambda} \approx 620 \text{ K}$) и (2) флюоритовой матрицы β -PbF₂ ($T_{tr}^{\alpha} \approx 620 \text{ K}$ и $T_{tr}^{\lambda} \approx 720 \text{ K}$) в области фарадеевского фазового перехода.

низкотемпературных сравнении При форм и lt- β -PbF₂ можно видеть, $lt-Pb_{0.67}Cd_{0.33}F_21$ что проводимость твердого раствора значительно выше, чем матрицы (табл. 2). В высокотемпературных формах ht-Pb_{0.67}Cd_{0.33}F₂ и ht- β -PbF₂ наблюдается выход кривой $\sigma_{dc}(T)$ на уровень аномально высокой ионной проводимости и близость параметров ионного транспорта: $\sigma_{dc} = 1 - 2$ S/cm (873 K) и $H_{\sigma} = 0.29 \pm 0.02$ eV. Полученная величина энтальпии Н_о для кристалла β -PbF₂ подтверждается методами дифракции нейтронов (0.26 eV [13]), магнитного резонанса на ядрах ¹⁹F (0.2 eV [40]) и кондуктометрии (0.25-0.3 eV [17]).

Однако причины возникновения суперионной проводимости, сравнимой с σ_{dc} их расплавов, в высокотемпературных состояниях кристаллов ht-Pb_{0.67}Cd_{0.33}F₂ и ht- β -PbF₂ разные. В β -PbF₂ повышение температуры сопровождается быстрым ростом концентрации носителей заряда — антифренкелевских дефектов F'_i и V[•]_F. При понижении температуры термоактивированные дефекты аннигилируют, и кристалл становится диэлектриком.

В Pb_{0.67}Cd_{0.33}F₂ основной причиной возникновения суперионной проводимости являются изовалентные изоморфные замещения Pb²⁺ на Cd²⁺. Изовалентный изоморфизм с образованием твердых растворов является одним из приемов управления электрофизическими свойствами фторидных материалов. Вследствие равенства зарядов замещающихся катионов он не приводит

Кристалл	$T_{tr}^{lpha},{ m K}$	$T_{tr}^{\lambda},\mathrm{K}$	Структурная форма	$\sigma_0, \mathrm{SK/cm}$	H_{σ}, eV
$Pb_{0.67}Cd_{0.33}F_2$	510	620	lt ht	$\begin{array}{c} 4.5\cdot 10^5 \\ 2.5\cdot 10^5 \ [38] \\ 1.5\cdot 10^5 \end{array}$	0.410(2) 0.39 [38] 0.314(7)
Pb _{0.9} Sc _{0.1} F _{2.1}	570	670	lt ht	$\begin{array}{c} 4.4 \cdot 10^5 \\ 2.5 \cdot 10^5 \ [37] \\ 5.1 \cdot 10^4 \end{array}$	0.423(2) 0.39 [37] 0.290(4)
β-PbF ₂	620 597 ± 12 [16]	$720 \\ 715 \pm 10 \mathrm{K} [2428]$	lt ht	$\begin{array}{c} 3.7\cdot10^6\\ 3.5\cdot10^4\end{array}$	0.642(5) 0.267(5)

Таблица 1. Характеристические температуры T_{tr}^{α} и T_{tr}^{λ} , множитель σ_0 и энтальния активации проводимости H_{σ} в низко- (lt) и высокотемпературной (ht) формах кристаллов Pb_{0.67}Cd_{0.33}F₂, Pb_{0.9}Sc_{0.1}F_{2.1} и β -PbF₂

Таблица 2. Ионная проводимость, концентрация и подвижность носителей заряда во флюоритовой матрице β -PbF₂ и твердых растворах на ее основе при 323 K ($T < T_{tr}^{\alpha}$) и 873 K ($T > T_{tr}^{\alpha}$)

