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Algorithm for preliminary analysis of diffraction patterns of

nanocomposite materials with an admixture of a bulk component
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This contribution is devoted to discussion of questions related to the influence of a possible contribution from

a bulk material on the lineshape of elastic peaks observed in diffraction experiments at neutron and/or X-ray

radiation scattering on nanoporous matrices containing substances embedded into their porous space (channels).
The proposed algorithm permits to estimate the input of massive component into diffraction peaks using the

analysis of the experimentally observed distortions of the lineshape of Bragg peaks. This preliminary analysis

greatly simplifies the profile analysis of nanocomposite diffraction patterns, especially for molecular sieves based on

powders of SBA-15, MCM-41, MCM-48, etc. types.
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Introduction

Diffraction methods rank among the essential techniques

for research into nanocomposite materials (NCMs), since
the analysis of diffraction spectra provides a considerable

amount of useful data on the NCM structure (and its

temperature evolution), the specifics of phase transitions

in these materials, the internal arrangement of nanoparticles

in pores of the initial matrices (including their sizes and

shape anisotropy), etc. However, difficulties arise in certain

cases in the final processing of experimental data, since

NCMs (especially those produced based on molecular

sieves type SBA-15, MCM-41, MCM-48, etc.) may contain

an admixture of a bulk material that distorts considerably

the general picture of the observed phenomena. For

example, it was demonstrated in [1] that the experimentally

observed temperature hysteresis in the behavior of the order

parameter in NCMs produced based on powders of porous

molecular sieves 2D-SBA-15 and 3D-SBA-15, which contain

ferroelectric NaNO2 in pores, is induced not only by size

effects and properties of the matrix itself, but also by the

presence of admixed bulk sodium nitrate. According to the

refined data obtained by differential scanning calorimetry

and after the application of the procedure detailed in the

present study, bulk sodium nitrate constitutes about 20%

of the overall NaNO2 content of the sample. If admixed

bulk material is present in an NCM, a full-scale diffrac-

tion experiment and full-profile analysis of the obtained

diffraction patterns are often needed. This is not always

possible (especially at the stage of production of an NCM).
The proposed algorithm allows one to determine the bulk

fraction rather quickly and with only a single intense peak

available for analysis. Thus, it becomes possible to perform

preliminary testing of an NCM, estimate the quality of

the prepared sample, and schedule the time needed for

full-scale examination of the structure (and its temperature

evolution) of the given NCM (i.e., estimate the time required

to accumulate a sufficient data set with the contribution of

a bulk material taken into account).

1. Calculation procedure

1.1. Initial parameters and conditions

The availability of data on the instrumental resolution of

the measurement instrument (above all, the dependence of

the elastic peak width on angle θ of scattering of incident

radiation or on the interplanar distance) is one of the key

initial conditions. These data and information regarding the

parameters of the function characterizing the lineshape of

the elastic peak are necessarily provided in the datasheet

of the experimental setup and are available in advance. As

a rule, they are verified with the use of reference samples

at least once in six months. In the present study, we used

the setup parameters of FIREPOD E9 (Helmholtz Zentrum

Berlin, Germany) high-resolution neutron diffractometer as

an example. Instrumental broadening Hinst of the elastic
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peak was calculated as

H2
instr = U tg2 θ + V tg θ + W, (1)

where parameters U,V,W were taken from the datasheet.

It was assumed that the width of the reflection line

corresponding to the bulk phase was defined solely by the

instrumental resolution and the broadening (both for the

bulk material and the NCM) due to possible elastic stress

was absent.

The width of the line of the elastic peak corresponding

to the nanostructured phase was calculated as the sum of

contributions from instrumental and size broadenings.

