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Introduction

The interest in reflection of electromagnetic waves off

dielectric materials and transmission of waves through these

materials is stimulated by the progress in such fields as

optoelectronics, radio engineering systems, semiconductor

optics, and polymer optics. Metamaterials (artificially
structured media with such electromagnetic properties that

are not found in naturally occurring media) also attract

much research attention. Inhomogeneous dielectric layers

may be used as component parts of a metamaterial.

The problem of reflection of an electromagnetic wave off

a plane boundary of a medium with an inhomogeneous

permittivity profile has no general analytical solution. The

wave equation, which is the basis for calculating the re-

flection coefficient, may be transformed into the Helmholtz

equation, and an exact solution of the equation for an

inhomogeneous medium is known only for particular cases.

The substitution of variables and functions, which allows

one to transform the initial equation into a certain standard

one, is a classical method for finding the exact solution.

This method was used to find the solutions for linear,

parabolic, and exponential permittivity profiles. Methods

for reducing the electrodynamics equations, wherein the

substitution of variables is supplemented by the transfor-

mation of components of the wave field with the use

of auxiliary functions [1–3], have already been developed.

The conditions of such transformations define broad classes

of continuous distributions of the permittivity profile that

allow for exact analytical expressions of components of

the electromagnetic field. Either numerical or approximate

analytical methods [4–10] are used for a medium with

an arbitrary coordinate dependence of material parameters.

The quasiclassical approximation, which is also known

as the WKB (Wentzel−Kramers−Brillouin) method, is

efficient if the refraction index varies slowly over the

distance of a wavelength. The opposite case is a medium

with its parameters varying considerably over the distance of

a wavelength (anticlassical approximation). Specifically, the

reflection of an electromagnetic wave off an inhomogeneous

structure composed of layers of a subwavelength thickness

has already been examined theoretically and experimen-

tally [11,12]. It turned out that a model based on the

substitution of this structure by an effective medium with

homogeneous properties does not produce correct reflection

parameters.

In the present study, we discuss another problem within

the anticlassical approximation: the problem of reflection

of an electromagnetic wave off a medium with an inho-

mogeneous layer of a subwavelength thickness. It was

assumed that the reflective properties of this medium are

characterized by permittivity and that the phase thickness of

the region of inhomogeneity is small. The latter requirement

allowed us to apply the methods of perturbation theory and

obtain approximate analytical expressions for the reflection

coefficient. As in [1–3], the components of the wave

field were expressed in terms of auxiliary functions, and a

method for calculation of these functions was developed.

In addition, a model based on the substitution of an

inhomogeneous layer by a homogeneous one with effective

parameters was proposed. This substitution extended

the potential of the analytical expression of the reflection

coefficient with respect to thicker layers. The mathematical

framework of the developed theory is also of interest with

regard to the analysis of wave fields in other fields of physics

of continuous media.
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1. Mathematical model

Fig. 1 illustrates the geometric aspects of the model.

An inhomogeneous layer is modeled by a coordinate

dependence of permittivity ε(z ). The geometry of the layer

is defined by two parameters characterizing the depth of its

occurrence (1) and its thickness (δ). It was assumed that

function ε(z ) at the layer boundaries approaches asymptotic

value ε(+∞) no slower than an exponential function. This

requirement ensures the convergence of integrals that are

found in the final formulae and contain function ε(z ).
The wave polarization is of great importance in the

problem of reflection of an electromagnetic wave. In the

present study, linear p- and s -type polarizations of waves

are considered. Detailed calculations are presented for p-
polarized waves, and only the resultant expressions are given

for s -polarized waves.

The magnetic-field vector of a p-polarized wave in the

adopted system of coordinates (Fig. 1) may be written as

H =





0

h(z )
0



 · exp i(ωt − kx x),

where ω is the circular wave frequency, t is time,

kx = ω sin θ/c , c is the speed of light in vacuum, and

i is the imaginary unit. The differential equation defining

1

2
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Figure 1. Geometric parameters of the model of reflection of an

electromagnetic wave off a medium with an inhomogeneous layer.

Coordinate axes x and z lie within the plane of beam incidence.

