#### 12,10

# Structural and electronic properties of a new material — SrOs<sub>2</sub>O<sub>6</sub>\*

© P.A. Agzamova<sup>1,2</sup>, S.V. Streltsov<sup>1,2</sup>

 <sup>1</sup> M.N. Mikheev Institute of Metal Physics, Ural Branch, Russian Academy of Sciences, Yekaterinburg, Russia
<sup>2</sup> Ural Federal University after the first President of Russia B.N. Yeltsin, Yekaterinburg, Russia

E-mail: polly@imp.uran.ru

Received July 8, 2021 Revised July 13, 2021 Accepted July 16, 2021

> It was shown theoretically that a new material  $SrOs_2O_6$  can exist; the crystal structure of  $SrOs_2O_6$  is formed by the layers of  $OsO_6$  octahedra having common edges and forming a honeycomb type lattice. The structural and electronic properties of  $SrOs_2O_6$  were investigated by the first-principal calculations. An antiferromagnetic structure was found to be energetically favorable for the studied compound.

Keywords: ab initio calculations, low dimensional magnetism, band structure.

DOI: 10.21883/PSS.2022.01.52501.27s

#### 1. Introduction

Layered systems based on transition metals, which have a honeycomb lattice, are under intense study nowadays. Some of them, e.g.,  $\alpha$ -RuCl<sub>3</sub>, Na<sub>2</sub>IrO<sub>3</sub> or Li<sub>2</sub>IrO<sub>3</sub> are of interest due to possible realization of the spin-liquid state and are examples of systems whose magnetic properties are described by the Kitayev–Heisenberg model [1–3]. Other compounds have a state of the valence bond liquid [4–6].

An important feature of such systems in cases when the transition metal has a partially filled  $t_{2g}$ -shell is the existence of quasi-molecular hexagon-centered orbitals. Quasimolecular orbitals yield a particular electronic spectrum, while band states can be classified by means of irreducible representations of group  $D_{6h}$  (in the same way as with the benzene molecule) [7,8]. However, such factors as spin-orbital interaction, number of valence electrons, dimerization trend, various crystal lattice distortions determine whether the state with quasi-molecular orbitals can be realized or not [9]. The materials where the formation of quasi-molecular orbitals may significantly affect the system's physical properties include such oxides of Ru as SrRu<sub>2</sub>O<sub>6</sub> [10–14] and AgRuO<sub>3</sub> [15,16]. It should be noted that the Ru ion in such compounds has the valency 5+, which corresponds to three electrons on the  $t_{2g}$ -shell of the given ion or six *d*-electrons on an elementary cell. In this case, quasi-molecular orbitals of  $B_{1u}$  and  $E_{2g}$  symmetry are completely filled and a gap opens in the band spectrum, see Fig. 1 and [9]. It is important that splittings in this spectrum are determined by values of integrals of transition  $t_{pd}$  from site to site via *p*-orbitals of the ligand [7]. In this respect, it is interesting to find out how the pattern

of quasi-molecular orbitals, the electronic structure on the whole and the system's physical properties will change when the 4*d*-ion of the transition metal is substituted by 5*d*. In this case an increase of the principle quantum number will result in a larger extension of *d*-orbitals, and, consequently, an increase of  $t_{pd}$  [17,18].

This paper deals with modelling of structural and electronic properties of the  $SrOs_2O_6$  compound based on 5*d*-metal Os. A calculation of the enthalpy of formation has shown this material to be stable. The crystalline structure and the band spectrum of this system have been studied.

## 2. Calculation details

In this paper, structural and electronic properties of the  $SrOs_2O_6$  compound have been calculated within the framework of the density functional theory (DFT) methods using VASP (Vienna Ab-initio Simulation Package) [19]. The calculations were performed within the framework of general gradient approximation (GGA), in the PBE



**Figure 1.** Electron distribution over quasi-molecular orbitals in case of electron configuration  $d^3$ .

<sup>\*</sup> Report at XXI All-Russian School-Seminar on Problems of Condensed Matter Physics (SPCMP-21), Yekaterinburg, March 18-25, 2021

(Perdew–Burke–Ernzerhof) formulation [20]. Energy of plane wave cutoff  $E_{cutoff}$  in the calculations was taken equal to 520 eV. Number of *k*-points in the first Brillouin zone was chosen to correspond to its  $5 \times 5 \times 5$  mesh (the Monkhorst–Pack scheme) [21] for all the structures under study. The calculations were performed using the approximation of projected augmented waves — PAWpotentials [22] Sr (4*s*4*p*5*s*), Os (5*p*6*s*5*d*) and O ( $s^2p^4$ ). The initial parameters of the crystalline structure were taken for SrO<sub>2</sub> from [23] and for OsO<sub>2</sub> from [24].