Свойства -	β -PbF ₂		$Pb_{0.67}Cd_{0.33}F_2$		$Pb_{0.9}Sc_{0.1}F_{2.1}$	
	$T < T_{tr}^{\alpha}$	$T > T_{tr}^{\lambda}$	$T < T_{tr}^{\alpha}$	$T > T_{tr}^{\lambda}$	$T < T_{tr}^{\alpha}$	$T > T_{tr}^{\lambda}$
σ_{dc} , S/cm	$1.2\cdot 10^{-6}$	1.2	$5.9\cdot10^{-4}$	2.5	$3.6\cdot10^{-4}$	1.2
$n_{\rm mob}, {\rm cm}^{-3}$	2.2 · 10 ¹⁶ *	$2 \cdot 10^{20} * * *$	5.1 · 10 ²¹ [37]		$2 \cdot 10^{21}$ [36]	
$\mu_{\rm mob}, {\rm cm}^2/{\rm Vs}$	$\begin{array}{c} 7.3 \cdot 10^{-8} \ ({\rm F}'_i) \ ^* \\ 6.4 \cdot 10^{-8} \ ({\rm F}'_i) \ ^* \\ 4.3 \cdot 10^{-5} \ (V_{\rm F}^{\bullet}) \ ^* \\ 8.1 \cdot 10^{-6} \ (V_{\rm F}^{\bullet}) \ ^* \end{array}$	8.7 $\cdot 10^{-3} (F'_i)^{***}$ 2.3 $\cdot 10^{-3} (V_F^{\bullet})^{***}$	$7.2 \cdot 10^{-7}$	$3.1 \cdot 10^{-3}$	$1.1 \cdot 10^{-6}$	$3.7 \cdot 10^{-3}$

Примечание. * — данные из [47] при 323 К, ** — данные из [48] при 323 К и *** — данные из [2] при 780 К.

к образованию дополнительных заряженных точечных дефектов и, как правило, к сильным изменениям свойств кристаллов. Изовалентный изоморфизм флюоритовых твердых растворов в системе PbF_2-CdF_2 представляет исключение и сильно отличается от систем $MF_2-M'F_2$, образованных фторидами щелочноземельных элементов (M = Ca, Sr и Ba). Это связано с различием зонной электронной структуры дифторидов свинца и кадмия от фторидов щелочноземельных элементов, а также большой разницей в ионных радиусах Pb^{2+} (1.43 Å) и Cd^{2+} (1.24 Å для координационного числа 8 [41]).

Рентгеноструктурный анализ кристаллов Pb_{0.67}Cd_{0.33}F₂ [42] выявил уже при комнатной температуре высокую концентрацию анионных вакансий V_F^{\bullet} , составляющую $25 \pm 2\%$ в основных анионных позициях, и соответствующего количества междоузельных ионов F'_i. Вызванные замещениями Pb²⁺ на Cd²⁺ "кристаллохимические" антифренкелевские дефекты (F'_i + V_F^{\bullet}), сохраняются при понижении температуры в отличие от термостимулированных антифренкелевских дефектов [8] в матрице β -PbF₂.

В работе [38] определена концентрация носителей заряда (междоузельных ионов F'_i) в кристаллах $Pb_{0.67}Cd_{0.33}F_2$, которая равна $5.1 \cdot 10^{21} \, \mathrm{cm}^{-3}$. Тогда

рассчитанная подвижность носителей заряда при 873 К составляет:

$$\mu_{\rm Fi} = \sigma_{dc}/qn_{\rm mob} = 3.1 \cdot 10^{-3} \,{\rm cm}^2/Vs.$$

Величина ионной проводимости кристаллов β -PbF₂ зависит от неконтролируемых примесей и термической предыстории (разных режимов охлаждения) [43]. Согласно [2] при фарадеевском переходе (780 K, по началу отрицательного отклонения кривой $\sigma_{dc}(T)$ от аррениуского поведения при охлаждении) характеристики носителей заряда в номинально чистом кристалле β -PbF₂ составляют: концентрация антифренкелевских пар $n_{AF} = 2.0 \cdot 10^{20}$ cm⁻³, подвижности дефектов $\mu_{VF} = 2.3 \cdot 10^{-3}$ и $\mu_{Fi} = 8.7 \cdot 10^{-3}$ сm²/Vs. Можно видеть, что при $T > T_{tr}^{\lambda}$ подвижность дефектов в твердом растворе того же порядка, что и подвижность антифренкелевских дефектов в матрице.

