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Introduction

The classical Onsager relations of symmetry of kinetic

coefficients [1] were obtained in the linear approximation

based on the invariance of macroscopic motion with

respect to time inversion and on the assumption that the

average relaxation of spontaneous fluctuations in the system

proceeds in accordance with macroscopic laws. They were

first applied to thermodynamic processes accompanied by

entropy production. The linear relation between flows and

gradients was introduced phenomenologically. The quantum

substantiation of reciprocity relations was performed by

Kubo [2] with the equilibrium density operator (i.e., in

the linear approximation) and does not allow for the

presence of temperature and concentration gradients and

heat and matter flows in the system. Attempts to apply the

Kubo method to thermodynamic processes did not yield

meaningful results, not least because of the fact that the

interactions involved in thermodynamic processes cannot

be characterized by introducing additive components into

the Hamiltonian [3].
The interest in generalizing the Onsager reciprocity

relations to open nonlinear systems in the recent decade

is largely stimulated by the progress in spintronics [4],
straintronics [5], and spin caloritronics [6]. The observation

of the anomalous Ettingshausen effect [7] and switching

of the sign of the Peltier effect under a combined action

of a magnetic field and mechanical stress [8,9] form the

basis for efficient spin-thermal transport systems. Notably,

significant violations of the reciprocity relations between

spin-dependent Peltier and Seebeck effects, which are

attributable to the nonlinearity of the voltage-current rela-

tionship at strong transport currents, were observed [10].
The reciprocity relations for nonlinear systems are satisfied

only in particular cases (e.g., for closed systems in a

constant and homogeneous magnetic field [11]). It was

demonstrated experimentally that these relations are satis-

fied within the measurement accuracy [12]. Since spintronic

and caloritronic components are open nonlinear systems

functioning in inhomogeneous and nonstationary magnetic,

electric, and temperature fields, general reciprocity relations

for such systems are of interest.

The dynamics of open systems is characterized in modern

quantum mechanics by the Lindblad equation for the density

matrix of the system derived by eliminating the environment

(reservoir) variables [13]. The operator in charge of the

energy exchange with the reservoir has the form of the Lind-

blad superoperator. However, accurate derivation of such

an operator preserving both the trace of the density matrix

and its positive definiteness is extremely complex. Various

approximations and phenomenological considerations are

applied in practice. For example, it may be assumed that

the superoperator for interacting subsystems is a sum

of superoperators for noninteracting subsystems. It was

demonstrated in [14] that this approach does not guarantee

compliance with the laws of thermodynamics and that the

average values of operators may differ in order of magnitude

from the correct ones. An alternative way to analyze

open systems is the quasi-equilibrium density operator

method [15]. Thermodynamic processes are then regarded

as perturbations of the quasi-equilibrium operator that

are introduced additively into the von Neumann equation

for the density operator. This approach is applicable to a

nonlinear medium with spin currents and heat flows.

1. Locally quasi-equilibrium distribution

Let us consider an open system in inhomogeneous and

varying magnetic and electric fields that consists of several

types of interacting particles (components). The particles

within each component are the same. The system exchanges

energy and matter with thermostats and particle reservoirs

through contacts (regions Sk of the system boundary

surface S, where the system comes into contact with the

environment). Let the Hamiltonian of the system (Ĥ) and its

observables (D̂i), which do not depend explicitly on time in

the Schrödinger representation, be describable by quasilocal
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density operators

Ĥ(t) =

∫

V

ĥ(t, r)d3r + Ĥr (t), D̂i(t) =

∫

V

d̂i(t, r)d
3r,

(1)

where Ĥr is the relaxation system–environment interaction

Hamiltonian and V is the system volume. Operator

d̂(t, r) is quasilocal; its matrix element in the coordinate

representation d(t, r, r′, r′′) decreases rapidly with distance

from at least one of the points r′ and r′′ to point r [16]. The
interaction representation is used in (1) and below.

Let us designate the mass, the charge, the spin gyromag-

netic ratio, and the spin of particles of the ith component

as mi , qi , γi , and s i , respectively. If particles are interacting

via the Coulomb interaction, we may choose the following

in the second quantization representation [15,16]:

ĥ(t, r) =
1

2mi

(

p̂i +
qi

c
Â(t, r)

)

9̂+
iσ (t, r)

(

p̂i −
qi

c
Â(t, r)

)

× 9̂iσ (t, r) − ~γi9̂
+
iσ (t, r)siσσ ′9̂iσ ′(t, r)B(r, r)

+ qi9̂
+
iσ (t, r)9̂iσ (t, r)ϕ̂(t, r) − d̂i(t, r) f i(t, r). (2)

Here, Â(t, r) is the operator of vector potential of the

magnetic field;

ϕ̂(t, r) =

∫

9̂+
jσ (t, r′)

q j

|r − r′|
9̂ jσ (t, r′)d3r ′ + ϕ(t, r) (3)

is the operator of potential of the electric field; ϕ(t, r) is the
potential of the electric field produced by sources external

to the considered system; f i(t, r) are the distributions of

the specified mechanical forces corresponding to observ-

ables Di ; 9̂iσ (r) is the field operator of particles of the ith
component; σ is the spin variable; and siσσ ′ is the spin

operator. A particle of the ith component is located at

point r, and a particle of the jth component is at point r′.

The operator representation of potentials is due to the fact

that they are produced not only by external sources, but also

by particles of the system. Therefore, they are not specified

functions of time and coordinates and instead depend on

operators of these particles.

Accordingly, in the interaction representation

ĉ i(t, r) = 9̂+
iσ (t, r)9̂iσ (t, r),

ŝ iα(t, r) = 9̂iσ (t, r)s iασσ ′ 9̂iσ ′(t, r),

π̂iα(t, r) = −
i~
2

(

∂9̂iσ (t, r)
∂rα

9̂iσ (t, r)

− 9̂+
iσ (t, r)

∂9̂iσ (t, r)
∂rα

)

(4)

are the operators of particle densities and the αth projection

of the spin and momentum of particles of the ith component

(there is no summation over i in formulae (4)).
In order to switch to a continual description of the

system, we average out the density of Hamiltonian (2) over

a physically small volume v ∈ V centered at point r that

contains a sufficient number of particles for averaging. Let

us expand the potentials into a Taylor series about point r.