The interface between vacuum 1 and reflecting medium 2 is the

plane z = 0. The deviation of permittivity in the inhomogeneous

layer from the asymptotic value is shown schematically. The

layer geometry is characterized by distance 1 to the interface and

thickness δ .

function h(z ) (in Gaussian units) follows from the electro-

dynamics equations

1

ε(z )

d
dz

[

1

ε(z )

dh(z )

dz

]

+ k2
p(z )h(z ) = 0. (1)

Function k p(z ) is defined as (index
”
p“ denotes the

polarization type)

k2
p(z ) =

1

ε2(z )

[

ω2

c2
ε(z ) − k2

x

]

. (2)

Let us divide coordinate axis z into three regions and

define function h(z ) in each region in the following way:

h(z ) =



































































































a1 exp(−ikz z ) + b1 exp(ikz z ), z < 0,

a2(z ) exp



−ik p

z
∫

0

ε(ζ )dζ





+ b2(z ) exp



ik p

z
∫

0

ε(ζ )dζ



 , 0 < z < 1,

a3(z ) exp



−ik p

z
∫

1

ε(ζ )dζ





+ b3(z ) exp



ik p

z
∫

1

ε(ζ )dζ



 , 1 < z ,

(3)
where kz = ω cos θ/c and k p = k p(+∞).

The coefficient of reflection of a wave off a medium is

expressed as

Rp =

∣

∣

∣

∣

b1

a1

∣

∣

∣

∣

2

.

Let us transform this formula using the condition for

continuity of tangential components of intensities of the

magnetic and electric field of the wave (components Hy

and Ex , respectively) at boundary z = 0. Since the

electrodynamics equations allow one to express Ex in

terms of Hy , the condition for continuity of the ratio of

components may be used

Hy

Ex
= −

iω
c

h(z )

[1/ε(z )][dh(z )/dz ]
. (4)

Inserting the expressions for h(z ) from Eq. (3), we obtain
the following relation:

b1

a1

=
r p + Vp

1 + r pVp
.

Here, Vp = b2(0)/a2(0) and

r p =
kz − k p

kz + k p
. (5)
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Thus, the problem of calculation of the reflection

coefficient may be reduced to calculating the value of

parameter Vp and inserting this value into

Rp =

∣

∣

∣

∣

r p + Vp

1 + r pVp

∣

∣

∣

∣

2

. (6)

Since two functions (a2(z ) and b2(z )) are introduced

instead of a single one (h(z )) within the 0 < z < 1 interval,

an additional condition may be imposed on these functions.

Let us choose the following condition:

da2(z )

dz
exp



−ik p

z
∫

0

ε(ς )dς





+
db2(z )

dz
exp



ik p

z
∫

0

ε(ς )dς



 = 0. (7)

It then follows from Eq. (1) that

ik p

ε(z )

da2(z )

dz
exp



−ik p

z
∫

0

ε(ς )dς



 −
ik p

ε(z )

db2(z )

dz

× exp



ik p

z
∫

0

ε(ς )dς



 =
[

k2
p(z ) − k2

p

]

h(z ). (8)

Using algebraic transformations, we may transform Eqs.

(7) and (8) into the following form:

da2(z )

dz
=

ε(z )

2ik p

[

k2
p(z ) − k2

p

]

h(z ) exp



ik p

z
∫

0

ε(ς )dς



 ,

(9)

db2(z )

dz
= −

ε(z )

2ik p

[

k2
p(z ) − k2

p

]

h(z ) exp



−ik p

z
∫

0

ε(ς )dς



 .

(10)

Function h(z ) in these equations is defined by Eq. (3)
within the 0 < z < 1 interval.

The interrelations between functions a3(z ), b3(z ), and

h(z ) in the 1 < z region may be determined in a similar

manner:

da3(z )

dz
=

ε(z )

2ik p

[

k2
p(z ) − k2

p

]

h(z ) exp



ik p

z
∫

1

ε(ς )dς



 ,

(11)

db3(z )

dz
= −

ε(z )

2ik p

[

k2
p(z ) − k2

p

]

h(z ) exp



−ik p

z
∫

1

ε(ς )dς



 .

(12)
Equations (9)−(12) will be used to determine ratio

b(0)/a2(0) that is needed to calculate the reflection coef-

ficient.