4. Фарадеевский фазовый переход в гетеровалентном твердом растворе $Pb_{1-x}Sc_xF_{2+x}$ (x = 0.1)

Температурная зависимость проводимости $\sigma_{dc}(T)$ для гетеровалентного твердого раствора $Pb_{0.9}Sc_{0.1}F_{2.1}$ по-

Рис. 2. Температурная зависимость ионной проводимости для (1) гетеровалентного твердого раствора $Pb_{0.9}Sc_{0.1}F_{2.1}$ ($T_{tr}^{\alpha} \approx 570 \text{ K}$ и $T_{tr}^{\lambda} \approx 670 \text{ K}$) и (2) флюоритовой матрицы β -PbF₂ ($T_{tr}^{\alpha} \approx 620 \text{ K}$ и $T_{tr}^{\lambda} \approx 720 \text{ K}$) в области фарадеевского фазового перехода.

казана на рис. 2. Отклонение зависимости $\sigma_{dc}(T)$ от аррениуского поведения наблюдается в температурном интервале 570–670 К ($T_{tr}^{\lambda} \approx 670$ К и $T_{tr}^{\alpha} \approx 570$ К). Протяженность фазового перехода равна $\Delta T_{tr} \approx 100$ К. Снижение значений T_{tr}^{λ} и T_{tr}^{α} в твердом растворе Pb_{0.9}Sc_{0.1}F_{2.1} по сравнению с матрицей β -PbF₂ составляет 30–45 К. В температурных интервалах $T < T_{tr}^{\alpha}$ и $T > T_{tr}^{\lambda}$ кондуктометрические данные удовлетворяют уравнению Аррениуса–Френкеля, параметры σ_0 и H_{σ} приведены в табл. 1.

Можно видеть, что в низкотемпературной форме твердого раствора lt-Pb_{0.9}Sc_{0.1}F_{2.1} значения $\sigma_{dc}(T)$ также значительно выше, чем в lt- β -PbF₂ (табл. 2). При $T > T_{tr}^{\lambda}$ происходит выход кривой $\sigma_{dc}(T)$ на уровень суперионной проводимости 0.1–2 S/cm. В высокотемпературных ht-формах наблюдается совпадение параметров суперионного транспорта в кристаллах Pb_{0.9}Sc_{0.1}F_{2.1} и β -PbF₂ (кристаллы были выращены в идентичных условиях в одном ростовом эксперименте).

Причина возникновения высокой суперионной проводимости в высокотемпературном состоянии ht-Pb_{1-x}Sc_xF_{2+x} отличается от ситуации в кристаллах ht- β -PbF₂ и ht-Pb_{0.67}Cd_{0.33}F₂. В кристаллах Pb_{1-x}Sc_xF_{2+x} на фактор повышения температуры накладывается дополнительный фактор изменения химического состава, вызванного гетеровалентными замещениями

Рb²⁺ на Sc³⁺. При замещениях Pb²⁺ на Sc³⁺ появляются междоузельные ионы F'_i , нарушающие стехиометрию матрицы β -PbF₂. Кристаллохимические анионные дефекты, вызванные изменением состава Pb_{0.9}Sc_{0.1}F_{2.1}, сохраняются при понижении температуры до комнатной. К сожалению, дефектная структура флюоритового твердого раствора Pb_{0.9}Sc_{0.1}F_{2.1} не изучалась. Однако в структурных исследованиях флюоритовых кристаллов $M_{1-x}R_xF_{2+x}$ (M =Ca, Sr, Ba; R =La-Lu, Y) (ссылки в [20,44]), и флюоритовой фазы высокого давления Pb_{0.3}La_{0.7}F_{2.7} [45] обнаружены междоузельные ионы F'₂.

В [37] оценена концентрация и подвижность носителей заряда (междоузельных ионов F'_i) в кристаллах $Pb_{0.9}Sc_{0.1}F_{2.1}$, которые равны $n_{mob} = 2.0 \cdot 10^{21} \text{ cm}^{-3}$ и $\mu_{Fi} = 3.7 \cdot 10^{-3} \text{ cm}^2/\text{Vs}$ (при 873 K) соответственно. Величина подвижности дефектов в твердом растворе того же порядка, что и подвижность антифренкелевских дефектов в матрице β -PbF₂ (табл. 2).

