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Two-dimensional low density electrons in high magnetic field
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The photoluminescence spectrum from the two-dimensional low density electrons with the localized valence-

band holes in magnetic field is studied. The ground state is considered as Wigner crystal ore the strongly correlated

electron system. For the quantum Wigner crystal the Landau levels for vacancions (quasiholes appearing in the

process of photoluminescence) are calculated in the quasiclassical approximation. The spectrum of single-particle

excitations for a triangular lattice in the nearest-neighbor approximation is used. It is found that Landau levels

for vacancions depend unusually on magnetic field. For the electron system with strong Coulomb interaction the

Mahan exciton effect in the photoluminescence for the two-dimensional electrons in magnetic field is considered.
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Interest to study of highly correlated low-dimensional

systems is maintained at a high level due to the appearance

of new research targets and extension of experimental

techniques. Thus, the effects of energy renormalization

not only at the Fermi level, but also in the entire region

of two-dimensional electrons’ spectrum are studied using

the method for analysis of radiation recombination spectra

of electrons with photoexcited holes bound on remote

acceptors [1–3]. Papers [2,3] studied the low-temperature

luminescence spectra for two-dimensional electron gas in

the MgZnO/ZnO heterojunction. The luminescence band

width, studied in detail in [3], is related by the authors

to a renormalized value of the weight of optical density

of states. The weight defined in this way varies from

0.6 to 0.3m0 (m = 0.3m0 — value of effective weight for

ZnO in the volume) upon a change in the parameter r s

from 6.5 to 2.4 (r s = (πns )
−1/2/aB), ns — density of two-

dimensional electrons, aB = ǫ~2/(me2) — effective Bohr

radius for ZnO parameters). The perpendicular magnetic

field distinctly shows luminescence lines for individual

Landau levels, which makes it possible to assume the

presence of quasi-holes as well-defined quasi-particles for all

energy values, and not only near the Fermi level. Samples

with a low electron density also have unusual behavior

in the magnetic field: the fan of Landau levels looks

inverted, as stated by the authors of paper [3]. An inverted

fan, apparently, means a decrease of Landau level energy

with magnetic field growth in the magnetic field range

5−8T studied in the experiment. Unfortunately, the paper

does not give the results of study of quasi-holes’ Landau

level behavior. Nevertheless, it is necessary to consider

theoretically the behavior of Landau levels in a highly

correlated system of two-dimensional electrons.

However, most theoretical methods work well with high

electron densities (small values of the parameter r s ), when

electron kinetic energy dominates over their interaction

energy. The multi-particle problem for intermediate values

of r s does not have a correct theoretical description both

for determination of the main state and for calculation of

excitation energy. The main state of a two-dimensional

electron system depending on r s may be considered as

an electron gas, an electron Fermi liquid or a Wigner

crystal ([4,5]). Electrons in the crystal form a triangu-

lar lattice, while the system’s spin state can be either

ferromagnetic or antiferromagnetic. Electron density for

crystallization in an ideal system shall be very low —
r s = 37 ± 5 [6], however, with consideration of impurities,

the liquid – crystal transition shifts to a more realistic value

of r s = 7 [6], thus making it possible to consider the quasi-

holes from the experimental work [3] as quasi-particles in

a Wigner crystal — vacansions [7]. The author’s previous

paper [8] considered the shape of the luminescence band

for a recombination of an electron and a localized hole with

the formation of a vacansion, assuming that two-dimensional

electrons form a Wigner crystal.

This paper presents the obtained Landau levels for

vacansions in a quasi-classical approximation, using the

dispersion law in a tight-binding approximation for the

triangular lattice of the Wigner crystal. The vacansion

dispersion law E(k) in a tight-binding approximation for

the triangular lattice with interatomic distance a while

considering tunneling only between the nearest neighbors

has the form

E(k) = 2t
[

cos(kxa) + 2 cos(kxa/2) cos(
√
3kya/2)

]

, (1)

where t is the hopping integral (tunneling parameter). Band
width is D = 9|t|. The sign of t depends on spin ordering.

With t < 0 (the ferromagnetic case), the minimum of

E(k) is in the center of the Brillouin zone at the point
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Figure 1. Luminescence spectra for recombination of 2D-

electrons and localized holes with formation of vacansions. Solid

line:t < 0, dashed line: t > 0. Attenuation 0.2, energy unit 2|t|.

Ŵ (E(0) = 6t), the maximum of E(k) is at the point K

(E(K) = −3t), with t > 0 the maximum and the minimum

change places.

Density of states with E → −2t turns into ∞ under the

logarithmic law (a van Hove singularity emerges). As

already noted [8], the point of singularity corresponds to

the luminescence intensity maximum. Therefore, a change

in the sign of the hopping integral causes a change in the

position of the luminescence band maximum. The spectrum

transformation is shown in Fig. 1.