2. Perturbation theory

Let us transform Eqs. (9)−(12) into an integral form

by inserting the expressions for h(z ) from Eq. (3) in each

region:

a2(z ) − a2(0) =
1

2ik p

z
∫

0

ε(ς )
[

k2
p(ς )−k2

p

]

{

a2(ς )

+ b2(ς ) exp

[

2ik p

∫ 1

0

ε(η)dη

]

exp



2ik p

ς
∫

1

ε(η)dη





}

dς,

(13)

b2(z ) − b2(0) = −
1

2ik p

z
∫

0

ε(ς )
[

k2
p(ς )−k2

p

]

{

a2(ς )

× exp



−2ik p

1
∫

0

ε(η)dη



exp



−2ik p

ς
∫

1

ε(η)dη



+b2(ς )

}

dς,

(14)

a3(+∞) − a3(z ) =
1

2ik p

+∞
∫

z

ε(ς )
[

k2
p(ς )−k2

p

]

×







a3(ς ) + b3(ς ) exp



2ik p

ς
∫

1

ε(η)dη











dς, (15)

b3(+∞) − b3(z ) = −
1

2ik p

+∞
∫

z

ε(ς )
[

k2
p(ς )−k2

p

]

×







a3(ς ) exp



−2ik p

ς
∫

1

ε(η)dη



+ b3(ς )







dς. (16)

The lack of a reflected wave at z → +∞ yields

b3(+∞) = 0.

A small parameter is needed to apply perturbation theory

to the problem. Let us impose the following condition on

layer thickness δ (the condition of small phase thickness):

|k p max{ε(z )}|δ ≪ 1. (17)

The zero approximation of perturbation theory cor-

responds to a homogeneous semi-infinite medium with

ε(z ) = ε(+∞) for all z > 0. Within this approximation,

a2(z ) = a3(z ) = a2(0) and b2(z ) = b3(z ) = b2(0) = 0. If

condition (17) is fulfilled, the right-hand parts of

Eqs. (13)−(16) may be regarded as perturbations that

define the coordinate dependence of functions a2(z ),
a3(z ), b2(z ), and b3(z ). In the first approximation,

these functions may be obtained by inserting the zero-

approximation constants into the right-hand parts of equa-

tions. It may also be assumed in this approximation that
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exp

[

±2ik p

ς
∫

1

ε(η)dη

]

≈ 1. Equations (13)−(16) then take

the form

a2(z ) − a2(0) = I2(z )
a2(0)

2ik p
,

b2(z ) − b2(0) = −I2(z )
a2(0)

2ik p
exp



−2ik p

1
∫

0

ε(η)dη



 ,

a3(+∞) − a3(z ) = I3(z )
a2(0)

2ik
,

b3 = I3(z )
a2(0)

2ik p
.

Here, the following functions with their values being of

the first order of smallness with respect to the thickness of

an inhomogeneous layer (∼ δ) were introduced:

I2(z ) =

z
∫

0

ε(ς )
[

k2
p(ς ) − k2

p

]

dς,

I3(z ) =

+∞
∫

z

ε(ς )
[

k2
p(ς ) − k2

p

]

dς.

The second-order corrections may be obtained by insert-

ing the first-approximation coordinate dependences into the

right-hand parts of Eqs. (13)−(16). In addition, refinement

substitutions exp

[

±2ik p

ς
∫

1

ε(η)dη

]

≈ 1± 2ik p

ς
∫

1

ε(η)dη

need to be used in this approximation, and the terms of

the third order of smallness (∼ δ3) should be dropped in

the resultant expressions. The following equalities are then

obtained in the second approximation

a2(1) = a2(0) +
I2(1)

2ik p

×







a2(0) + b2(0) exp



2ik p

1
∫

0

ε(η)dη











+ G2(1)b2(0) exp



2ik p

1
∫

0

ε(η)dη



 , (18)

b2(1) = b2(0) −
I2(1)

2ik p

×







a2(0) exp



−2ik p

1
∫

0

ε(η)dη



+ b2(0)







+ G2(1)a2(0) exp



−2ik p

1
∫

0

ε(η)dη



 , (19)

a3(1) = a3(+∞) −
I3(1)

2ik p
a3(+∞), (20)

b3(1) =
I3(1)

2ik p
a3(+∞) − G3(1)a3(+∞). (21)

Here, G2(1) and G3(1) are the values of functions

G2(z ) =

z
∫

0

ε(ς )
[

k2
p(ς ) − k2

p

]





ς
∫

1

ε(η)dη



 dς,

G3(z ) =

+∞
∫

z

ε(ς )
[

k2
p(ς ) − k2

p

]





ς
∫

1

ε(η)dη



 dς.