Снижение температуры фарадеевского перехода подтверждается экспериментальными результатами измерений коэффициентов упругой податливости кристаллов $Ca_{0.91}Y_{0.09}F_{2.09}$ [29] и $Ba_{0.607}La_{0.393}F_{2.393}$ [11], измерений теплоемкости кристаллов $Pb_{1-x}R_xF_{2+2x}$ (R = La, Yb; 0 < x < 0.17) [31] и $M_{1-x}U_xF_{2+2x}$ (M = Ba, Pb; 0 < x < 0.10) [46], а также теоретическими расчетами [15]. Фарадеевский переход происходит при существенно более низких температурах в твердых растворах, чем во флюоритовых матрицах.

Теоретические расчеты [29] указывают на связь температуры T_{tr} с критической концентрацией подвижных дефектов (связанных с присутствием междоузельных ионов фтора и редкоземельных катионов), а данные по проводимости [9] — с критической подвижностью дефектов. Модель ускоренного ионного движения ("enhanced ionic motion" model) [30] дает разумное объяснение эффекта примеси на T_{tr} в кристаллах $M_{1-x}R_xF_{2+x}$.

5. Заключение

Показано, что температуры фарадеевского фазового перехода T_{tr}^{λ} (соответствует максимуму на кривой теплоемкости) и T_{tr}^{α} (отвечает началу структурного разупорядочения анионной подрешетки) обнаруживаются на температурной зависимости ионной проводимости $\sigma_{dc}(T)$ для флюоритовых твердых растворов Pb_{0.67}Cd_{0.33}F₂ и Pb_{0.9}Sc_{0.1}F_{2.1}.

Прослежено влияние изо- и гетеровалентного изоморфизма на размытый фазовый переход в кристаллах MF_2 флюоритовой структуры на примере β -PbF₂. Изоморфное введение изовалентных (Cd²⁺) и гетеровалентных (Sc³⁺) катионов понижает температуры T_{tr}^{λ} и T_{tr}^{α} во флюоритовых твердых растворах по сравнению с одно-компонентной матрицей β -PbF₂ на 30–45 и 100–110 К для Pb_{0.9}Sc_{0.1}F_{2.1} и Pb_{0.67}Cd_{0.33}F₂ соответственно. Введение добавок (Cd²⁺, Sc³⁺) позволяет расширить вниз

область существования высокотемпературной суперионной фазы, для которой достигаются аномально высокие значения фтор-ионной проводимости $\sigma_{dc} = 1-2$ S/cm (873 K) при энтальпии активации ионного переноса $\Delta H_{\sigma} \approx 0.3$ eV.

Сравнение концентрации носителей заряда в твердых растворах $Pb_{0.67}Cd_{0.33}F_2$ и $Pb_{0.9}Sc_{0.1}F_{2.1}$ с концентрацией термоактивированных носителей заряда в высокотемпературной форме ht- β -PbF₂ (при $T = T_{tr}^{\lambda}$) показывает, что они отличаются в пределах порядка. Это указывает на близость структурного разупорядочения анионной подрешетки в кристаллах $Pb_{0.67}Cd_{0.33}F_2$, $Pb_{0.9}Sc_{0.1}F_{2.1}$ (комнатная температура) и ht- β -PbF₂ (высокие температуры). Полученные данные по электропроводности подтверждают высказанное в работе [19] предположение, что анионную подрешетку твердых растворов $Pb_{1-x}Cd_xF_2$ и $Pb_{1-x}Sc_xF_{2+x}$ можно представить как стабилизированную изоморфными замещениями высокотемпературную разупорядоченную (по анионам) форму ht- β -PbF₂.

В высокотемпературных ht-формах кристаллов β -PbF₂, Pb_{0.67}Cd_{0.33}F₂ И Pb_{0.9}Sc_{0.1}F_{2.1} близость суперионного наблюдается параметров транспорта. Результатом изовалентных $(Pb^{2+} \rightarrow Cd^{2+})$ и гетеровалентных (Pb²⁺ → Sc³⁺) замещений является сохранение разупорядоченного дефектного состояния анионного мотива твердых растворов при комнатной температуре. Структурное разупорядочение анионной подрешетки определяет концентрационный вклад n_{mob} в величину проводимости σ_{dc} . Поэтому можно считать, что "родоначальником" этих твердых растворов является именно высокотемпературная форма $ht-\beta$ -PbF₂.