## 3. Results and discussion

Enthalpy of formation of the  $SrOs_2O_6$  compound was calculated by considering the chemical reaction

$$SrO_2 + 2OsO_2 = SrOs_2O_6.$$
(1)

At the first stage, the dependencies of total energy on volume for  $SrOs_2O_6$ ,  $SrO_2$  and  $OsO_2$  have been obtained by a series of calculations where the elementary cell volume varied within  $\pm 10\%$  from the average value (Fig. 2).

In order to assess the values of equilibrium volume and energy, the dependencies E(V) were approximated by the Birch–Murnaghan equation of state of the 3-rd order

$$E(V) = E_0 + \frac{9V_0B_0}{16} \left( \left( \left( \frac{V_0}{V} \right)^{2/3} - 1 \right)^3 B'_0 + \left( \left( \frac{V_0}{V} \right)^{2/3} - 1 \right)^2 \left( 6 - 4 \left( \frac{V_0}{V} \right)^{2/3} \right) \right), \quad (2)$$

where  $V_0$  is the elementary cell volume at the normal pressure,  $E_0$  is the energy corresponding to the equilibrium volume,  $B_0$  is the modulus (coefficient) of all-round compression and  $B'_0$  is the derivative of modulus  $B_0$  by pressure. The values of quantities  $E_0$ ,  $V_0$ ,  $B_0$ ,  $B'_0$ , obtained by approximation, are given in Table 1.

The analysis of Table 1 shows that the calculated values of equilibrium volumes  $V_0$  are close to the experimental ones, so that quantity  $(V_0 - V_0^{exp})/V_0^{exp}$  is 5.2% for SrO<sub>2</sub> [23] and 0.022 for OsO<sub>2</sub> [24]. The obtained values are within a mean-square error of DFT-calculations [25].

**Table 1.** Parameters of the equation of state for the  $SrO_{s_2}O_{6}$ ,  $SrO_2$ ,  $OsO_2$  compounds, obtained by approximation of dependencies E(V) by the Birch–Murnaghan equation of state of the 3-rd order

| Parameter                 | SrOs <sub>2</sub> O <sub>6</sub> | SrO <sub>2</sub> | OsO <sub>2</sub> |
|---------------------------|----------------------------------|------------------|------------------|
| $E_0$ , eV                | -67.2                            | -34.5            | -47.5            |
| <i>V</i> <sub>0</sub> , Å | 130.5                            | 86.8             | 65.9             |
| B <sub>0</sub> , GPa      | 106.4                            | 77.3             | 286.3            |
| $B'_0$                    | 3.8                              | 4.7              | 4.7              |



**Figure 2.** Dependencies of total energy on elementary cell volume for  $SrOs_2O_6$ ,  $SrO_2$  and  $OsO_2$ .

Thermodynamic stability of  $SrOs_2O_6$  was studied by comparing the enthalpies for  $SrOs_2O_6$  and  $SrO_2 + 2OsO_2$  involved in reaction (1), which is shown in Fig. 3.

Figure 3 shows that the  $SrOs_2O_6$  compound remains stable under the normal conditions, which makes it possible to further study its crystalline and electronic structures, as well as the band spectrum.

The crystalline structure of  $\text{SrOs}_2\text{O}_6$  is described by a symmetry group P-31m; the lattice parameters and atom positions optimized in DFT are given in Table 2. The Os atoms are at the tops of the hexagons that form a honey-



**Figure 3.** Dependency of calculated relative enthalpy  $\Delta H$  of SrOs<sub>2</sub>O<sub>6</sub> as related to (SrO<sub>2</sub> + 2OsO<sub>2</sub>) on pressure.



**Figure 4.** Projection of the crystalline structure of  $SrOs_2O_6$  on *ab* plane. The Os atoms are represented by medium-sized (brown) balls connected by lines that show formation of hexagons. Oxygen atoms — small (red) balls, and Sr — the largest (green) balls in the centers of hexagons..