Using the condition for continuity of relation (4) at z = 1,

we obtain the following equation:

a2(1) exp

[

−ik p

1
∫

0

ε(η)dη

]

+ b2(1) exp

[

k p

1
∫

0

ε(η)dη

]

−k pa2(1) exp

[

−ik p

1
∫

0

ε(η)dη

]

+k pb2(1) exp

[

k p

1
∫

0

ε(η)dη

]

=
a3(1) + g3(1)

−k pa3(1) + k pb3(1)
.

Inserting Eqs. (18)−(21) and performing elementary

transformations, we obtain the equation for finding

Vp = b2(0)/a2(0):

1 + G2(1) + [1 + G2(1)]Vp exp

[

2ik p

1
∫

0

ε(η)dη

]

−k p+iI2(1)+k pG2(1) +
[

k p+iI2(1)−k pG2(1)
]

×

×Vp exp[2ik p

1
∫

0

ε(η)dη]

=
G3(1) − 1

k p + iI3(1) + k pG3(1)
.

This equation is algebraic, and its solution in the second

order of perturbation theory may be transformed into the

form

Vp = −

(

iI
2k p

+
I2

4k2
p

+ G

)

exp



−2ik p

1
∫

0

ε(η)dη



 ,

(22)
where the following is introduced

I = I2(1) + I3(1) =

+∞
∫

0

ε(ς )
[

k2
p(ς ) − k2

p

]

dς,

G=G2(1)+G3(1)=

+∞
∫

0

ε(ς )
[

k2
p(ς )−k2

p

]





ς
∫

1

ε(η)dη



 dς.

Parameters I and G depend linearly (I ∼ δ) and quadrat-

ically (G ∼ δ2) on the layer thickness.
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Formula (22) has a significant drawback in that both

function ε(z ) and parameter 1, which is found in the

exponent and in the expression for parameter G, are needed

for calculations. Let us transform formula (22) into the

form without parameter 1. Staying within the second

approximation, we present formula (22) in the following

form:

Vp ≈ −
iI
2k p

× exp







−i



2k p

1
∫

0

ε(η)dη +
I

2k p
+ 2k p

G
I











. (23)

Let us introduce function

I(z ) =

+∞
∫

z

ε(ς )
[

k2
p(ς ) − k2

p

]

dς.

Parameter G may be expressed in terms of this function

G = −

+∞
∫

0

dI(ς )

dς





ς
∫

1

ε(η)dη



 dς.

Integrating by parts and taking equalities I(0) = I and

I(+∞) = 0 into account, we obtain equality

2k p

1
∫

0

ε(η)dη +
I

2k p
+ 2k p

G
I

=
1

2k pI



I2 + 4k2
p

+∞
∫

0

ε(ς )I(ς )dς



 . (24)

At the next phase of transformation, we introduce

function

Y (z ) = I2(z ) + 4k2
p

+∞
∫

z

ε(ς )I(ς )dς.

Differentiating it and performing the necessary substitu-

tions, one may obtain the following equation:

dY (z )

dz
= −2ε(z )

[

k2
p(z ) + k2

p

]

I(z ).

Integrating it and considering that Y (+∞) = 0 and Y (0)
is the same as the expression in brackets in the right-hand

part of formula (24), we obtain

I2 + 4k2
p

+∞
∫

0

ε(ς )I(ς )dς

= 2

+∞
∫

0

ε(z )
[

k2
p(z ) + k2

p

]







+∞
∫

z

ε(ς )
[

k2
p(ς ) − k2

p

]

dς







dz .

Inserting this expression into equality (24) and further

into (23), we find the following relation as a substitution

for (22)

Vp = −
i

2k p

+∞
∫

0

ε(z )
[

k2
p(z ) − k2

p

]

dz · exp(−2ik p3p),

(25)
where

3p =

+∞
∫

0

ε(z )
[

k2
p(z ) + k2

p

]

{

+∞
∫

z
ε(ς )

[

k2
p(ς ) − k2

p

]

dς

}

dz

2k2
p

+∞
∫

0

ε(z )
[

k2
p(z ) − k2

p

]

dz

.

(26)
As a result, the reflection coefficient may be calculated

using formula (6) with expressions (25), (26) inserted into

it. This calculation is based only on the dependence and

does not explicitly involve parameters 1 and δ .