Значительная концентрации анионных дефектов в твердых растворах появляется уже при комнатной температуре. Это приводит к усилению их кооперативного взаимодействия, к сильному ангармонизму колебаний анионов, к массовому смещению анионов из кристаллографических позиций, к возможности образования структурных кластеров, состоящих из анионных и катионных дефектов. Для повышения подвижности анионных дефектов требуется нагрев.

Изовалентные $(Pb^{2+} \rightarrow Cd^{2+})$ и гетеровалентные $(Pb^{2+} \rightarrow Sc^{3+})$ замещения во флюоритовой модификации β -PbF₂ приводят к снижению фарадеевского перехода по температуре и к расширению температурного интервала для состояния с аномально высокой ионной проводимостью $\sigma_{dc} > 0.1-2$ S/cm. Высокая ионная проводимость достигается совместным действием двух переменных в уравнении $\sigma_{dc} \sim n_{mob}\mu_{mob}$. Во-первых, появляются носители заряда вследствие структурного разупорядочения анионной подрешетки из-за изоморфных замещений (фактор концентрации) и, во-вторых, достигаются высокие значения подвижности носителей заряда при более низких температурах вследствие снижения потенциальных барьеров для миграции носителей заряда (фактор подвижности).

При фарадеевском фазовом переходе величина проводимости σ_{dc} не испытывает скачка и концентрация

и подвижность носителей заряда изменяется в слабой степени.

Финансирование работы

Работа выполнена при поддержке Министерства науки и высшего образования в рамках выполнения работ по Государственному заданию Федерального научно-исследовательского центра "Кристаллография и фотоника" Российской академии наук.

Благодарности

Автор благодарит И.И. Бучинскую за выращивание кристаллов и Б.П. Соболева за обсуждение работы.

Конфликт интересов

Автор заявляет об отсутствии конфликта интересов.

Список литературы

- [1] M. O'Keeffe. Superionic Conductors. / Eds G.D. Mahan et al. Plenum Press, N.Y. (1976) P. 101.
- [2] J. Schoonman. Fast ion transport in solids. / Eds P. Vashishta, J.N. Mundy, G.K. Shenoy. North-Holland, N.Y. (1979) P. 631.
- [3] M. Faraday. Experimental Researches in Electricity. Art. 1339. Taylor & Francis, London (1839).
- [4] A.S. Dworkin, M.A. Bredig. J. Phys. Chem. 72, 1277 (1968).
- [5] В.Р. Белослудов, Р.И. Ефремова, Э.В. Матизен. ФТТ 16, 1311 (1974).
- [6] В.Н. Чеботин, В.И. Цидильковский. Электрохимия 16, 651 (1980).
- [7] F.A. Kroger. The chemistry of imperfect crystals. Amsterdam: North-Holland (1964). 1039 p.
- [8] A.B. Lidiard. Crystals with the Fluorite Staructure / Ed. W. Hayes. Clarendon Press, Oxford. (1974). P. 101.
- [9] J. Schoonman. Solid State Ionics 1, 121 (1980).
- [10] C.E. Derrington, A. Linder, M. O'Keeffe. J. Solid State Chem. 15, 171 (1975).
- [11] P.E. Ngoepe, J.D. Comins. J. Phys. C 19, L267 (1986).
- [12] A.V. Chadwick. Solid State Ionics 8, 209 (1983).
- [13] R. Bachmann, H. Schulz. Solid State Ionics 9–10, 521 (1983).
- [14] J. Oberschmidt. Phys. Rev. B 23, 5038 (1981).
- [15] J.E. Vlieg, H.W. den Hartog, M. Winnick. J. Phys. Chem. Solids 47, 521 (1986).
- [16] J. Eapen, A. Annamareddy. Ionics 23, 1043 (2017).
- [17] A. Azimi, V.M. Carr, A.V. Chadwick, F.G. Kirkwood, R. Saghafian. J. Phys. Chem. Solids 45, 23 (1984).
- [18] B.M. Voronin, S.V. Volkov. J. Phys. Chem. Solids 62, 1349 (2001).
- [19] P.P. Fedorov, B.P. Sobolev. J. Less-Common Met. **63**, 31 (1979).
- [20] B.P. Sobolev. The rare earth trifluorides. Pt II. Introduction to materials science of multicomponent metal fluoride crystals. / Institute of Crystallography, Barcelona (2001). 460 p.
- [21] Н.И. Сорокин, А.М. Голубев, Б.П. Соболев. Кристаллография 59, 275 (2014).