In a quasi-classical approximation, the Bohr-Sommerfeld

quantization rule can be used to express the Landau level

energy En as follows:

S(En) =

(

2πeH
~c

)

(n + γ). (2)

Here, S(E) is the surface area of a closed race-track in

the k-space, determined by isoenergetic curve E(k) = E .
Energy, corresponding to the point of singularity, in the

magnetic field also has a peculiarity: a closed race-track

does not exist for it. Accordingly, Landau levels are located

separately for one valley with a center at point Ŵ and for

two other valleys with a center at point K. The dispersion

law in the vicinity of the extreme values is quadratic, and

Landau level energies can be easily found. The quantization

constant γ = 1/2 can be determined from here.

The value of S(E) can be expressed through the density of

states N(E) (using the expression for N(E), e.g., from [9]).
Thus, for t < 0

S(E) = S0

E
∫

Emin

N(E)dE (E < −2t) (3)

S(E) = 0.5× S0

Emax
∫

E

N(E)dE (E > −2t). (4)

S0 = (8π2)/(
√
3a2) is the area of the Brillouin zone. Mag-

netic field H can be conveniently expressed in dimensionless

units H/H0. With H = H0, the filling factor is ν = 1, the

corresponding magnetic length aH

aH0
= sqrt

~c
eH0

= a
(
√
3/(4π)

)1/2
. (5)

The equations for Landau level energies take the form

E
∫

Emin

N(E)dE =
H
H0

(

n +
1

2

)

, (6)

Emax
∫

E

N(E)dE =
2H
H0

(

n +
1

2

)

. (7)

The position of Landau levels depending on magnetic field

is shown in Fig. 2.

The figure shows unusual behavior of Landau levels.

With t < 0 for a valley with a center at Ŵ-point, their

energies increase as the field grows, for K-valley the

energies decrease. Most of the Landau levels are of the

Ŵ-type. However, there are two K-valleys, capacitance

of Landau levels is twice higher, and their manifestation

can be expected to be more intensive in luminescence.

The magnetic field stabilizes the Wigner crystal; decrease

of the tunneling parameter with magnetic field growth

must enhance the effect of Landau levels’ motion from

different valleys toward each other. Nevertheless, a change

in the tunneling parameter need not be considered in

quasi-classical consideration, applicable in weak magnetic

fields only.

The obtained dependence of Landau level energy is due

to the existence of a limited energy band and may mean

possible existence of a Wigner crystal or Wigner glass. If a

Wigner crystal is characterized by strict ordering, long-range

order for Wigner glass (or Wigner liquid) is broken, but the
short-range order remains, which is possible for the case

with impurities. Density decrease must cause breakdown

of the ordering, it will be simply a system of localized

electrons [6], also characterized by a limited energy band.

Dependence of ground-state energy depends little on spin

polarization both for a pure Wigner crystal and with account

of impurities [10,11]. However, it is more probable that the

ground state of a Wigner crystal with impurities at densities

close to the crystallization threshold is antiferromagnetic

(frustrated antiferromagnet) and becomes ferromagnetic

only at very low densities or with very strong magnetic

fields (ν ≪ 1) [6,11,12].

In the experiment [3], the formation of an intensity peak

for low-density samples (r s ∼ 5−6.5) on the edge of the

luminescence band from the side of high energies and

unusual behavior of Landau levels were explained by a

phenomenon called
”
Mahan exciton“.
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Figure 2. Landau levels for vacansions depending on magnetic field. On the left — for t < 0 (ferromagnet), on the right — for t > 0

(antiferromagnet). Energy unit is 2|t|, unit of magnetic field — H0, dashed line — singularity energy.

The
”
Mahan“ exciton manifests itself as a peak of

photoluminescence intensity below the Fermi energy EF

for an electron system at a low temperature and a

relatively low density. Intensity increase that occurs in

absorption and luminescence at energies close to the Fermi

energy EF , due to multiple electron-hole scattering near

EF , but without the formation of a true exciton, has

been theoretically shown for the three-dimensional [13] and
two-dimensional [14] cases. Such scattering processes for

E ≪ EF are suppressed due to the Pauli exclusion principle.