Figure 5. Band structure of  $SrOs_2O_6$  obtained for the non-magnetic state.

Table 2. Lattice parameters and atom coordinates for the  $SrOs_2O_6$  compound

| Symmetry              | Lattice parameters               | Atom positions                                                                       |
|-----------------------|----------------------------------|--------------------------------------------------------------------------------------|
| <i>P</i> -31 <i>m</i> | a = 5.37152  Å<br>c = 5.25716  Å | Sr: a (0.000, 0.000, 0.000)<br>Os: d (0.333 0.667 0.500)<br>O: k (0.378 0.000 0.301) |

comb lattice, see Fig. 4. The Sr and O atoms are between the planes formed by Os atoms. Thus, the  $SrOs_2O_6$  compound is isostructural to the  $SrRu_2O_6$  compound, and it can be expected that its electronic spectrum can be described by the concept of quasi-molecular orbitals, centered on  $Os^{5+}$  hexagons, suggested in [5], while band states can be classified by means of irreducible representations of  $D_{6h}$  group.

Figure 5 shows the band structure obtained by a DFT calculation without account of magnetic interaction for the  $SrOs_2O_6$  compound. There are six bands near the Fermi level; they can be described using quasi-molecular orbitals with symmetry  $A_{1g}$ ,  $E_{1u}$ ,  $E_{2g}$ ,  $B_{1u}$  ( $E_{1u}$  and  $E_{2g}$  are doubly degenerate) [10]. These bands mainly have the Os  $t_{2g}$  character the Os  $t_{2g}$  pattern (two Os atoms in an elementary cell). Three of them are empty ( $A_{1g}$  and doubly degenerated  $E_{1u}$ ) and are separated by a gap from  $E_{2g}$  and  $B_{1u}$ , in the same way as in SrRu<sub>2</sub>O<sub>6</sub>.

In addition to the nonmagnetic DFT-calculations, simulations were done for the ferromagnetic and antiferromagnetic (the nearest neighbors are antiferromagnetic) configurations of spins of Os<sup>5+</sup> ions. The calculations have showed that the energy, corresponding to the antiferromagnetic state, is lower the energy, corresponding to the ferromagnetic state. The energy difference is  $\delta E = 0.145 \text{ eV/f.u.}$  (f.u. — formula unit). This result means that the antiferromagnetic state is more favorable and can be expected to appear in the low-temperature region of SrOs<sub>2</sub>O<sub>6</sub>. The magnetic moment, calculated from the first principles, for the antiferromagnetic configuration of spins of Os<sup>5+</sup> ions is heavily suppressed and equals to  $1.34 \mu_{\rm B}$ , where  $\mu_{\rm B}$  is the Bohr magneton, which is due to both to the significant hybridization with oxygen and because of formation of quasi-molecular orbitals.

# 4. Conclusion

This paper outlines the modelling of structural and electronic properties of a new material — osmium oxide (V)  $SrOs_2O_6$  from the first principles. This compound has been shown to be thermodynamically stable under the normal conditions. The crystalline structure of  $SrOs_2O_6$  and the band spectrum have been obtained for the non-magnetic state, which is described by the concept of quasi-molecular orbitals centered on  $Os^{5+}$  hexagons, thereat, the band states can be classified using the irreducible representations

143

of  $D_{6h}$  group. The antiferromagnetic state has been shown to be energetically favorable for  $SrOs_2O_6$ .

## Funding

The work has been performed with support of the Russian Scientific Foundation (project No. 20-62-46047) and the Ministry of Education and Science of the RF (project No. FEUZ-2020-0054). The "Uran" supercomputer of IMM of the Ural Branch of RAS was used during the works.

#### **Conflict of interest**

The authors declare that they have no conflict of interest.