- [22] S.M. Shapiro, F. Reidinger. Physics of Superionic Conductors. / Ed. M.B. Salamon. Springer, Berlin (1979). P. 45.
- [23] K. Koto, H. Schulz, R.A. Huggins. Solid State Ionics 3–4, 381 (1981).
- [24] C.E. Derrington, A. Navrotsky, M. O'Keeffe. Solid State Commun. 18, 47 (1976).
- [25] J.P. Goff, W. Hayes, S. Hull, M.T. Hutching. J. Phys.: Condens. Matter. 3, 3677 (1991).
- [26] I. Kosacki, A.P. Litvinchuk, J.J. Tarasov, M.Ya. Valakh. J. Phys.: Condens. Matter. 1, 929 (1989).
- [27] L.M. Volodkovich, G.S. Petrov, R.A. Vecher, A.A Vecher. Termochim. Acta 88, 497 (1985).
- [28] M. Ouwerkerk. Mater. Res. Bull. 20, 501 (1985).
- [29] C.R.A. Catlow, J.D. Comins, F.A. Germano, R.T. Harley, W. Hayes, I.B. Owen. J. Phys. C.: Solid State Phys. 14, 329 (1981).
- [30] J. Schoonman. Solid State Ionics 5, 71 (1981).
- [31] H.W. den Hartog, J. van der Veen. Phys. Rev. B **37**, 1807 (1988).
- [32] M. Ouwerkerk, J. Schoonman. Solid State Ionics 12, 479 (1984).
- [33] И.И. Бучинская, П.П. Федоров. Успехи химии 73, 404 (2004).
- [34] Н.И. Сорокин, И.И. Бучинская, Б.П. Соболев. ЖНХ 37, 2653 (1992).
- [35] V. Trnovcova, P.P. Fedorov, I.I. Buchinskaya, V. Smatko, F. Hanic. Solid State Ionics 119, 181 (1989).
- [36] Н.И. Сорокин, П.П. Федоров, Б.П. Соболев. Неорган. материалы **33**, 5 (1997).
- [37] Н.И. Сорокин. ФТТ 60, 710 (2018).
- [38] Н.И. Сорокин. ФТТ 57, 1325 (2015).
- [39] Н.И. Сорокин, Б.П. Соболев, М. Брайтер. ФТТ **44**, 1506 (2002).
- [40] R.E. Gordon, J.H. Strange. J. Phys. C 11, 3213 (1978).
- [41] R.D. Shannon. Acta Crystallogr. A 32, 751 (1976).
- [42] V. Trnovcova, P.P. Fedorov, M. Ozvoldova, I.I. Buchinskaya, E.A. Zhurova. J. Optoelectron. Adv. Mater 5, 627 (2003).
- [43] Y. Ito, K. Koto, S. Yoshikado, T. Ohachi. Solid State Ionics 15, 253 (1985)
- [44] S. Hull. Rep. Prog. Phys. 67, 1233 (2004).
- [45] Л.П. Отрощенко, В.Б. Александров, Н.А. Бенделеани, И.А. Верин, Б.П. Соболев. Кристаллография 37, 405 (1992).
- [46] M. Ouwerkerk, E.M. Kelder, J. Schoonman, J.C. van Miltenburg. Solid State Ionics 9–10, 531 (1983).
- [47] R.W. Bonne, J. Schoonman. J. Electrochem. Soc.: Electrochem. Sci. Techn. 124, 28 (1977).
- [48] И.В. Мурин, А.В. Глумов, О.В. Глумов. Электрохимия **15**, 1119 (1979).

Редактор Ю.Э. Китаев