Mahan’s paper [13] theoretically considers the interband

optical absorption in a direct-gap semiconductor in the case

when one band is degenerate and is considered as Fermi

gas. It was shown that exciton effects due to the electron-

hole Coulomb attraction cause a logarithmic singularity

on the absorption band edge even when real bound

electron-hole states do not form. This peculiarity (
”
Mahan

exciton“) exists at intermediate densities of particles in the

degenerate band (r s ∼ 2) and disappears at high densities

(r s ≪ 1).
The paper by Schmitt–Rink with co-authors [14] con-

sidered the absorption and luminescence spectra for quasi-

two-dimensional electron-hole plasma depending on carrier

concentration and temperature. Intensity increase arising

due to effects of intersubband absorption and luminescence

was theoretically shown at energies close to the Fermi

energy, due to an increased role of interparticle scattering at

a low temperature and a relatively low density of particles

(r s ∼ 1−3). Own-energy corrections and multiple electron-

hole scattering in the Bethe–Salpeter equation were taken

into account for the statically-screened Coulomb interaction.

The obtained spectra significantly differed from the single-

particle ones due to the enhancement of pair correlations

in the two-dimensional case. Experimental observation

of the peculiarity of
”
Mahan exciton“ in low-temperature

luminescence spectra for InGaAs-InP quantum wells [15]

agrees well with the calculations [14].

It could be expected that this peculiarity in luminescence

spectra will also manifest itself in intermediate magnetic

fields. Possible manifestation of the peculiarity of type

”
Mahan exciton“ in the magnetic field in luminescence for a

model of two-dimensional electron gas with strong Coulomb

interaction is considered in this paper similarly to the case

without the magnetic field, considered in the paper [14].

The problem was solved in single-exciton approximation.

In the presence of electron gas with N filled Landau levels,

the latter of which is partially filled, we considered a

state representing the superposition of pairs, consisting of

an electron on a free or partially filled Landau level M
(M ≥ N) and a hole from the valence band with the same

Landau level number. The hole mass was assumed to be

infinite. Statically-screened electron-electron and electron-

hole interaction Vs was used for weak magnetic fields
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Figure 3. Landau level energies (solid lines) and
”
Mahan exciton“ (dashed lines) in RPA approximation depending on magnetic field.

On the left, for r s = 2, on the right for r s = 7. Energy unit is Ec(H0), magnetic field energy unit is H0 .

(ν ≫ 1), obtained in the paper [16]:

Vs(q) =
2πe2

ǫq
1

ε(q)
, ε(q) = 1 +

2

aBq

[

1− J2
0(qaH)

]

, (8)

J0 is the Bessel function.

Exciton energy was found by numerically solving the

Bethe—Salpeter equation taking into account the electron-

hole interaction and own-energy corrections, similarly to

the calculation of intersubband excitations in the magnetic

field, the Hartree–Fock approximation [17–19] was used for

partially filled levels. The typical energy scale for screened

Coulomb interaction (8) Es is somewhat lower than for the

unscreened one, but significantly higher than the electron’s

cyclotron energy, that’s why the Landau levels not only with

M ∼ N, but with M ≫ N were taken into account when

considering the
”
Mahan exciton“.

In the magnetic field (exclusive of attenuation due to

spectrum discreteness), the bound electron-hole states,

formed by electrons of the conductivity band and holes

of the valence band with identical Landau levels, exist

always and are located near the Fermi energy. Starting from

r s = 2, the energy of this state stops rising with growth

of the magnetic field. For r s ≥ 4, energy of the
”
Mahan

exciton“ starts decreasing, as opposed to energies of Landau

levels, dependence on electron concentration is negligible,

qualitative pattern of behavior in the magnetic field is the

same. Energies of Landau levels and the level of the
”
Mahan

exciton“ for r s = 2 and r s = 7 are shown in Fig. 3.

For r s = 2, the statically-screened Coulomb interaction

can still be used both for the case of a two-dimensional

electron gas in a semiconductor without magnetic field [14],
and for the case, considered here, in the magnetic field with

ν ∼ 5−7. With greater r s , such screening cannot be used,

but one may expect retention of the qualitative pattern with

growth of r s , along with manifestation of Coulomb interac-

tion screening. Thus, it has been showed [20] in superstrong

magnetic fields (ν = 1) that the contribution of exchange

energy at very low electron densities (7 < r < 11) of

the order of cyclotron energy ~ωc , which is lower than

the usually considered typical scale of Coulomb energy

Ec = e2/(ǫaB); renormalization of exchange energy has

been shown numerically for a finite system of particles and

experimentally by the method of inelastic light scattering.

Energy decrease with growth of the magnetic field for

the effect of the
”
Mahan exciton“ manifests itself only for

one line, while for an antiferromagnetic Wigner crystal the

fan of lines has inverted behavior. The abnormal behavior

of Landau levels in two-dimensional electron systems of

a very low density can more likely be explained by the

transition to the Wigner crystal state, possibly, in the form

of separate domains, without establishing of a long-range

order throughout the sample. Unfortunately, the lack of

experimental data prevents from making of unambiguous

conclusions in favor of a particular model.
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