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A method to detect the characteristics of intermittent generalized
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A method to define the characteristic phases in the behavior of unidirectionally coupled systems located near

the boundary of the generalized chaotic synchronization regime onset based on calculating the probability of

the synchronous regime observation in an ensemble of coupled systems is proposed. Using the example of

unidirectionally coupled Rössler systems in the band chaos regime, we have shown its efficiency in comparison

with other known methods for detecting the characteristics of intermittent generalized synchronization.
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The intermittent behavior is characteristic of systems

of various natures and is a universal phenomenon [1].
Intermittency is one of the classical scenarios of transition

from periodical oscillations to chaotic ones; it is also

observed near the boundaries of synchronous modes. In

this connection, the following synchronization types are

distinguished: intermittent total synchronization, intermittent

lag synchronization, intermittent generalized synchroniza-

tion, intermittent noise−induced synchronization, intermit-

tent phase synchronization, and time scale intermittent

synchronization [2–9].

Each of these types of the intermittent synchronous

behavior possesses its own onset mechanisms and its own

duration characteristics of the laminar (synchronous) phase.

Moreover, in some cases the intermittency type depends not

only on the synchronization type but also on the mismatch

between the interacting systems or on the topology of

attractors of these systems. For instance, intermittency of

the
”
eyelet“type is observed near the phase synchronization

boundary in the case of a relatively weak mismatch of the

systems, while intermittency of the
”
ring“type is observed

in the case of a great mismatch [6,7]. In the systems with a

relatively simple attractor topology, the intermittency of the

”
on-off“ type [3] occurs at the generalized synchronization

boundary, while in the systems of a relatively complex (two-
sheeted) structure the jump intermittency is observed [9].
Onset mechanisms of all the above mentioned intermittency

types, as well as their statistical characteristics, also appear

to be different.

In defining the intermittency onset mechanisms and in

calculating statistical characteristics of the intermittent be-

havior, a significant role is played by the methods for distin-

guishing characteristic phases of the system dynamics. For

the mode of the intermittent generalized synchronization,

there are known a few such methods based on calculating

local Lyapunov exponents [4], applying continuous wavelet

transform [10] or analyzing the arrangement of points on

attractors of the interacting systems [9]. For the mode of the

intermittent generalized synchronization, there are known

a few such methods based on calculating local Lyapunov

exponents [4], applying continuous wavelet transform [10]
or analyzing the arrangement of representative points on

attractors of the interacting systems [9]. At the same time,

the most widely used and efficient method for analyzing

intermittent generalized synchronization is the auxiliary

system approach [11]. This method may be easily applied

to unidirectionally coupled dynamic systems, while for

mutually coupled systems it gives incorrect results [12].

The auxiliary system method [11] consists in the follow-

ing: along with the response system, an auxiliary system

is considered which is identical to the response system and

is under the action of the same drive system. The initial

conditions of the auxiliary system are to differ from the

initial state of the response system but are to lie in the

attraction basin of the same chaotic attractor. In the mode

of the generalized synchronization, a functional coupling

(composite function) [13,14] arises between the states of

the drive and response systems, as well as between the

states of the drive and auxiliary systems, which makes

identical the states of the response and auxiliary systems

on the completion of the transient process. In the absence

of generalized synchronization, states of the response and

auxiliary systems always prove to be different, while in the

intermittent generalized synchronization mode these states

coincide with each other only in certain time intervals

referred to as laminar (synchronous) phases, and at the
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remaining time moments asynchronous phases (turbulent
surges) take place [3].
To obtain the intermittency characteristics, it is necessary

to analyze the signal that is a time dependence of the

difference in the response and auxiliary system states [3].
Time intervals during which the modulus of this difference

is lower than a certain preset low quantity 1 correspond

to the phases of laminar behavior, the remaining time

moments correspond to the turbulent phases. Based on

the statistics of duration of laminar phases (distributions of
laminar phase durations at fixed values of control parameters

and dependences of average laminar phase duration on the

coupling parameter) it is possible to unambiguously define

the intermittency type realized in the system.

In analyzing the intermittent behavior near the

generalized synchronization boundary by using the

auxiliary system approach, the probem of selecting initial

conditions for the response and auxiliary systems is of

great importance. Notice that this problem has not been

discussed in literature so far (except for the statement

that initial conditions for those systems are to be different

but belonging to the same attraction basin). As shown

below, the selection of initial conditions for those systems

appears to be quite significant for the mode detected at a

fixed time moment. In other words, in the mode of the

intermittent generalized synchronization of unidirectionally

coupled systems under one and the same state of the

drive system either synchronous or asynchronous dynamics

may be detected depending on the response system initial

conditions, i. e., multistability takes place.