3. Refinement of the formulae of
perturbation theory

Models with an exact analytical solution of the problem

of reflection of an electromagnetic wave are known. One of

these is the model with a homogeneous layer. A method for

extrapolating the formulae for this model to the model with

an inhomogeneous layer is outlined in the present section.

This method allows one to transform the derived formulae

of perturbation theory into more exact ones.

The coefficient of reflection of a p-polarized wave off a

medium with a homogeneous layer may be calculated using

the following expression

Rp =

∣

∣

∣

∣

r p + Vpu

1 + r pVpu

∣

∣

∣

∣

2

. (27)

Parameter r p is defined by relation (5), while parameter

Vpu is defined by the following exact expression:

Vpu =
1− exp(−iϕpu)

1− r2pu exp(−iϕpu)
r pu exp(−i8pu), (28)

where

r pu =
k p − k pu

k p + k pu
, k2

pu =
1

ε2u

[

ω2

c2
εu − k2

x

]

,

ϕpu = 2k puεuδ, 8pu = 2k pεd1u.

Here, εu is the permittivity of a homogeneous layer

with thickness δ located in a medium with permittivity εd

between planes z = 1u and z = 1u + δ .

We obtain the following for a layer with a small phase

thickness (|ϕpu ≪ 1|) from expression (28) in the second
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order of perturbation theory

Vpu ≈ iϕpu
k2

p − k2
pu

4k pk pu
exp

[

−i

(

8pu +
k2

p + k2
pu

4k pk pu
ϕpu

)]

.

(29)
Formula (29) may be transformed into form (25) by

substituting parameters k pu, ϕpu, and 8pu with suitable

expressions. Equating the right-hand parts of formulae (25)
and (29), which are complex quantities, we may construct

two equations for the sought-for substitutions. However, two

equations are not sufficient to obtain the expressions for

substitution of three parameters. Therefore, an additional

condition imposed on the putative substitutions is needed.

In the present study, substitution k pu → k pl was chosen as

such a condition. Parameter k pl in it is defined as follows:

k2
pl =

+∞
∫

0

k2
p(z )

[

k2
p(z ) − k2

p

]

ε(z )dz

+∞
∫

0

[

k2
p(z ) − k2

p

]

ε(z )dz

. (30)

It should be noted that parameter k pl may be interpreted

as the mean of function k p(z ) in an inhomogeneous layer.

Specifically, this formula yields equality k pl = k pu when

applied to a homogeneous layer. In other words, the

proposed expression corresponds to the physical meaning

of the substituted parameter.

The equality of pre-exponential factors in formulae (25),
(29) with substitution k pu → k pl allows one to derive the

expression for substitution ϕpu → ϕpu :

ϕp = −
2k pl

k2
p − k2

pl

+∞
∫

0

ε(z )
[

k2
p(z ) − k2

p

]

dz . (31)

The equality of exponents in the context of the already

performed substitutions gives rise to another substitu-

tion 8pu → 8p :

8p = 2k p3p −
k2

p + k2
pl

4k pk pl
ϕp. (32)

Similar to the transition from formula (29) of perturbation
theory to exact formula (28), we transform formula (25)
into form

Vpl =
1− exp(−iϕp)

1− r2pl exp(−iϕp)
r pl exp(−i8p), (33)

r pl =
k p − k pl

k p + k pl
. (34)

The resultant expression for the reflection coefficient is

Rp =

∣

∣

∣

∣

r p + Vpl

1 + r pVpl

∣

∣

∣

∣

2

. (35)

This formula has the same structure as formula (6), but
features parameter Vpl instead of Vp.

To conclude this section, we provide a brief summary

regarding the refinement of the expression for the reflection

coefficient of an s -polarized wave. The calculations for this

wave type relied on the same approach that was used for a

p-polarized wave.

The electric-field vector of an s -polarized wave has the

following form (Fig. 1):

E =









0

e(z )

0









· exp i(ωt − kx x).

The wave equation, which forms the basis of calculations,

has the form

d2e(z )

dz 2
+ k2

s (z )e(z ) = 0.

Function k2
s (z ) is defined as

k2
s (z ) =

ω2

c2
ε(z ) − k2

x . (36)

Components Ey and Hx are subject to the condition for

continuity. Their ratio may be calculated using the following

formula:
Ey

Hx
=

iω
c

e(z )

[de(z )/dz ]
.