Assuming that volume v is small, we limit ourselves to the

second expansion term within it. The following is obtained

in the Coulomb calibration and the dipole approximation:

ϕ̂(t, r + r′) = ϕ̂(t, r) + r′∇ϕ̂(t, r), r ∈ v,

Â(t, r + r′) = Â(t, r) + (r′∇)Â(t, r)

= Â(t, r) +
[

B̂(t, r) × r′
]

/2. (5)

Let us insert expansion (5) into the right-hand part of

formula (2). We neglect the quantities quadratic in magnetic

field and add the total time derivative of P̂(r))Â(t, r).
Having performed standard transformations, we obtain the

following for the sum of the first, the second, and the third

terms:

−
~
2

2mi
9̂+

iσ (r)19̂iσ (r) − M̂(r)B̂(t, r)

− P̂(r)Ê(t, r) − ρ̂e(t, r)ϕ̂(r). (6)

Here,

1

v

∫

v

qi9̂
+
iσ (t, r + r′)9̂iσ (t, r + r′)d3r ′ = ρ̂0(t, r) + ρ̂e(t, r),

P̂(t, r) =
1

v

∫

v

qi9̂
+
iσ (t, r + r′)r′9̂iσ (t, r + r′)d3r ′,

M̂(t, r)=
1

v

∫

v

{

−
i~qi

2cmi
9̂iσ (t, r+r′)

[

r′ ×
∂

∂r

]

9̂iσ (t, r+r′)

+ ~γi9̂
+
iσ (t, r + r′)siσσ ′9̂iσ ′(t, r + r′)

}

d3r ′ (7)

are operators of the unperturbed charge density, pertur-

bation of the charge density, polarization (i.e., the dipole-

moment density), and magnetization (i.e., the magnetic-

moment density), respectively. If the system in its unper-

turbed state is locally electrically neutral, ρ̂0(t, r) = 0.

Assuming that averaging over volume v containing a

large number of particles is equivalent to the quantum

average, we substitute the volume-average operator of

perturbation of the charge density (7) with its quantum

average ρ(t, r) = 〈ρ̂e(t, r)〉, which is regarded as a specified

classical function defined by the interaction between the

system and thermostats. With relations (5) taken into

account, formula (2) then takes the form

ĥ(t, r) = ĥ0(t, r) − d̂i(t, r) f i(t, r). (8)

Here,

ĥ0(t, r) = −
~
2

2mi
9̂+

iσ (t, r)19̂iσ (t, r) (9)

is the density operator of stationary unperturbed Hamilto-

nian Ĥ0.
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Operators Ê(t, r) and B̂(t, r) in Eq. (6) are the operators

of effective fields acting on a particle at point r. They

are the sums of fields produced by sources external to the

system and fields produced by all particles of the system

except the one under consideration. If the sources of

particles are thermostats, it may be assumed that their

state remains unchanged in interaction with the system.

Fields E(t, r), H(t, r) produced by external sources and

charge density ρ(t, r) may then be regarded as specified

classical functions. If the variation of polarization and

magnetization within small volume v is negligible, it may be

assumed that the effective field is a field in a small spherical

cavity centered at point r:

Ê(t, r) = E(t, r) + 4πP̂(t, r)/3,

B̂(t, r) = H(t, r) + 4πM̂(t, r)/3.

Term −4πP̂2(t, r)/3− 4πM̂2(t, r)/3 may then be in-

cluded into density (9) of the unperturbed Hamiltonian. It

follows from the second and the third formulae (7) that

it includes in this case the dipole Coulomb interaction of

charges and the magnetodipole, spin-orbit, and spin-spin

(exchange) interaction of all charged particles of the system.

In accordance with (2), the Coulomb interaction between

charges is represented by term ϕ̂(t, r)ρ(t, r), which is

regarded as a perturbation. Among observables d̂i(t, r) are

potential ϕ̂(t, r) and projections of polarization P̂α(t, r) and
magnetization M̂α(t, r). Specified mechanical forces ρ(t, r),
Eα(t, r), and Hα(t, r) correspond to them.

The number of degrees of freedom of the environment

is much higher than that of the system, and the state

of the environment remains unchanged in interaction with

the system. It may then be assumed that the relaxation

Hamiltonian of the system with the environment depends

not on the environment operators, but on their quantum

averages (i.e., classical quantities that are random functions

of time). The relaxation Hamiltonian of the system with

the environment may then also be regarded as a random

function of time and observables of the system only. With

Eqs. (1) and (8) taken into account, the dynamics of density

operator ρ̂ and observables of such a system is characterized

by closed von Neumann equations

i~
∂ρ̂

∂t
= −

∫

V

f i(t, r)
[

d̂i(t, r), ρ̂
]

d3r +
[

Ĥr , ρ̂
]

,

i~
∂ d̂i

∂t
=
[

d̂i(t, r, Ĥ0)
]

, Ĥ0 =

∫

V

ĥ0(t, r)d
3r. (10)

If external mechanical inputs are lacking, a stationary

locally quasi-equilibrium distribution is established in the

system with density operator [15]

ρ̂q(t) = exp

{

−8(t) −
∫

V

θ(t, r)
(

ĥ0(t, r)

− µi(t, r)ĉ i(t, r) + ~γi ŝ iα(t, r)Bα(t, r)
)

d3r

}

,

8(t) = ln Sp exp

{

−

∫

V

θ(t, r)
(

ĥ0(t, r)

− µi(t, r)ĉ i(t, r) + ~γi ŝ iα(t, r)Bα(t, r)
)

d3r

}

. (11)

Here, 8 is the Massieu−Planck functional for a

quasi-equilibrium system in external fields [17],
θ(t, r) = 1/(kT (t, r)), k is the Boltzmann constant,

T (t, r) is the local temperature, and µi(t, r) is the local

chemical potential of particles of the ith component. An

inhomogeneous and nonstationary distribution of functions

and operators in (11) and (12) may be established if the

system comes into contact with several different thermostats

and reservoirs.

2. Thermodynamic forces and flows

In the second quantization representation, we introduce

a complete orthonormal system of
”
single-particle“ func-

tions 9i
p(r, t) with discrete index p for each component.

In the space of the second quantization wave functions

8(n1
1, . . . , ni

p, . . .), where ni
p is the occupation number

of the pth single-particle state of the ith component,

we introduce the basis of eigenfunctions of unperturbed

Hamiltonian Ĥ08k(. . . ni
p . . .) = Ek8k(. . . ni

p . . .).
The solution of the second von Neumann equation (10)

takes the form

d̂(t, r) = exp
(

iĤ0t/~
)

d̂(0, r) exp
(

−iĤ0t/~
)

,

dkm(t, r) = exp(iωkmt′)dkm(t − t′r). (12)

Here, ωkm = (Ek − Em)/~. Therefore, in view of the

Hermitian nature of observables,

d̂i(−t, r) = εi d̂
∗

i (t, r),

dikm(−t, r) = εi d
∗

ikm(t, r) = εi dimk(t, r). (13)

Here, εi = 1 if the ith observable does not change

sign upon time inversion (as polarization) and its operator

in the Schrödinger representation is real, and εi = −1

if the ith observable changes sign upon time inversion

(as magnetization) and its operator in the Schrödinger

representation is imaginary.