In general, the width of elastic reflections in an NCM may

increase for two reasons: due to the size effect (broadening
is then proportional to ∼ 1/ cos θ) and due to the internal

stress in nanoparticles (broadening is then proportional

to tan θ). In the general case, the Williamson–Hall formula

is used [2–4]:

B cos θ = η sin θ + kλ/d, (2)

where λ is the radiation wavelength in angstroms, B is the

peak broadening (FWHM) determined with the function

characterizing the shape of the maximum and the resolution

function taken into account (see example in [3,4]), d is the

diffraction particle size, η is the internal stress, 2θ is the

Bragg peak position, and k is the shape parameter, which

is usually ∼ 0.9−1. It was assumed in our calculations

that k = 1. It is seen clearly from the above that the

contributions have different dependences on the scattering

angle and may be distinguished easily. Therefore, below we

limit ourselves to a rather small scattering angle at which

the contribution from internal stress to broadening may be

neglected. The Debye–Scherrer approach is then applicable:

Hs iz e =
kλ

d cos θ
. (3)

The evolution of shape of the (100) peak of the cubic

structure with unit cell parameter a = 3.35 Åwas examined

in simulation of the response.The wavelength of incident

neutrons was λ = 1.7982(1) Å. Two values of parameter a
were used in calculations for the nanostructured material in

pores: 3.35 Å (as for the bulk) and 3.345 Å.

1.2. Calculation details

Three different functions characterizing both the instru-

mental resolution and the lineshape of an experimental elas-

tic peak were considered: Gaussian, Lorentzian, and Voigt

functions. Mixed cases (i.e., when the instrumental function

is Gaussian and the experimental spectrum is characterized

using the Lorentzian function) were not considered. The

evolution of shape (and parameters characterizing it) of

the elastic peak was then calculated as function of the

weight percentage of the bulk material, the diffraction size

of nanoparticles, and the above-mentioned difference in unit

cell parameters.

The contributions due to instrumental broadening and size

broadening were summed in accordance with the following

formulae:

for a Gaussian line profile, FWHM HG was determined as

H2
G = H2

instr + H2
s iz e, (4)

for a Lorentzian profile,

HL = Hinstr + Hs iz e, (5)

for a line profile characterized by the Voigt function, which

is, by definition, a convolution of a Lorentzian and a

Gaussian:

V (x) = L(x) ⊗ G(x) =

+∞
∫

−∞

L(x − u)G(u)du (6)

(here, L(x) and G(x) are the components characterized by

a Lorentzian and a Gaussian, respectively, with different

FWHM values HL and HG), numerical approximation of

expression (6) in the form of a linear combination of

Lorentzian L′(x) and Gaussian G′(x) contributions (the so-

called pseudo-Voigt function) with the same FWHM HpV

was used:

pV (x) = ηL′(x) + (1− η)G′(x), (7)

parameters η and HpV of pseudo-Voigt function pV (x) were
expressed in terms of HG and HL, which are defined by (4)
and (5), and calculated in accordance with the approach

proposed in [5]:

H5
pV = H5

G + 2.69269H4
G HL + 2.42843H3

GH2
L

+ 4.47163H2
GH3

L + 0.07842HG H4
L + H5

L, (8)

η = 1.36603
HL

HpV
− 0.47719

(

HL

HpV

)2

+ 0.11116

(

HL

HpV

)3

.

(9)

At the next stage, the behavior of dispersion σ , asymme-

try coefficient γ1, and coefficient of excess γ2, was analyzed.

They were expressed in terms of the second, the third, and

the fourth moments about mean µ2, µ3, µ4 for simulated

distributions of intensity of elastic peaks and calculated

using the following formulae [6]:

σ =
√
µ2, γ1 =

µ3

σ 3
, γ2 =

µ4

σ 4
− 3,

to calculate the moments for line profiles characterized

by Lorentzian and Voigt functions, integration was per-

formed over a finite interval symmetric with respect to the

peak maximum, since the integrals defining higher-order

moments for these functions are undefined on an infinite

interval. The calculations results are presented in Figs. 1−4.
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Figure 1. Variation of dispersion (σ ) of the lineshape of Bragg reflection with an increase in the weight percentage of the bulk phase in

the sample (x) for different line profile functions (Gaussian (a), Lorentzian (b), and pseudo-Voigt (c)), particle sizes, and ratios of lattice

parameters of the bulk and nanostructured phases (filled symbols: lattice parameters are equal; open symbols: lattice parameters of the

bulk and nanostructured phases differ).
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Figure 2. Variation of the coefficient of excess (γ2) of Bragg reflection with an increase in the weight percentage of the bulk phase in

the sample (x) for different line profile functions (Gaussian (a), Lorentzian (b), and pseudo-Voigt (c)), particle sizes, and ratios of lattice

parameters of the bulk and nanostructured phases (filled symbols: lattice parameters are equal; open symbols: lattice parameters of the

bulk and nanostructured phases differ).

2. Results and discussion

Figure 1 presents the results of calculation of the depen-

dence of parameter σ on the admixture of a bulk material

at different nanoparticle sizes (indicated in the figure) for

Gaussian (Fig. 1, a), Lorentzian (Fig. 1, b), and pseudo-Voigt

(Fig. 1, c) functions. Note that filled symbols in all figures

correspond to the case when the unit cell parameters for

the bulk fraction and the nanostructured material are the

same. The estimated error of calculations is also shown and
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Figure 3. Variation of the asymmetry coefficient (γ1) of Bragg reflection with an increase in the weight percentage of the bulk phase in

the sample (x) for different line profile functions (Gaussian (a), Lorentzian (b), and pseudo-Voigt (c)) and particle sizes.

usually does not exceed the size of a symbol. The lineshape

dispersion decreases as the weight percentage of the bulk

material increases. This variation becomes more apparent

as particles become smaller in size. The dependence on

the difference between lattice parameters a is also well-

pronounced. If two Lorentzians (Fig. 1, b) or two pseudo-

Voigt functions (Fig. 1, c) are used to characterize the

instrumental resolution and the experimental elastic peak,

the cases of different and equal lattice parameters become

indistinguishable within the error limits (filled and open

symbols coincide), and only the dependence of σ on the

bulk phase admixture remains. Note that the positions of the

maxima of distributions naturally depend on the difference

between unit cell parameters. It can be seen from Fig. 1 that

a fairly reliable estimate of the percentage contribution of

the bulk phase may be obtained by analyzing the dispersion

data only: this contribution is no lower than 10% for

Gaussian and Lorentzian functions (for nanoparticles with a

characteristic size below 80 nm) and approximately 5% for

the pseudo-Voigt function (for all the studied nanoparticle

sizes).
Let us now examine the dependence of the coefficient

of excess (γ2) on the bulk phase percentage (Fig. 2).
Figure 2 demonstrates clearly that this coefficient increases

with the bulk fraction percentage regardless of the type

of the profile function, the size of particles, and the

ratio of lattice parameters. The most pronounced growth

of γ2 corresponds to the smallest particles for all three

profiles. Again, a fairly reliable estimate of the percentage

contribution of the bulk phase may be obtained: this

contribution is no lower than 10% for the Gaussian function

(for nanoparticles with a characteristic size below 80 nm)
and approximately 5% for Lorentzian and pseudo-Voigt

functions (for all the studied nanoparticle sizes). In addition,

just as in Fig. 1, parameter γ2 is almost independent of the

difference between the unit cell parameters for Lorentzian

(Fig. 2, b) and pseudo-Voigt functions (Fig. 2, c): filled and

open symbols coincide.

Next, we examine the behavior of asymmetry coeffi-

cient γ1. It is evident that the corresponding lineshape

distortions are related in this case to the difference between

lattice parameters a for bulk and nanostructured materials.