The calculation of the reflection coefficient within pertur-

bation theory yields the following relations:

Rs =

∣

∣

∣

∣

r s + Vs

1 + r sVs

∣

∣

∣

∣

2

, (37)

Vs = −
i

2ks

+∞
∫

0

[

k2
s (z ) − k2

s

]

dz · exp(−2iks3s), (38)

3s =

+∞
∫

0

[

k2
s (z ) + k2

s

]

{

+∞
∫

z

[

k2
s (ς ) − k2

s

]

dς

}

dz

2k2
s

+∞
∫

0

[k2
s (z ) − k2

s ] dz

, (39)

r s =
kz − ks

kz + ks
, (40)

kz = ω cos θ/c and ks = ks(+∞).

The refined formula for the reflection coefficient takes the

form

Rs =

∣

∣

∣

∣

r s + Vs l

1 + r sVs l

∣

∣

∣

∣

2

, (41)

where

Vs l =
1− exp(−i̟s )

1− r2s l exp(−iϕs )
r s l exp(−i8s), (42)

ϕs = −
2ks l

k2
s − k2

s l

+∞
∫

0

[

k2
s (z ) − k2

s

]

dz , (43)
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k2
s l =

+∞
∫

0

k2
s (z )

[

k2
s (z ) − k2

s

]

dz

+∞
∫

0

[k2
s (z ) − k2

s ] dz

, (44)

r s l =
ks − ks l

ks + ks l
, (45)

8s = 2ks3s −
k2

s + k2
s l

4ks ks l
ϕs . (46)

Having inserted the corresponding expressions for the

parameters found in (35) and (41) into these formulae,

one may calculate the reflection coefficient using the ε(z )
dependence. Specifically, these formulae provide exact

expressions for the reflection coefficient for a medium

with a homogeneous layer of any thickness. In con-

trast, the perturbation-theory formulae ((6), (25), and

(26) for a p-polarized wave and (37)–(39) for an s -
polarized wave) even in this simple case are only approxi-

mate.

4. Test calculations and discussion

Test calculations were performed for inhomogeneous

media with the coordinate dependence of permittivity

characterized by the Epstein formula [13]:

ε(z ) = ε∞ + 4εl
exp[(z − z l)/δl ]

{

1 + exp[(z − z l)/δl ]
}2

, (47)

where ε∞ is the asymptotic permittivity value at z → ∞,

εl = ε(z l), z l is the depth of occurrence of the layer, and

δl characterizes the layer thickness.

In order to estimate the accuracy of the analytical solu-

tion, the angular dependences of the reflection coefficient

calculated using the derived formulae were compared to the

dependences obtained numerically using the electrodynam-

ics equations.

Various interpretations of the recursive method and

the transfer matrix method are used widely in numerical

methods. In both methods, an inhomogeneous medium

is substituted with a structure with thin homogeneous

layers. The electrodynamics equations in each layer have

solutions in the form of transmitted and reflected waves.

The requirement of continuity of tangential components of

intensities of the magnetic and electric field gives rise to a

system of algebraic equations that interrelate the amplitudes

of waves in neighboring layers. This system forms the basis

for calculation of the reflection coefficient in both methods.

In the present study, the recursive method was used for

numerical calculations. Each layer is characterized in this

method by its own amplitude reflection coefficient (the ratio
of amplitudes of the reflected wave and the transmitted

one). Moving successively from the most distant layer to

the surface layer, one may calculate all the local coefficients.

It is assumed also that the medium becomes virtually

homogeneous beyond the external boundary of the most

distant layer. The electrodynamics boundary conditions

allow one to express the overall reflection coefficient in

terms of the local coefficient of the layer adjacent to the

surface. Reducing the thickness of each layer and increasing

their overall thickness, one may achieve the needed accuracy

of calculation of the coefficient of reflection off the entire

inhomogeneous structure.

Fig. 2 illustrates the results of calculations. The

permittivity of the inner layer either had an imagi-

nary part (Figs. 2 a, b) or was real with a minimum

value min{ε(z )} = 1 (Figs. 2, c, d). Calculations were also

performed for a system of two layers (Figs. 2, e, f).
It follows from the analysis of the angular dependences

of the reflection coefficient that the accuracy of calculations

carried out using the refined formulae is significantly

higher than the accuracy of calculations relying on the

perturbation-theory formulae. The results of calculations

for different values of the layer thickness demonstrate that

the refined formulae characterize accurately the angular

dependences for δl/λ ≤ 0.02, while the perturbation-theory

formulae are suitable only for δl/λ ≤ 0.01 (λ = 2πc/ω is

the length of an electromagnetic wave in vacuum). The

errors of calculation with the perturbation-theory formulae

in the 0.01 ≤ δ1/λ ≤ 0.02 interval may be rather significant.