Let us introduce vectors

F(t, r) = {. . . f i(t, r), . . .} = F(−t, r) and

F̃(t, r = {. . . εi f i(t, r), . . .}. At this stage, we consider

the components of magnetic induction on which quasi-

equilibrium distribution (11) does depend explicitly as

separate forces that are not included into vector F of

mechanical forces. Quasi-equilibrium distribution (11) then

does not depend explicitly on mechanical forces. Since

ŝ∗iα(t, r) = −ŝ iα(t, r), we obtain the following from the first

Eq. (11):

ρ̂q∗(−B(t, r), T(t, r)) = ρ̂q(B(t, r), T(t, r)). (14)
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Here, T(t, r) = {T (t, r), µ1(t, r), . . .}. The first Eq. (10)
yields

ρ̂(−t, F(t, r)) = ρ̂∗(t, F̃(t, r)) (15)

Let us perform time inversion in relation

di(t, r) = Sp{ρ̂(t, F(t, r))d̂i(t, r)}

. Taking (13) and (15) into account, we obtain

εi di(t, r) = Sp{ρ̂∗(t, F̃(t, r))εi d̂∗

i (t, r)}. Since observ-

able di(t, r) is real, di(t, r) = Sp{ρ̂(t, F̃(t, r))d̂i(t, r)}. Thus,

ρ̂(t, F(t, r)) = ρ̂(t, F̃(t, r)). (16)

The first Eq. (10) in the Markovian relaxation approxima-

tion, which corresponds to the Onsager assumption [1], has
the following matrix form:

ρkm(t0, F, T, B) = ρ0
km(F, T, B),

∂ρkm(t, F, T, B)

∂t
=

ρ
q
km(T, B) − ρkm(t, F, T, B)

τkm

−
i
~

∫

V

f j(t, r)(ρkl(t, F, T, B)d jlm(t, r)

− d jkl(t, r)ρlm(t, F, T, B))d3r. (17)

Here, τkm = τmk are real positive relaxation times, and

it is assumed that the system at time t0 was in a quasi-

equilibrium state with density matrix ρ0
km. It is implied here

and elsewhere that functions F, T and B depend on time

and coordinates.

We seek the solution of Eq. (17) in the form

ρkm(t, F, T, B) = ρ̃km(t, F, T, B) exp(iωkmt). It follows from
the second Eq. (13) that

ρ̃km(t0, F, T, B) = ρ0
km(t, T, B) exp(−iωkmt0),

∂ρ̃km(t, F, T, B)

∂t

=
ρ

q
km(T, B) exp(−iωkmt0) − ρ̃km(t, F, T, B)

τkm

− iωkmρ̃km(t, F, T, B) −
i
~

∫

V

f j(t, r)

× (ρ̃kl(t, F, T, B)d jlm(0, r)

− d jkl(0, r)ρ̃lm(t, F, T, B,))d3r. (18)

Let us perform complex conjugation in Eq. (18) by

substituting F(t, r) with −F̃(t, r) and B(t, r) with −B(t, r).
T(t, r) is left intact. Taking Eq. (14) into account, we obtain

ρ̃∗

km(t0,−F̃, T,−B) = ρ
q
km(T, B) exp(−iωmkt0),

∂ρ̃∗

km(t,−F̃, T,−B)

∂t

=
ρ̃

q
km(t, T, B) exp(−iωmkt0) − ρ̃∗

km(t,−F̃, T,−B)

τkm

− iωmk ρ̃
∗

km(t,−F̃, T,−B) −
i
~

∫

V

ε j f j(t, r)

× (ρ̃∗

kl(t,−F̃, T,−B)d jlm(0, r)

− d jkl(0, r)ρ̃
∗

lm(t,−F̃, T,−B,))d3r. (19)

With the second Eq. (13) taken into account,

it follows from the uniqueness of solution

of Cauchy problems (18) and (19) that

ρ̃km(F(t, r), T(t, r), B(t, r))=ρ̃∗

km

(

−F̃(t, r), t(t, r)−B(t, r)
)

under a simultaneous substitution of all frequencies ωkm

with ωmk . With condition (16) taken into account, we find

ρ̃km(F(t,r), T(t,r), B(t,r)) = ρ̃∗

km(−F(t,r), T(t,r),−B(t,r)).
Thus, magnetic field B on which quasi-equilibrium

distribution (11) does depend explicitly may be regarded

as a mechanical force and included into vector F. With the

Hermitian nature of the operator taken into account, we

then obtain

ρ̃km(F(t, r), T(t, r)) = ρ̃mk(−F(t, r)T(t, r)). (20)

Equation (17) is equivalent to integral equation

ρkm(t) = (ρ0
km + ρ

q
km(t)) exp

(

t0 − t
τkm

)

− ρ
q
km(t)

+

t
∫

t0

exp

(

t0 − t
τkm

)

dρq
km(t′)

dt′
dt′ +

i
~

∫

V

t
∫

t0

exp

(

t′ − t
τkm

)

× f j(t
′, r′)(d jkl(t

′, r′, )ρlm(t′) − ρkld jlm(t′, r′))dt′d3r ′.
(21)

Integration by parts was performed here in the integral

containing ρ
q
km. In accordance with Eq. (11),

dρ̂q(t)
dt

=
1

2

{

ρ̂q(t)Â(t) + Â(t)ρ̂q(t)
}

,

Â(t) = −

∫

V

θ(t, r)

(

∂ ĥ0(t, r)
∂t

− µi(t, r)
ĉ i(t, r)
∂t

+ ~γi Bα(t, r)
∂ ŝαi (t, r)

∂t

)

d3r

−

∫

V

(

∂θ(t, r)
∂t

ĥ0(tr) −
∂θ(t, r)µi(t, r)

∂t
ĉ i(t, r)

+ ~γi ŝαi (t, r)
∂θ(t, r)Bα(t, r)

∂t

)

d3r −
d8
dt

. (22)
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The corresponding density operators of matter and energy

flows and the spin current of the ith component, which

satisfy the continuity equation, may be introduced for

quasilocal density operators [16]:

∂ ĥ
∂t

= −
∂ q̂α

∂rα
,

∂ ĉ i

∂t
= −

∂ j iα

∂rα
,

∂ ŝ iα

∂t
= −

∂υiαβ

∂rβ
, α = 1, 2, 3. (23)

Relations (23) do not uniquely define the flow density

operators. One may introduce an additional requirement

in that the correct transformation properties should be

maintained under Galilean transformation r → r′ = r + vt

ĉ i(r
′) → ĉ ′

i(r
′) = ĉ i(r

′), ĥ(r) → ĥ′(r′) + v2mi ĉ i(r
′)/2,

π̂iα(r) → π̂′

iα(r
′) = π̂iα(r

′) + vαmi ĉ i(r
′),

ĵ iα(r
′) → ĵ ′iα(r

′) = ĵ iα(r
′) + vα ĉ i(r

′),

q̂iα(r) → q̂′

iα(r
′) = q̂iα(r

′) + vαĥ(r′)

+ v2mi ĵ ′iα(r
′)/2 + vαvβπ̂β(r

′). (24)

Density operator (2) of the following form satisfies

conditions (23) and (24) [16]:

q̂α(t, r)=
i
2~

∫

V

d3r ′r ′α

1
∫

0

[

ĥ0(t, r−(1−ξ)r′), ĥ(t, r+ξr′)
]

dξ.

