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A 1D quasilinear equation describing the current drive excitation by

helicons in a tokamak plasma
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A quasilinear equation which allows describing evolution of the electron distribution function and generation of

non−inductive currents by helicons is obtained. It is shown that in the analyzed case the Fokker−Planck equation
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coefficient proportional to the helicon power absorbed by electrons due to Landau damping.
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At present, a topical issue is developing efficient methods

for stationary non−inductive generation of current drive in

the tokamak plasma with thermonuclear parameters. The

possibility of maintaining the current with the aid of a fast

wave with a frequency much lower than the lower hybrid

resonance frequency but significantly higher than the ion

cyclotron resonance frequency [1] is recognized as most

promising. The use of this wave, i. e., helicon, will allow

reduction of the influence of linear interaction with ions

and of nonlinear (parametric) effects. To describe the

current generation by helicons, it is necessary to analyze

the quasilinear evolution of the electron distribution function

due to resonance interaction with these waves. The last

task (the problem of wave−particle interaction) is rather

vast and often gets raised in the plasma physics and

astrophysics [2]. In particular cases of current generation

and interaction between the pumping wave and alpha-

particles during the low hybrid heating [3] and current

generation by electron cyclotron waves [4], the general

partial differential equation in velocity projections, which

describes the quasilinear diffusion, can be reduced to

a one−dimensional (1D) equation. In the case of the

slow longitudinal wave propagation, the diffusion coefficient

involved in this equation is proportional to the power lost on

the magnetic surface due to the resonance interaction with

waves whose longitudinal phase velocity coincides with the

longitudinal velocity of particles [5]. This fact significantly

simplifies the calculation of the generated current density

profile because in this case there is no need in information

on the structure of the tokamak plasma high−frequency

fields and it is possible to restrict ourselves to using the ray

tracing method [6] in analyzing the wave part of the prob-

lem. Unfortunately, so far there is no justification for this

approach for the case of intermediate−frequency fast wave

(helicon) which is necessary for applying efficient program

codes [6] developed for describing the current generation in

the tokamak plasma by slow intermediate−frequency waves

in planning experiments with helicons. In this work we will

fill this gap and obtain an appropriate 1D kinetic equation.

Consider a package of electromagnetic waves with

intermediate frequencies ωci ≪ ω < ωLH ≪ |ωce |

(ωLH = ωpi/
√

1 + ω2
pe/ω

2
ce is the low−hybrid frequency,

ωpi,pe , ωci,ce are the ion and electron plasma and cyclotron

frequencies) which propagates at an angle to the external

magnetic field B = Bez in homogeneous plasma:

E0(r) =

∞
∫

−∞

dkz

4π
A(kz ) exp(ikx(kz )x + ikz z − iωt) + c.c.,

(1)
where A = eGA0, A0 is the amplitude,

eG =
(

1,−ig/(n2
z + n2

x − ε), nx nz /(n
2
x − η)

)

are the polarization vector components,

ε = 1 +
ω2

pe

ω2
ce

−
ω2

pi

ω2
< 0, η = −

ω2
pe

ω2
< 0

are the diagonal elements of the
”
cold“ plasma dielectric

permittivity tensor, while g =
ω2

pe

ωceω
≫ 1 is the off−diagonal

tensor element,

nx = ckx/ω =
√

(

g2/(n2
z − ε)

)

− (n2
z − ε) ≈ g/nz ,

nz = kz c/ω

are the refractive index elements. Then consider the

kinetic equation for homogeneous magnetized plasma which

describes the electron distribution function [2]:

(

∂

∂t
+ v i

∂

∂x i
−

|e|
me

(Ei + ei jkv jBk)
∂

∂v i

− ωcei jzv j
∂

∂v i

)

f e = St( f e), (2)
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where ei jz is the fully antisymmetric unity tensor, St( f e) is

the Landau collision integral. Let us try to find the

equation (2) solution as f e = n f 0 + f (1), where n is the

plasma density, f 0 is the quasi−equilibrium distribution

function independent of the particle rotation gyroangle,

f (1) = (2π)−1
∞
∫

−∞

dkz f (1)(kz ) is its linear correction. Sub-

stitute this expansion into (2) and obtain equations for the

partial linear correction to the distribution function whose

frequency and wave number are prescribed by the wave

field:

(

−iα + iλ cos θ +
∂

∂θ

)

f (1)(kz ) −
n|e|

2meωc

×

(

A(kz ) +
v×

(

k× A(kz )
)

ω

)

∂ f 0

∂v
= 0, (3)

where α = (ω − kzvz )/ωc , λ = kxv⊥/ωc , ωc = |ωce |, θ is

the azimuthal angle in the cylindrical frame of references
(

v⊥, θ, vz

)

in the space of velocities.

Integrating equation (3) and using relation

exp
(

iλ sin θ
)

= 6pJ p(λ) exp(i pθ), find the linear correction

to the electron distribution function

f (1) =

∞
∫

−∞

dkz

2π
f (1)(kz ) = i

n|e|
2meωc

×

∞
∫

−∞

dkz

2π

∑

p

exp(i pθ − iλ sin θ)
α − p

ap(kz ) · A(kz ), (4)

where components ap are

(

ax p, ay p

)

=
(

J+
p (λ),−iJ−

p (λ)
)

×

(

(

1−
kzvz

ω

)

∂

∂v⊥

+
kzv⊥

ω

∂

∂vz

)

f 0,

a z p =

(

J p(λ)
∂

∂vz
+

pJ p(λ)

λ

(

kxvz

ω

∂

∂v⊥

−
kxv⊥

ω

∂

∂vz

)

)

f 0,

J+
n (λ) = nJn(λ)/λ, J−

n (λ) = J′

n(λ).