At δl/λ ≤ 0.01, the angular dependences calculated using

the perturbation-theory formulae and the refined formulae

are almost the same as those calculated numerically.

It should also be noted that the amplitude of oscillations

of the reflection coefficient in the dependences in Fig. 2

is approximately an order of magnitude greater than the

δl/λ ratio. This suggests that the inner layer exerts a strong

influence on the electrodynamic parameters of the medium

even if the layer is of a subwavelength thickness. In addition,

the proposed analytical model was found to be highly

sensitive to the choice of values of the free parameters of

the layer.

Special consideration should be given to inhomogeneous

layers with the ε(z ) − ε(∞) difference assuming values

of different sign within different intervals of z . Equalities
+∞
∫

0

ε(z )
[

k2
p(z ) − k2

p

]

dz = 0 or
+∞
∫

0

[k2
s (z ) − k2

s ]dz = 0 may

be fulfilled in this case. Since these integrals are in the

denominators of expressions (26), (30), (39), and (44), they
should not assume zero value. A medium with two Epstein

layers was considered as an example (Figs. 2, e, f):

ε(z ) = ε∞ + 4εl
exp⌊(z − z l + δl)/δl⌋

{1 + exp[(z − z l + δl)/δl]}2

− γ · 4εl
exp⌊(z − z l − δl)/δl⌋

{1 + exp[(z − z l − δl)/δl ]}2
. (48)

The permittivity is higher than ε(∞) in one layer and

lower than ε(∞) in the other. If the value of γ = 0.3 is

chosen, the mentioned integrals assume nonzero values, and

the analytical dependences agree closely with the numerical

solution of the electrodynamics equations. The error
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Figure 2. Angular dependences of the reflection coefficient for p- and s -polarized waves (a, c, e and b, d, f, respectively) obtained (1) for

a homogeneous medium, (2) using the refined formulae for a medium with an inhomogeneous layer, and (3) using the perturbation-theory

formulae for a medium with an inhomogeneous layer. Circles denote the results of numerical calculations utilizing the electrodynamics

equations for a medium with an inhomogeneous layer. Coordinate dependences of permittivity ε(z ) in the inhomogeneous layer are

shown in the insets. Dependences ε(z ) are defined by formula (47) (a–d) and formula (48) (e, f). The values of ε∞ = 6, z l = 10λ,

and δl = 0.02λ were the same for all the calculated dependences. The other values were εl = 3(1− i) (a, b); εl = −5 (c, d); εl = 3,

γ = 0.3 (e, f).
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increases as γ gets higher, and the analytical dependences

are rendered completely invalid at γ = 1.

Conclusion

A method for analytical calculation of the coefficient of

reflection off a medium with an inhomogeneous layer was

developed. The method is based on perturbation theory

and on extrapolation of the exact formulae of the model

with a homogeneous layer onto the inhomogeneous model.

It was proposed to characterize an inhomogeneous layer

by parameters that are a generalization of parameters used

in the model with a homogeneous layer. Formulae (35)
and (41) with substitutions defined by analytical expres-

sions were derived as a result. In contrast to numerical

methods, the proposed method does not require layer-by-

layer discretization of the medium. All expressions were

derived for the coordinate dependence of permittivity of a

general form ε(z ). This fact simplifies the computational

aspects of the problem considerably and allows one to

analyze multiparametric models of ε(z ). The results of

test calculations demonstrated that extrapolation provides

for a significant increase in the accuracy of calculation

of the reflection coefficient. The angular dependences of

the reflection coefficient calculated using the extrapolation

formulae reproduce fairly accurately the interference effects

of reflection. The derived formulae may be used to analyze

and predict the properties of materials with modified layers.

Since no restrictions regarding the depth of occurrence of

an inhomogeneous layer were applied, the obtained results

may be regarded as a generalization of the results presented

in [9]. In addition, restrictions related to the choice of

geometry of reflection near the Brewster angle and the

lack of absorption in the medium were substantial in [9].
In the present study, the reflection coefficient was not

limited to small values, and the permittivity could contain a

coordinate-dependent imaginary part.
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