Similar relations also hold true for density operators of

the form (4). Here, the commutator in the inner integral is

calculated with account for commutation relations

9iσ ′(r′)9̂+
iσ ± 9̂iσ (r)9̂iσ ′(r′) = δ(r − r′)δσσ ′ ,

where the upper sign is for fermions and the lower

one is for bosons. The other commutators and

anticommutators are equal to zero. In addition,

9̂+
iσ ′(r′)1r9̂is (r) = 1r(9̂

+
iσ ′(r′)9̂iσ (r)). With (9) taken into

account, we then obtain

ĵ iα =
π̂iα

mi
,

υ̂iαβ = 9̂iσ s iασσ ′ −
p̂iβ

2mi
9̂iσ ′ −

p̂iβ

2mi
9̂+

iσ s iασσ ′ 9̂iσ ′ . (25)

Let us insert Eqs. (23) into the first integral in the right-

hand part of the second Eq. (22) and integrate by parts:

∫

V

θ

(

∂ ĥ0

∂t
− µi

∂ ĉ i

∂t
+ ~γBα

∂ ŝσ i

∂t

)

d3r

= −θkQ̂k + θkµik Î ik − ~γiθkBαk6̂iαk

+

∫

V

(

q̂α

∂θ

∂rα
− ĵ iα

∂(θµi )

∂rα
+ ~γi υ̂iαβ

∂(θBα)

∂rβ

)

d3r. (26)

Here,

Q̂k(t) =

∫

s k

nkβ(r)q̂β(t, r)d
2r,

Î ik(t) =

∫

s k

nkβ(r) ĵ iβ(t, r)d
2r,

6iαk(t) =

∫

s k

nkβ(r)υiαβ(t, r)d
2r

are the operators of flows of energy, particles of the ith com-

ponent, and the α-projection of the spin current of particles

of the ith component through the kth contact, respectively;

θk(t) = θ(t, rk); µik(t) = µi(t, rk); Bαk(t) = Bα(t, rk); rk is

the coordinate of the center of the kth contact; and nkβ is

the β-projection of the outward normal to the surface of the

kth contact.

Alongside with mechanical observables d̂i(r) and the

corresponding mechanical forces f i(t, r), we introduce

thermodynamic observables: densities of energy ĥ0(t, r),
particles of the ith component ĉ i(t, r), and projection of

their spin ŝ iα(t, r), projections of the flow densities of

energy q̂α(t, r) and particles of the ith component ĵ iα(t, r),
components of the spin-current density tensor of particles

of the ith component υ̂iαβ(t, r), flows of energy −Q̂k(t),
particles of the ith component Î ik(t), and the α-projection

of the spin current of particles of the ith component 6̂iαk

through the kth contact and the corresponding thermo-

dynamic forces ∂θ/∂t, −∂(θµi)∂t, ∂θ/∂rα , −∂(θµi )/∂rα ,
~γi∂(θBα)/∂rβ , θk(t), θk(t)µik(t), and −~γiθk Bαk . We

preserve common numeration and designations d̂i(r) and

f i(t, r) for all observables and forces, but include only

mechanical forces into vector F(t, r). Thermodynamic

forces are included into vector T(t, r).

3. Reciprocity relations

Let time t0 in formula (21) tend to −∞. The first term in

the right-hand part is then equal to zero. Let us introduce

new variable τ = t − t′ . With (22) and (26) taken into

account, Eq. (21) takes the form

ρkm(t) =
i
~

∫

V

∞
∫

0

exp

(

−τ

τkm

)

(

d jkl(t − τ , r′)ρkl(t − τ )

− ρkl(t − τ )d jlm(t′, r′)
)

f j(t − τ r′)dτ d3r ′

− ρ
q
km(t) −

∞
∫

0

exp

(

−τ

τkm

)

ρ
q
km(t − τ )

d8(t − τ )

dt
dτ

−
1

2

∫

V

∞
∫

0

exp

(

−τ

τkm

)

(

d jkl(t − τ , r′)ρq
kl(t − τ )

+ ρ
q
kl(t − τ )d jlm(t′, r′)

)

f j(t − τ r′)dτ d3r ′. (27)
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The first integral incorporates mechanical quantities,

while the third one incorporates thermodynamic quantities.

The following is obtained for the average value of

observables from (27):

di(t, r, F, T) = ρkm(t, F, T)dimk(t, r, F, T) = dq
i (t, r)

+

∫

V

∞
∫

0

χi j(τ , r, r
′, F, T) f j(t − τ , r)dτ d3r ′. (28)

The first term in the right-hand part of (28) takes the

form

dq
i (t, r, F, T) = −ρ

q
km(t)dimk(r, t)

−

∞
∫

0

exp

(

−τ

τkm

)

ρ
q
km(t − τ )dimk(t, r)

d8(t − τ )

dt
dτ (29)

and characterizes the quasi-equilibrium value of the observ-

able.

The second term in (28) characterizes the response of a

nonlinear system to mechanical and thermodynamic inputs.

With the second Eq. (13) taken into account, the response

function for a mechanical input at t′ = t − τ /2 has the form

of the Kubo formula [2]

χ
(

τ , r, r′, F(t, r), T(t, r)
)

=
iρkm(t − τ , F(t, r), T(t, r))

~ exp(τ /τkm)

×
{

diml(t, r)d jlk(t − τ , r′) − d jml(t − τ , r′)dilk(t, r)
}

=
i ρ̃km(F(t, r), T(t, r))

~ exp(τ /τkm)
exp

(

iωmk
τ

2

)

{

diml

( τ

2
, r
)

× d jlk

(

−
τ

2
, r
)

− d jml

(

−
τ

2
, r′
)

dilk

(τ

2
, r
)

}

. (30)

The following is obtained for a thermodynamic input:

χi j(τ , r, r
′, F(t, r), T(t, r)) = −

ρ̃
q
km(F(t, r), T(t, r))
2 exp(τ /τkm)

× exp(iωmkτ /2)
{

diml(τ /2, r)d jlk(−τ /2, r′)

+ d jml(−τ /2, r′)dilk(τ /2, r)
}

. (31)

If the thermodynamic response is a flow through the

kth contact, r = rk is set in formulae (28)−(30). If the

thermodynamic input is temperature and (or) chemical

potential of the kth contact, r′ = rk is set in formulae (28)
and (31), and integration over r′ is not performed in (28).
With relations (20) taken into account, the following is

obtained from formula (30) for a mechanical response to

a mechanical input:

χ ji(τ , r, r
′,−F(t, r), T(t, r)) =

i ρ̃mk(F(t, r), T(t, r))
~ exp(τ /τkm)

× exp(iωkmτ /2)
{

d jml(τ /2, r)dilk(−τ /2, r′)

− diml(−τ /2r′)d jlk(τ /2, r)
}

.