The presence of multistability near the generalized

synchronization boundary raises the question of improving

the methods for distinguishing characteristic phases of the

system behavior taking into account this specific fact. This

paper proposes a method for distinguishing laminar phases

near the generalized synchronization boundary, which

is based on calculating the probability of observing the

synchronous mode in an ensemble of coupled systems. The

method is based on considering time dependence of the

drive oscillator and relatively large ensemble of response

systems unidirectionally coupled with it, and on calculating

the probability of observing the laminar phase of behavior

(synchronous section of behavior).
As the research object, an ensemble was selected of uni-

directionally coupled weakly−nonidentical Rössler systems

staying in the band chaos mode:

ẋd = −ωdyd − z d,

ẏd = ωdxd + ayd,

ż d = p + z d(xd − c),

ẋ i
r = −ωr y i

r − z i
r + ε

(

xd − x i
r

)

,

ẏ i
r = ωr x i

r + ay i
r ,

ż i
r = p + z i

r

(

x i
r − c

)

, (1)

where indices d and r relate to the drive and response

systems, respectively, index i = 1, . . . , N indicates the

response system number, initial conditions for these systems

are to be selected so as to be different, a = 0.15, p = 0.2,

c = 10, ωd = 0.93 and ωr = 0.95 play the role of control

parameters of the interacting systems, ε is the coupling

parameter. At the selected values of control parameters

and ε > 0.178, the generalized synchronization mode is ob-

served in system (1) [15]. As discussed above, intermittent

behavior takes place near the synchronous mode boundary.

To distinguish characteristic phases in system (1) and

determine the intermittency characteristics, let us introduce

into consideration the probability of observing the turbulent

phase

Pa = 1−

N
∑

i=1

n(xi
r)

N(N − 1)
, (2)

(where n(xi
r) is the number of systems staying in the

mode synchronous with the i-th oscillator, N = 1000 is

the number of oscillators in the ensemble) and consider its

time dynamics. If Pa is close to unity, the turbulent phase

is observed in the system under study. If Pa is close to

zero, the laminar phase is detected. Evidently, Pa may get

intermediate values within the (0, 1) range. Thus, when the

threshold for distinguishing the laminar and turbulent phases

is set, it becomes possible to distinguish the characteristic

phases of the interacting systems.

Fig. 1, a presents the Pa(t) dependence for system (1) at

ε = 0.17. Fig. 1, b shows the difference between the states

of two response systems (one of them plays the role of

the auxiliary system) ξ(t) = |x1
r − x2

r | at the same coupling

parameter. Comparing Figs. 1, a and b, we can see that

characteristic phases of the systems distinguished by two

different methods are somewhat different though concen-

trated in the vicinity of the same time interva detection, the

transition from the asynchronous state to synchronous one

is accompanied by a quite drastic rise in the probability,

which makes it possible to avoid detection of ultrashort

laminar phases (which is typical of the auxiliary system

method) and, hence, ensures more accurate determination

of durations of characteristic phases of the systems.

Fig. 2 presents one of statistical characteristics of the

laminar phase durations, i. e., distributions of the laminar

phase durations calculated in two different ways at cou-

pling parameter ε = 0.17, namely, by the auxiliary system

method and probabilistic method; the figure also presents

theoretical approximation of the distributions with the power

function

p(τ ) = kτ −3/2 (3)

(where k is a positive constant), characteristic of the
”
on-

off“ intermittency [3]. One can see that in both cases power

function (3) fits well the numerical simulation data but, in

case the method proposed here is used, standard deviation

of the numerical simulation data from the theoretical ones

appears to be essentially lower (see the Fig. 2 caption).
The above indicates the possibility of using the proposed
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Figure 1. Time dependence of the probability of observing the asynchronous behavior phase Pa for the ensemble of unidirectionally

coupled Rössler systems (1) at ε = 0.17 (a) and time dependence of the difference between the states of two response (response and

auxiliary) systems ξ(t) = |x1
r − x2

r | at the same coupling parameter (b).
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Figure 2. Distributions of durations of laminar phases of unidirec-

tionally coupled Rössler systems (1) obtained at ε = 0.17 by two

methods: the auxiliary system method (squares) and probabilistic

method proposed in this study (circles), as well as their theoretical
approximation by power function (3), k = 3. Standard deviations

of the numerical simulation data from the theoretical ones are

σ1 = 4.9 · 10−9 and σ2 = 1.6 · 10−9, respectively.

approach to determine the intermittency characteristics also

in more complex systems where conventional methods fail

to unambiguously identify whether the power or exponential

law is observed in the considered case; this opens wide

opportunities for practical application of this method.
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