## References

- S.M. Winter, A.A. Tsirlin, M. Daghofer, J. van den Brink, Y. Singh, P. Gegenwart, R. Valenti. J. Phys. Condens. Matter 29, 493002 (2017).
- [2] H. Takagi, T. Takayama, G. Jackeli, G. Khaliullin, S.E. Nagler. Nature Rev. Phys. 1, 264 (2019).
- [3] D.I. Khomskii, S.V. Streltsov. Chem. Rev. 121, 2992 (2021).
- [4] S.A.J. Kimber, I.I. Mazin, J. Shen, H.O. Jeschke, S.V. Streltsov, D.N. Argyriou, R. Valenti, D.I. Khomskii. Phys. Rev. B 89, 081408 (2014).
- [5] Z.V. Pchelkina, A.L. Pitman, A. Moewes, E.Z. Kurmaev, T.-Y. Tan, D.C. Peets, J.-G. Park, S.V. Streltsov. Phys. Rev. B 91, 115138 (2015).
- [6] J. Park, T. Tan, D.T. Adroja, A. Daoud-Aladine, S. Choi, D. Cho, S. Lee, J. Kim, H. Sim, T. Morioka, H. Nojiri, V.V Krishnamurthy, P. Manuel, M.R. Lees, S.V. Streltsov, D.I. Khomskii, J.-G. Park. Sci. Rep. 6, 25238 (2016).
- [7] I.I. Mazin, H.O. Jeschke, K. Foyevtsova, R. Valentí, D.I. Khomskii. Phys. Rev. Lett. 109, 197201 (2012).
- [8] Z.V. Pchelkina, S.V. Streltsov, I.I. Mazin. Phys. Rev. B 94, 205148 (2016).
- [9] S.V. Streltsov. Phys. Met. Metallogr. **119**, 1276 (2018).
- [10] S. Streltsov, I.I. Mazin, K. Foyevtsova. Phys. Rev. B 92, 134408 (2015).
- [11] C.I. Hiley, M.R. Lees, J.M. Fisher, D. Thompsett, S. Agrestini, R.I. Smith, R.I. Walton. Angew. Chem. Int. Ed. 53, 4423 (2014).
- [12] W. Tian, C. Svoboda, M. Ochi, M. Matsuda, H.B. Cao, J. Cheng, B.C. Sales, D.G. Mandrus, R. Arita, N. Trivedi, J. Yan. Phys. Rev. B 92, 100404 (2015).
- [13] H. Suzuki, H. Gretarsson, H. Ishikawa, K. Ueda, Z. Yang, H. Liu, H. Kim, D. Kukusta, A. Yaresko, M. Minola, J.A. Sears, S. Francoual, H. Wille, J. Nuss, H. Takagi, B.J. Kim, G. Khaliullin, H. Yavaş, B. Keimer. Nature Mater. 18, 563 (2019).
- [14] Y.S. Ponosov, E.V Komleva, D.A. Zamyatin, R.I. Walton, S.V Streltsov. Phys. Rev. B 99, 85103 (2019).
- [15] B.E. Prasad, S. Kanungo, M. Jansen, A.C. Komarek, B. Yan, P. Manuel, C. Felser. Chem. Eur. J. 23, 1521 (2017).
- [16] W. Schnelle, B.E. Prasad, C. Felser, M. Jansen, E.V. Komleva, S.V. Streltsov, I.I. Mazin, D. Khalyavin, P. Manuel, S. Pal, D.V.S. Muthu, A.K. Sood, E.S. Klyushina, B. Lake, J.-C. Orain, H. Luetkens. Phys. Rev. B 103, 214413 (2021).

- [17] W.A. Harrison. Elementary Electronic Structure. World Scientific, Singapore (1999).
- [18] S.V. Streltsov, D.I. Khomskii. Phys.-Usp. 60, 1121 (2017).
- [19] G. Kresse, J. Hafner. Phys. Rev. B 47 558 (1993).
- [20] J.P. Perdew, K. Burke, M. Ernzerhof. Phys. Rev. Lett. 77, 3865 (1996).
- [21] H. Monkhorst, J. Pack. Phys.Rev. B 13, 5188 (1976).
- [22] G. Kresse, D. Joubert. Phys. Rev. B 59, 1758 (1999).
- [23] J.D. Bernal, E. Djatlowa, I. Kasarnowsky, S. Reichstein, A.G. Ward. Z. Kristallogr. Cryst. Mater. 92, 344–354 (1935).
- [24] Y.C. Venudhar, L. Iyengar, K.V. Krishna Rao. Cryst. Res. Technol. 20, 1393 (1985).
- [25] R.M. Martin. Electronic Structure: Basic Theory and Practical Methods. Cambridge University Press, Cambridge (2004).