Substituting k ↔ m with the second Eq. (14) and the

symmetry of matrix τkm taken into account, we find

χ ji(τ , r, r
′,−F(t, r), T(t, r)) =

i ρ̃km(F(t, r), T(t, r))
~ exp(τ /τkm)

× exp(iωkmτ /2)εiε j
{

d jik(−τ /2, r)diml(τ /2, r
′)

− dilk(τ /2r
′)d jml(0, r)

}

. (32)

In a similar fashion, we obtain the following for a

thermodynamic response to thermodynamic inputs from

formula (31):

χ ji(τ , r, r
′,−F(t, r), T(t, r)) = −

ρ̃
q
km(F(t, r), T(t, r))
2 exp(τ /τkm)

× exp(iωmkτ /2)εiε j
{

diml(τ /2, r)d jik(−τ /2, r′)

+ d jml(−τ /2r′)dilk(τ /2, r)
}

. (33)

Comparing (30) with (32) and (31) with (33), we obtain

the reciprocity relations for the function of mechanical

response of an open nonlinear system to mechanical

inputs and the function of thermodynamic response to

thermodynamic inputs

χi j(τ , r, r
′F(t, r)T(t, r))

= εiε jχ ji(τ , r
′, r,−F(t, r), T(t, r)). (34)

In relations (30)−(34) an below, the argument of func-

tions F(t, r) and T(t, r) implies that the response depends

on the values of forces at all time points prior to t in the

entire region V . Apparently, certain information regarding

the structure of the system is needed to analyze the reci-

procity relations between mechanical and thermodynamic

quantities and quasi-equilibrium value (29).

If components of polarization Pα(t, r) are the mechanical

response and components of electric field Eα(t, r) are the

mechanical input, response function χαβ is the dielectric sus-

ceptibility tensor. If components of magnetization Mα(t, r)
are the mechanical response and components of magnetic

field Hα(t, r) are the mechanical input, response func-

tion χαβ is the magnetic susceptibility tensor. In both cases,

it follows from formula (34) that

χαβ(τ , r, r
′, E(t, r),H(t, r), T(t, r))

= χβα(τ , r
′, r,−E(t, r),−H(t, r), T(t, r)).

The following is obtained for the response function of

polarization to the magnetic field or magnetization to the

electric field:

χαβ(τ , r, r
′, E(t, r),H(t, r), T(t, r))

= −χβα(τ , r
′, r,−E(t, r) −H(t, r), T(t, r)).
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4. Nonlinear system in external fields

Let us consider a system exchanging energy and charged

zero-spin particles of one type through two contacts 1 and 2

with temperatures T1 and T2, respectively. The chemical

potential and the flow of charged particles are proportional

to the electric potential and the current, respectively. If

the sources of particles are thermostats, it may be assumed

that their state remains unchanged in interaction with the

system. The currents through contacts may then be regarded

as specified functions of time and as thermodynamic forces.

Assuming in what follows that the current and the potential,

which is taken to be equal to zero at infinity, are electric

quantities, we choose the following numeration of thermo-

dynamic quantities at contacts: eϕ1, eϕ2, Q1, Q2, where

e is the particle charge. The corresponding thermodynamic

forces are θ1I1/e, θ2I2/e, θ1, θ2. Let us write Eqs. (28) in

the stationary mode without quasi-equilibrium components

for contacts 1 and 2. Since I1 = −I2 = I in the stationary

mode, we obtain

eϕ1 = κ11I/(T1e) − κ12I/(T2e) + κ13/T1 + κ14/T2,

eϕ2 = κ21I/(T1e) − κ22I/(T2e) + κ23/T1 + κ24/T2,

Q1 = κ31I/(T1e) − κ32I/(T2e) + κ33/T1 + κ34/T2,

Q2 = κ41I/(T1e) − κ42I/(T2e) + κ43/T1 + κ44/T2. (35)

κi j(F, T) =
1

k

∞
∫

0

χi j(τ , r
′

j, r
′′

j , F, T)dτ ,

r′1 = r′3 = r′′1 = r′′3 = r1,

r′2 = r′4 = r′′2 = r′′4 = r2. (36)

It is assumed in (23), (35) and elsewhere that the

thermodynamic flows and potentials do not change sign

upon time inversion. This ensures the irreversibility of

thermodynamic processes. It follows from relations (34)
and (36) that

κi j(F, T) = κ ji(−F, T), i, j = 1, 2, 3, 4. (37)

The sources of particles are thermostats that are suf-

ficiently large for their potential without perturbations

to be equal to the potential at infinity (i.e., zero). If

the magnetic field and mechanical forces at I = 0 and

θ1 = θ2 = θ do not produce thermal flows and electric

potentials, ϕ1 == ϕ2 = 0, Q1 = Q2 = 0; i.e.,

κ13(F, T, 0) = −κ14(F, T, 0),

κ23(F, T, 0) = −κ24(F, T, 0),

κ33(F, B, T, 0) = −κ34(F, T, 0),

κ44(F, T, 0) = −κ43(F, T, 0). (38)

Setting T1 = T − 1T/2, T2 = T + 1T/2, U = ϕ2 − ϕ1,

we obtain

U = k
{

κ12(F, T, I)/T1 + κ21(F, T, I)/T2 − κ11(F, T, I)/T1

− κ22(F, T, I)/T2

}

I/e +
{

κ24(F, T, I) + κ23(F, T, I)

− κ13(F, T, I) − κ14(F, T, I)
}

/(eT )

−
{

κ14(F, T, I) + κ23(F, T, I)
}

/1T/(eT 2), (39)

Q1 =
κ31(F, T, 0) − κ32(F, T, 0)

eT
I

−
∂

∂T
κ31(F, T, I) − κ32(F, T, I)

2eT
I1T

+
κ31(F, T, I)−κ31(F, T, 0)−κ32(F, T, I)+κ32(F, T, 0)

eIT
I2

−
κ34(F, T, I)

T 2
1T. (40)

Q2 =
κ41(F, T, 0) − κ42(F, T, 0)

eT
I

+
∂

∂T
κ41(F, T, I) − κ42(F, T, I)

2eT
I1T

+
κ41(F, T, I)−κ41(F, T, 0)−κ42(F, T, I)+κ42(F, T, 0)

eIT

× I2 +
κ43(F, T, I)

T 2
1T. (41)

In view of (38), the first two terms in Eq. (39) at I = 0

are equal to zero. Therefore, the third term characterizes

the Seebeck effect with coefficient

Z(F, T, I) = {κ14(F, T, I) + κ23(F, T, I)}/(eT 2). (42)

In view of (37) and (38), the first terms in (40) and (41)
are equal in magnitude and differ in sign. They characterize

the Peltier effect (linear in current) with coefficient

5(F, T ) = {κ41(F, T, 0) − κ42(F, T, 0)}/(eT ). (43)

The last terms, which are equal in view of (37),
characterize the thermal conductivity. Summing Eqs. (40)
and (41), adding the work of a source against the thermal

emf, and taking (37) and (38) into account, we obtain the

following for the power released in the system:

W (F, T, I) = K(F, T )I1T + R(F, T, I)I2 + D(F, T, I)1T.
(44)

The first term in (44) characterizes the Thompson effect

with coefficient

K(F, T )=
∂

∂T

×
κ42(F, T, 0)−κ41(F, T, 0) − κ32(F, T, 0)−κ31(F, T, 0)

2eT

− {κ14(F, T, 0) + κ23(F, T, 0)}/(eT 2).
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while the second term characterizes the Joule−Lenz heat

release on the nonlinear resistance of the system

R(F, T, I)

=
κ42(F, T, I) − κ42(F, T, 0) + κ32(F, T, I) − κ32(F, T, 0)

eI

−
κ41(F, T, I) − κ41(F, T, 0) + κ31(F, T, I) − κ31(F, T, 0)

eI
.