Therefore, the results of calculations only for the case of

differing parameters and for all the functions mentioned

earlier are presented in Fig. 3. It should be noted

immediately that the magnitude of coefficient γ1 increases

with the weight percentage of the bulk phase; i.e., the

larger the particles, the greater the γ1 coefficient. It is

seen clearly that this variation (i.e., the difference between

the values of γ1 at different weight percentages of the bulk

phase and different diffraction sizes of nanoparticles) for the
Gaussian function (Fig. 3, a) is significantly stronger than the

corresponding variation for the Lorentzian and pseudo-Voigt

profiles.

It follows from Fig. 3, a that the lineshape asymmetry of

the elastic peak may well be measured experimentally for

an NCM containing, alongside with nanoparticles with a

characteristic size of 40 and 20 nm, at least 5% of a bulk

material. As for larger nanoparticles (80 nm), 5% admixture

of the bulk phase also becomes detectable for the Lorentzian

and pseudo-Voigt functions (Figs. 3, b and 3, c).

At the last stage, we have used formulae (4), (5), (7),
and (9) to calculate the dependences of the FWHM values

(in degrees) for all the cases examined above (Fig. 4) for

the FIREPOD E9 high-resolution neutron diffractometer.
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Figure 4. Variation of the full width at half maximum (FWHM) of Bragg reflection with an increase in the weight percentage of the bulk

phase in the sample (x) for different line profile functions (Gaussian (a), Lorentzian (b), and pseudo-Voigt (c)), particle sizes, and ratios

of lattice parameters of the bulk and nanostructured phases (filled symbols: lattice parameters are equal; open symbols: lattice parameters

of the bulk and nanostructured phases differ).

The dependences in Fig. 4 demonstrate clearly that a

fairly reliable estimate of the bulk material admixture at

a level of 5% for small nanoparticles (with a diffraction

size below 80 nm) may be obtained just by analyzing

the FWHM values. In fact, one may even estimate the

difference in unit cell parameters (if such a difference

exists). Thus, the following algorithm for preliminary

testing (by neutron or X-ray diffraction) of nanocomposite

materials with a possible admixture of a bulk material may

be formulated based on the above considerations:

1. A model spectrum is calculated with the instrumental

resolution taken into account and for several possible

(expected) diffraction sizes of nanoparticles introduced into

the pores of the matrix used. Futher FWHM values and

moments σ , γ1, γ2 are calculated.

2. Fine-resolution measurements of a single (in the

case of a cubic structure) intense reflection are performed

at small scattering angles for the empty matrix and the

bulk material in the region of the chosen peak. The

FWHM values and moments σ , γ1, γ2 of the obtained

angular distribution of intensity for the bulk phase and

the NCM with the empty-matrix background subtracted are

then analyzed. At the same time, it is necessary to ensure

enough statistics to make the observed broadening has been

beyond the errors of FWHM determination.

3. The results of comparison of parameters of simulated

and experimental spectra are used to estimate the size of

a nanoparticle, its lattice parameters, and the bulk material

content (in certain cases, with an accuracy up to 5 percent

by weight; see above).

In our view, the proposed procedure may prove to be

useful in production of NCMs based on molecular sieves,

since it does not involve full-scale diffraction measurements

and full-profile analysis of the obtained data, is not time-

consuming, and is applicable even at low-resolution diffrac-

tometers (only an accurately determined resolution function

of the setup and extensive statistics are needed) in the case

of nanoparticles with a small diffraction size. The procedure

may also be used to evaluate the parameters of NCMs

based on other porous matrices where the formation of

large agglomerates in cracks, voids, and other similar matrix

defects is possible.

Conclusion

A method allowing one to obtain data on the probable

weight percentage of a bulk material in a nanocomposite

material and estimate the size and parameters of the

crystal structure of nanoparticles in this NCM by analyzing

the parameters of a single diffraction peak for NCMs

based on nanoporous matrices has been discussed. In

future studies, we plan to examine the case of mixed

functions characterizing the instrumental resolution and the

NCM diffraction peak (e.g., Gaussian and Lorentzian or

Gaussian and pseudo-Voigt functions) and the case when

an NCM contains, apart from bulk and nanostructured

materials, an amorphous phase.
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