To take into account the Landau resonance interaction with

electrons, it is sufficient to retain the zero term p = 0 in the

infinite series in numbers of electron cyclotron harmonics in

(4):

f (1) = i
n|e|

2meωc

∞
∫

−∞

dkz

2π

exp
(

−iλ sin θ
)

α
b(kz ) · A(kz )

∂

∂vz
f 0,

(5)
where vector b has components

b = [0, iJ1(λ)kzv⊥/ω, J0(λ)]ω=kz vz ,

in which only resonance terms at ω = kzvz are taken into

account. Substitute (5) into (2):

(

∂

∂t
+ v i

∂

∂x i
− ωcei jzv j

∂

∂v i

)

n f 0 −
|e|
2me

×

∞
∫

−∞

dkz

2π

(

A(kz ) +
v× (k× A(kz ))

ω

)

∂ f (1)(kz )
∗

∂v

−
|e|
2me

∞
∫

−∞

dkz

2π

(

A(kz )
∗ +

v×
(

k× A(kz )
∗
)

ω

)

∂ f (1)(kz )

∂v

= St(n f 0). (6)

Let us average the left and right parts of (6) over

the azimuthal angle, use the Sokhotsky formula

(ω − kzvz )
−1 = P(ω − kzvz )

−1 − iπδ(ω − kzvz ) where

δ(. . . ) is the delta−function, average over the random

phase 〈
(

b · A(kz )
)∗(

b · A(k ′
z )
)

〉 = 2π|b · A(kz )|
2 and then

obtain the equation for the quasilinear diffusion of the

electron distribution function due to their interaction with

an electromagnetic wave (helicons) in the presence of

collisions.

∂

∂t
f 0 −

ω2
pe

16πnme

∂

∂vz

(

∞
∫

−∞

dkz

2π
|b · A(kz )|

2

× δ(ω − kzvz )

)

∂

∂vz
f 0 = St( f 0). (7)

One can see that in the case of electron interactions with

an intermediate−frequency wave this is a 1D equation in

longitudinal particle velocities, in which the diffusion coef-

ficient depends on the transverse velocity. Nevertheless, let

us assume that the distribution function gets factored with

retaining the Maxwell’s character with respect to transverse

velocities, i. e., f 0 = f M(v⊥) f 0z (vz ), which corresponds

to the case of a strong diffusion causing formation of a

”
plateau“. Let us apply operation

∞
∫

0

. . . v⊥dv⊥ to equation

(7):

∂

∂t
f 0z −

∂

∂vz

∞
∫

−∞

dkz

2π
Dz z (kz )δ(vz −v f )v f

∂

∂vz
f 0z =St( f 0z ),

(8)

Dz z (kz ) =
ω2

pe

4nmev
2
teω

∞
∫

0

|b · A(kz )|
2 exp

(

−
v2
⊥

v2
te

)

v⊥dv⊥.

(9)

To clarify the physical sense of the obtained diffusion

coefficient, consider specific loss of a wave beam

(1) in plasma due to the Landau resonance,

which is Q = (2π)−1
∞
∫

−∞

dkz Q(kz ), where Q(kz ) =

= 〈A∗
m(kz ) jm〉/(8π) is the partial contribution of the field
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component kz , j = −|e|
∫

v f (1)dv is the electron current

density in the wave field. As a result, obtain

Q(kz )=
ω2

peω

4v2
tek2

z

∂ f 0z

∂vz

∣

∣

∣

∣

∣

ω/kz

∞
∫

0

|b · A(kz )|
2 exp

(

−
v2
⊥

v2
te

)

v⊥dv⊥

=
ε′′yy |Ay |

2 + ε′′yz Im(A∗
y Az ) + ε′′z z |Az |

2

8π
. (10)

The last term of the right−hand part of (10) describes the

Landau damping, the first describes the magnetic pumping,

the second is the interference term [7]. Compare (10)
with (9) and notice that partial diffusion coefficient (9)
in equation (8) is proportional to the partial contribution

A(kz ) to the specific loss:

Dz z (kz ) = Q(kz )

/
∣

∣

∣

∣

∣

nme
ω2

k2
z

∂ f 0z

∂vz

∣

∣

∣

∣

∣

w/kz

. (11)

Thus, in the considered case of helicon absorption, the

partial diffusion coefficient in the velocity space may be

found by analyzing partial component Q(kz ) of the wave

beam energy release similarly to the slow−mode case,

and does not need calculation of the electric field spatial

distributions. This fact allowed us to restrict ourselves to

consider only ray traces behavior and energy absorption

along them in analyzing the efficiency of non−inductive

current generation and its profile.

In this work, electron interaction with intermedia-

te−frequency electromagnetic waves (helicons) according

to the Landau resonance mechanism has been considered.

As a result, we have derived a quasilinear equation that

allows description of the electron distribution function evo-

lution and current drive excitation during the plasma heating

with helicons. It has been shown for the first time that,

if in the case under consideration the distribution function

gets factored with retaining the Maxwell’s form with respect

to transverse velocities, then the quasilinear equation may

be reduced to a one−dimensional one in the space of

longitudinal electron velocities. The diffusion coefficient of

this 1D equation (11) is proportional to the specific power

absorbed during the particle−wave interaction (10).
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