The Thompson relations for a nonlinear system follow

from relations (37) and (38):

Z(F, T, 0) = 5(−F, T )/T,

K(F, T ) = d5(F, T )dT + 5(−F, T )/T. (45)

At F = 0 (i.e., for a linear system), we obtain classical

relations [18]

Z(T ) = 5(T )/T, K(T ) = (1/T )d(T5(T ))/dT.

The third term in (44) characterizes the Righi−Leduc

effect and the piezocaloric effect (i.e., the influence of

the magnetic field and mechanical stress on the thermal

conductivity)

D(F, T, I) = k
κ43(F, T, I) − κ43(−F,−T, I)

T

−
κ14(F, T, I)−κ14(F, T, 0)+κ23(F, T, I)−κ23(F, T, 0)

eT 2

+
∂

∂T
κ42(F, T, I)−κ42(F, T, 0)−κ41(F, T, I)+κ41(F, T, I)

2eT

−
∂

∂T
κ32(F, T, I)−κ32(F, T, 0)−κ31(F, T, I)+κ31(F, T, 0)

2eT
.

The dependence of coefficient D on the magnetic field

characterizes the Hall and magnetoresistive effects, and

its dependence on mechanical stress characterizes the

piezoresistive effect. The dependences of Seebeck (42)
and Peltier (43) coefficients on the magnetic field charac-

terize the Nernst and Ettingshausen effects, respectively.

The dependences of these quantities on mechanical stress

characterize the corresponding piezoeffects.

If the charged particles exchanged between the system

and thermostats through contacts have an ordered spin,

the potentials and heat flows are produced by both charge

and spin currents. Three components of spin current 6α

and magnetic field Bα are then added at each contact to

the thermodynamic forces and the responses, respectively.

Reciprocity conditions (37) are still satisfied, but indices i
and j run through the values from 1 to 10. Accordingly, the

number of equations of the form (35) increases to 10. In

addition, the spin currents through contacts are not equal in

magnitude even in the stationary mode. With Eqs. (2), (17),
and (23) taken into account, the equation for the average

components of spin moment density sα(t, r) = 〈ŝα(t,r)〉
takes the form

∂Sα(t, r)
∂t

= Sp

(

ŝα(t, r)
dρ̂
dt

+
∂ ŝα(t, r)

∂t
ρ̂

)

=
se
α(t, r) − sα(t,r)

Tα

− ~γ
[

B(t, r) × s(t, r)
]

α
−

∂υαβ(t, r)
∂rβ

.

(46)

Here, υαβ(t, r) = 〈υ̂αβ(t, r)〉 is the spin current density

tensor, and relaxation times τmn for each component of the

spin density are substituted with averaged value Tα .

Let us integrate Eq. (46) over the volume of the medium

assuming that the magnetic field is homogeneous:

dSα

dt
+

Sα − Se
α

Tα

+ ~γ
[

B× S
]

α
+ 6α2 − 6α1. (47)

Equation (47) should be used together with equations of

the form (35). Therefore, relations (38) and relations (45)
stemming from them have a more complex structure if spin

currents are present.

The gradients of temperature and chemical potential are

thermodynamic forces. If the chemical potential of particles

of the ith component depends on the densities of particles

of all components, the following is obtained from (28):

j iα(t, r, F, B) =

∫

V

∞
∫

0

χiα jβ(τ , r, r
′, B, T)

kT
dµ j(t − τ , r′)

dck

×
∂ck(t − τ , r′)

∂rβ
dτ d3r ′ +

∫

V

∞
∫

0

ξiα jβ(τ , r, r
′, F, B, T)

× µ j(t − τ , r′)
∂T (t − τ , r′)

∂rβ
dτ d3r ′. (48)

The first and the second terms in relation (48) are gen-

eralizations of the Fick diffusion law and the Ludwig−Soret

law, respectively [18]. In accordance with (37),

χiα jβ(τ , r, r
′, F, B, T) = χ jβiα(τ , r

′r,−F,−B, T),

ξiα jβ(τ , r, r
′, F, B, T) = ξ jβiα(τ , r

′r,−F,−B, T).

Let us consider the reciprocity relations for the mechan-

ical response to a mechanical input using the example of

electric quantities in the absence of fields produced by

external sources. The sole mechanical observable in the

medium is then the ϕ(t, r) potential distribution, and the

corresponding mechanical force is density ρ(t, r) of free

charges involved in the exchange between the system and

thermostats. Assuming that thermodynamic inputs are

lacking, we obtain the following from Eq. (28) for the

response induced by an electric input:

ϕ(t, r) =

∫

V

∞
∫

0

χ11(τ , r, r
′, ρ,B, T)ρ(t − τ , r′)dτ d3r ′.

(49)
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Dropping the indices of χ, we obtain the following

from (34):

χ(τ , r, r′, ρ(t, r), B(t, r), T(t, r))

= χ(τ , r′, r,−ρ(t, r),−B(t, r), T(t, r)). (50)

Let us introduce relaxation time τr of the system with

the property that all χi j(τ > τr ) ≡ 0. With the exponential

factor in formula (30) taken into account, we may assume

that τr > max(τnm). Let us expand the charge density in

the expression under integral sign in formula (49) into a

Taylor series about t . At τ ≤ τr in the quasi-stationary

mode, when τr |d3ρ/dt3| ≪ |d2ρ/dt2|, we limit ourselves

to the third term of the series and differentiate with respect

to rα with continuity equation (23) taken into account:

∂ϕ(t, r)
∂rα

=

∫

V

∞
∫

0

∂χ(τ , r, r′, ρ,B, T)

∂rα
ρ(t, r′)dτ d3r ′

+

∫

V

∞
∫

0

τ
∂χ(τ , r, r′, ρ, B, T)

∂rα

∂ jβ(tr′)
∂r ′β

dτ d3r ′

−
∂

∂t

∫

V

∞
∫

0

τ 2

2

∂χ(τ , r, r′, ρ, B, T)

∂rα

∂ jβ(t, r′)
∂r ′β

dτ d3r ′.

Integrating the second and the third terms of this equation

by parts considering that in the inner region for quasilocal

function χ(τ , r ∈ V ), r′ ∈ S, ρ, B, T = 0, we find

∂ϕ(t, r)
∂rα

=

∫

V

∞
∫

0

∂χ(τ , r, r′, ρ,B, T)

∂rα
ρ(t, r′)dτ d3r ′

−

∫

V

∞
∫

0

τ
∂2χ(τ , r, r′, ρ, B, T)

∂rα∂r ′β
jβ(τ r

′)dτ d3r ′

+
∂

∂t

∫

V

∞
∫

0

τ 2

2

∂2χ(τ , r, r′, ρ, B, T)

∂rα∂r ′β
jβ(τ r

′)dτ d3r ′.

With the Maxwell equation taken into account, we obtain

Eα(t, r) =

∫

V

ξα(r, r
′, ρ, B, T)ρ(t, r′)d3r ′

+

∫

V

λαβ(r, r
′, j, B, T) jβ(t, r

′)d3r ′, (51)

Aα(t, r) =

∫

V

ζαβ(r, r
′, j, A, T) jβ(t, r

′)d3r ′, (52)

ξ(r, r′, ρ, B, T) = −

∞
∫

0

∂χ(τ , r, r′, ρ, B, T)

∂rα
dτ ,

λαβ(r, r
′, j, B, T) =

∞
∫

0

τ
∂2χ(τ , r, r′, j, B, T)

∂rα∂r ′β
dτ ,

ζα,β(r, r
′, j, A, T) = −c

∞
∫

0

τ 2

2

∂2χ(τ , r, r′, j,A, T)

∂rα∂r ′β
dτ .

(53)

It is taken into account in relations (52) and (53) that

vector potential A defines uniquely magnetic field B and, in

view of Eq. (23), the current density distribution defines

the charge density. Vectors A and j change sign upon

coordinate inversion. The second derivative of function χ

does not change sign upon coordinate inversion. Assuming

that function χ is doubly continuously differentiable and

taking relations (50) and (52) into account, we obtain the

following:

λα,β(r, r/, j, b, T) = λβα(r
′, r,−j,−B, T),

ζαβ(r, r
′, j, A, T) = ζβ,α(r

′, r,−j,−A, T)

= ζβα(r
′, r, j, A, T). (54)

The first term in Eq. (51) is a Coulomb field produced

by a distributed charge in an inhomogeneous anisotropic

nonlinear medium with spatial dispersion. The second term

in Eq. (51) is a generalization of the differential Ohm’s law,

and Eq. (52) is a version of the Biot−Savart law.

Let us examine the dynamics of the system energy under

the influence of mechanical forces. It follows from Eqs. (1),
(9), and (10) and the rule of permutation of operators under

the spur sign that

dW
dt

=
d〈Ĥ〉

dt
= Sp

(

∂ρ̂

∂t
Ĥ

)

−

∫

V

f i(t, r)

× Sp

(

ρ̂
∂ d̂i(t, r)

∂t

)

d3r + Sp

(

ρ̂
∂Ĥr

∂t

)

−

∫

V

∂ f i(t, r)
∂t

Sp
(

ρ̂d̂i(t, r)
)

d3r

= −

∫

V

∂ f i(t, r)
∂t

di(t, r)d
3r +

〈

∂Ĥr

∂t

〉

. (55)

The second and the first terms in the right-hand part

of (55) characterize the interaction with thermostats and

the influence of mechanical forces, respectively. If Eq. (28)
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is taken into account, the first term takes the form

−

∫

V

∫

V

∞
∫

0

χi j(τ , r, r
′, F, B, T)

d f i(t, r)
dt

×
f j(t + τ , r′) + f j(t − τ , r′)

2
dτ d3rd3r ′

+

∫

V

∫

V

∞
∫

0

χi j(τ , r, r
′, F, B, T)

d f i(t, r)
dt

×
f j(t + τ , r′) − f j(t − τ , r′)

2
dτ d3rd3r ′. (56)

The first term in formula (56) changes sign upon time

inversion (i.e., characterizes the reversible energy exchange

between the system and sources of mechanical forces F). It
corresponds to the power of work PF done by the sources

of external forces on the system. The second term does

not change sign upon time inversion (i.e., characterizes

the irreversible energy exchange between the system and

sources of forces F). It corresponds to heat power QF

produced in the system under the influence of external

mechanical forces. Let us expand the forces in the

expression under integral sign in formula (56) into a Taylor

series about t in the quasistationary mode:

QF(t) =

∫

V

∫

V

∞
∫

0

τ χi j(τ , r, r
′, F, T)

∂ f i(t, r)
∂t

×
∂ f j(r

′)

∂t
dτ d3rd3r ′,

PF(t) = −

∫

V

∫

V

∞
∫

0

χi j(τ , r, r
′, F, T)

∂ f i(t, r)
∂t

×

{

f j(t, r
′) +

τ 2

2

∂2 f j(t, r′)
∂t2

}

dτ d3rd3r ′. (57)

In the case of electrical input, we set f (t, r) = ρ(t, r)
in (55), use relations (23), and integrate by parts with

respect to r and r ′ in the first equation. With formulae (52)
and (54) taken into account, we obtain the following for the

heat power density:

qF(t, r) = jα(t, r)
∫

V

λαβ(r, r
′, j, B, T) jβ(t, r

′)d3r ′,

ξ(r, r′, ρ,B, T) = −

∞
∫

0

χ(τ , r, r′, ρ, B, T)dτ ,

pF(t, r) =
∂ρ(t, r)

∂t

∫

V

ξ(r, r′, ρ, B, T)ρ(t, r′)d3r ′

+
jα(t, r)

c

∫

V

ζαβ(r, r
′, j, A, T)

∂ jβ(t, r′)
∂t

d3r ′. (58)

With Eqs. (58) and (53) taken into account, it follows

from (51) that

E(t, r)j(t, r) = qF(t, r) + j(t, r)
∂

∂r

×

∫

V

ξ(r, r′, ρ, B, T)ρ(t, r′)d3r ′ = qF(t, r)

+ div







j(t, r)
∫

V

ξ(r, r′, ρ, B, T)ρ(t, r′)d3r ′







+
∂ρ(t, r)

∂t

∫

V

ξ(r, r′ρ, B, T)ρ(t, r′)d3r ′. (59)

If nonlocalities are insignificant, we set

ξ(r, r′, ρ, B, T) = ξ(r, ρ, B, T)δ(r − r′),

λi j(r, r
′, j, B, T) = λ(r, j, B, T)δ(r− r′),

ζi j(r, r
′, j, A, T) = ζ (r, j, A, T)δ(r − r′).

It then follows from Eq. (54) that

λβα(r,−j,−B, T) = λαβ(r, j, B, T),

ζβα(r, j,A, T) = ζαβ(r, j,A, T).

The first Eq. (58) then takes the form of the Joule−Lenz law

for a nonlinear anisotropic inhomogeneous medium without

dispersion

qF(t, r, j, B, T) = λi j(r, j, B, T) j i(t, r) j j(t, r),

qF(t, r,−j,−B, T) = qF(t, r, j, B, T). (60)

The second Eq. (58) then takes the form

pF(t, r) =
∂

∂t

{

ξ(r, ρ, B, T)ρ2(t, r)
2

+
ζαβ(r, j, A, T) jα(t, r) jβ(t, r)

2c

}

. (61)

When analyzing Eq. (56), we assumed that the first term

(i.e., power PF of the work of external forces) characterizes
the reversible energy exchange between the system and

sources of mechanical forces F (i.e., the maximum work

done by the system on the environment under constant tem-

perature with its sign reversed). Therefore, the expression

in curly brackets in the right-hand part of Eq. (61) is the

density of free energy φ(t, r) with the property that the

Massieu−Planck functional in the second Eq. (11) takes the
form 8(t) =

∫

V
φ(t, r)d3r . The first term in curly brackets

in the right-hand part of Eq. (61) may be regarded as the

electric component of the free energy density produced

by distributed charges. The second term, which has the

form of j(t, r)A(t, r)/(2c) in accordance with (53), may
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be regarded as the magnetic component of the free energy

density produced by distributed currents.

Equation (59), in turn, takes the form

E(t, r)j(t, r)=qF(t, r, j, B, T)+
∂

∂t

{

ξ(r, ρ, B, T)ρ2(t, r)
2

}

+ div{ξ(r, ρ, B, T)ρ(t, r)j(t, r)}. (62)

The left-hand part of Eq. (62) is the work done in unit

time by the electric field on charges in unit volume of the

medium. It is spent on altering the electric component of the

free energy density and producing the heat power density

and the energy flow density. In an electrically locally neutral

system E(t, r)j(t, r) = qF(t, r, j, B, T).
If laminar flows of components with velocities

vi(t, r) = 〈ĵi(t, r)〉/〈ĉ i (t, r)〉, are produced in the system

under the influence of mechanical forces, the Hamiltonian

density in locally quasi-equilibrium density operator (11) is

transformed with transformation properties (24) taken into

account [16]:

ρ̂q = exp

{

−8(t) −
∫

V

θ(t, r)
(

ĥ0(t, r) − (µi(t, r)

− miv
2
i (t, r))ĉ i(t, r) − v(t, r)π(t, r)

)

d3r

}

, (63)

while Massieu−Planck functional 8(t) is, in accordance

with (61), also dependent on mechanical forces. It

follows from Eq. (11) that this dependence stems from the

dependence of the local temperature on mechanical forces

(e.g., due to the heat release in the system and the chemical

potentials of components).

Conclusion

In this study, by a nonlinear system is meant a system the

response of which to an external input does not satisfy the

principle of superposition. Within the proposed approach,

this nonlinearity emerges due to the deviation of the density

operator from the locally quasi-equilibrium one under the

influence of external inputs. This deviation is possible if the

external input exceeds the level that depends on the system

structure (e.g., on nonharmonic terms in the unperturbed

Hamiltonian).
Kinetic coefficients (30) and (31) for the response to

mechanical and thermodynamic inputs were determined

sensu Kubo [2] formally (without specifying the physical

mechanism of this response). The derivation of these

relations and reciprocity relation (34) based on them is

valid in the Markovian relaxation approximation if the

unperturbed Hamiltonian is stationary and the unperturbed

system is in a quasi-equilibrium state (11). In addition, the

system remains stable under the influence of a perturbation

that may be presented as a sum of products of a classical

specified force by an operator corresponding to an external

dynamic variable and an operator of Markovian relaxation to

the quasi-equilibrium state. The applicability of Markovian

relaxation and the locally quasi-equilibrium operator was

examined in [14] and [15], respectively. The principle

of weakening of Bogolubov correlations may be used

here [19,20]. Nonmarkovian relaxation processes in open

dissipative systems interacting with thermostats decay much

faster than the primary Markovian relaxation. Therefore, it

may be assumed that relation (30) and subsequent relations

are valid at τ > τm, where τm is the characteristic time of

transition of the system to Markovian relaxation. This time

depends on the structure of the system.

The transformations of the Coulomb potential in (3) and

subsequent relations correspond to the common multipole

expansion and are needed to write Eq. (10) in the quasiclas-

sical form with external inputs regarded as classical fields

characterized by specified functions of time and coordinates

and dynamic variables regarded as quantum quantities

characterized by Hermitian operators. The assumptions

made in this case are needed specifically to substantiate

the applicability of the quasiclassical representation and

limit rather severely the applicability of the theory. If

external inputs are regarded as operator variables, the

formalism of quantized fields may be used. However, the

density matrix of an open system interacting with quantized

fields has a complex multiindex structure, and calculations

become rather cumbersome. The Kraus formalism [21]
may probably allow one to derive a result in a closed form

and determine whether the obtained reciprocity relations are

exclusive for the quasiclassical approach or also remain valid

for quantized fields. Presumably, one may also analyze the

restrictions on the relaxation nature in the process.

Local temperatures and chemical potentials in Eq. (17)
are regarded as specified classical parameters. Naturally,

they are dynamic variables in real open systems interacting

with thermostats (particle sources), and Hermitian operators

dependent on coordinates and time should correspond to

them. These operators need to be constructed in order

to obtain self-consistent equations. Since the temperature

and the chemical potential are extensive quantities, their

local operators cannot be constructed in a standard way as

density operators of certain additive quantities [16]. In order

to relate them to the entropy density operator, one needs to

construct it for a nonequilibrium system. This problem has

not been solved yet.

In the recent decade, the interrelation between magnetic

and electric properties of the form (50) has been noted

at room temperature in multiferroics, which are promising

materials for information and energy-saving technologies.

The principal types of magnetoelectric interaction, their

mechanisms, and the conditions for their emergence were

discussed in [22]. The results presented in [23–25] verify

the efficiency of control over the magnetization dynamics by

mechanical stress and electric fields. It was demonstrated

in [26,27] that mechanical stress acts as an
”
elastic gauge

field“that interacts with fermions in a manner similar to the
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electromagnetic field. The studied Hall viscosity is charac-

terized by relation (30) with components of the magnetic

field and the stress tensor included into vector F(t, r) and

components of magnetization and the deformation tensor

regarded as the response. The magnitude of this gauge

field may be characterized by the corresponding effective

magnetic field. The theoretical estimate given in [28] is

10 T. Experimental estimates based on the Landau levels

demonstrate that the stress-induced field may be stronger

than 300 T [29]. This field may provide effective polarization

of the spin current at room temperature.

The authors of [30] used the microscopic theory to

demonstrate that the temperature gradient in ferromagnetic

materials is equivalent to the effective electric field and

produces spin current. Its dependence on the temperature

gradient agrees with (48). The possibility of control over

heat flows by the spin current was verified in [31]. This

control is efficient at high influence densities when the

system becomes substantially nonlinear. The proposed

method for analysis of quantum transport effects resulting

from polarization of the mechanically induced spin current

forms the basis for design and optimization of parameters

of efficient systems of heat transport.
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