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Elastic interaction of quantum disks in hybrid QD/NW structures
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The elastic interaction of quantum disks (QDs) in a nanowire (NW), i. e., in a hybrid QD/NW structure with sharp

heterointerfaces, is considered for the first time. Within the framework of the defect micromechanics approach, the

energy of QD pair interaction is established and it is demonstrated that for QDs with a lattice misfit of the same

sign, a zone of attraction to each other appears, depending on the ratio of the QD axial size to the NW radius. The

discovered effect should be taken into account when choosing the modes of formation of hybrid QD/NW structures

and in models explaining their properties.
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Currently, hybrid semiconductor structures comprising

both nanowires (NWs) and quantum dots (QDTs) or

quantum disks (QDs) attract attention of a wide circle of

researchers (see, e. g., reviews [1,2]). This is caused by

that such objects possess high structural perfectness which

allows the quantum effects inherent to QDTs, QDs and NWs

to be fully realized free of undesired additional influence

of crystal lattice defects arising in planar semiconductor

heterostructures.

QDTs and QDs may be incorporated into NW hybrid

structures in different ways [3]: they may be located on the

NW surface [4], fully embedded in the NW material [5–7]
or occupy the entire NW cross section [8–10]. In the last

case just analyzed in this work, axial QD/NW structures

very promising for practical use in electronics [1] and

photonics [2] are considered.

QDTs and QDs are NW regions with modified chemical

compositions and structures and, hence, with physical

properties different from those of the remaining part of the

material. For further analysis, it is important whether there

is a lattice misfit

εm =
aQD − aNW

aNW

, (1)

where aQD and aNW are the crystal lattice parameters

in the QD (or QDT) bulk and NW bulk, respectively.

For simplicity, let us restrict ourselves to the dilatation

(equi-axis) misfit characteristic of cubic-cell materials, for

instance, A3B5 semiconductors with the sphalerite structure

or Si and Ge with the diamond structure.

It is well known that lattice misfit arising in epitaxial

growth of heterostructures is caused by formation in the

material of elastic strains and mechanical stresses that, in

their turn, modify the semiconductor properties and also

give rise to dislocation defects in the course of stress

relaxation [11]. Formation of dislocations in hybrid QD/NW

heterostructures is hindered due to geometric restrictions,

however, strain energy induced by the lattice misfit should

be taken into account in considering such objects. This is

just why this paper is devoted to the analysis of the pair

elastic interaction of QDs in NW.

In the scope of the continuum mechanics approach, misfit

εm gets the meaning of eigenstrain [12], and QD appears

to be a finite-length elastic cylindrical inclusion. Earlier

a number of problems were considered for determining

characteristics (stresses and energies) of such inclusions

in an infinite cylinder serving as an adequate model of

NW. A review of the obtained results with references

to primary sources is given in our recent paper [13]
where it is noticed that inclusions with sharp and gradual

variations in the eigenstrain along the cylinder axis were

considered for the cases of the material elastic isotropy and

transversal isotropy. In addition, elastic characteristics of

single interfaces (transient regions) subdividing the cylinder

into parts with constant eigenstrains [13–15] were studied.

The control of the chemical composition and stressed state

of such transient regions is important for NWs with axial

heterostructures [14,16].

Fig. 1 presents a schematic picture of two interacting

dilatation inclusions DI1 and DI2 in an elastically isotropic

cylinder with radius a . The inclusion sizes (QD thicknesses)
in the axial direction are h1 and h2, while the distance

between them is L. Eigenstrain components ε∗i j for each

inclusion are defined by misfit ε
(1)
m or ε

(2)
m . For instance, the

relevant formula for DI1 is

ε∗(1)
rr (z ) = ε

∗(1)
ϕϕ (z ) = ε∗(1)

z z (z )

= ε(1)
m H

[

h̃1/2− |z̃ |
]

H[1− r̃ ], (2)
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Figure 1. Schematic picture of interacting quantum disks

(dilatation inclusions DI1 and DI2) in a nanowire represented as

an elastically isotropic cylinder. The following inclusion parameters

are shown: lattice misfits ε
(1)
m and ε

(2)
m , axial dimensions h1 and h2,

and coordinates z 1 = 0 and z 2 in the cylindrical frame of reference

(r , ϕ, z ).

where the cylindrical frame of reference (r , ϕ, z ) is used;

r̃ = r/a , z̃ = z/a , h̃1,2 = h1,2/a , H[p] is the Heaviside

stepwise function.

In the scope of the elasticity theory, the boundary-value

problem for an isolated dilatation inclusion in an elastically

isotropic cylinder was considered in papers [13,15]. For

instance, the following relation was obtained for stress

tensor trace σ
(1)
ii [13]:

σ
(1)
ii = −

4G(1 + ν)ε
(1)
m

1− ν
H[h̃1/2− |z̃ |]H[1− r̃ ]

+
8G(1 + ν)2ε

(1)
m

π(1− ν)

∞
∫

0

I1(β)I0(r̃β)

β2I20(β) − (β2 − 2ν + 2)I21(β)

× sin
h̃1β

2
cos β z̃ dβ, (3)

where G and ν are the shear modulus and Poisson

coefficient of the cylinder material; I0(ζ ) and I1(ζ ) are the

modified first-kind Bessel functions. The first right-hand

term of relation (3) sets the tensor trace (triple hydrostatic

component) of stresses in a dilatation inclusion located

in infinite medium, which is zero outside the inclusion.

The second right-hand term is generally nonzero and arises

due to restrictions imposed on the stresses by the boundary

conditions on the cylinder free surface. Just its contribution

defines the interaction between the dilatation inclusions in

the cylinder.

Generally, accumulated strain energy E induced by an

arbitrary eigenstrain ε∗i j may be found using the Mura

relation [12]:

E = −
1

2

∫

V

ε∗i jσi j dV, (4)

where σi j are the stresses unambiguously defined by the

eigenstrain and boundary conditions; the integration was

performed over the entire volume of the elastic body under

consideration.

In the task of determining the strain energy of a system

of dilatation inclusions, relation (4) may be reduced to:

E = −
ε

(1)
m

2

∫

V (1)

σ
(1)
ii dV −

ε
(2)
m

2

∫

V (2)

σ
(2)
ii dV − ε(2)

m

∫

V (2)

σ
(1)
ii dV,

(5)
where the first two right-hand terms are self energies E(1)

and E(2) of isolated (but located inside the cylinder) dilata-

tion inclusions DI1 and DI2, while the third term is the pair

interaction energy W (L) depending on distance L between

the inclusions in the elastic cylinder; V (1,2) = πa2h1,2 are

the inclusion volumes.

Calculations via relations (2), (3) and (5) give

E(1,2) =
2G(1 + ν)(ε

(1,2)
m )2

1− ν
V (1,2)−

16G(1 + ν)2(ε
(1,2)
m )2a3

1− ν

×

∞
∫

0

I21(β)

β2I20(β) − (β2 − 2ν + 2)I21(β)

1

β2

(

sin
h̃1,2β

2

)2

dβ,

(6)

W (L) = −
32G(1 + ν)2ε

(1)
m ε

(2)
m a3

1− ν

×

∞
∫

0

I21(β)

β2I20(β) − (β2 − 2ν + 2)I21(β)

1

β2
sin

h̃1β

2
sin

h̃2β

2

× cos

(

L̃ +
h̃1

2
+

h̃2

2

)

β dβ, (7)

where L̃ = L/a . If L = 0, the inclusions adjoin each other.

The case of overlapping inclusions was not considered.

The first right-hand term of relation (6) obtained for the

first time in study [15] sets the volume−proportional energy

of a dilatation inclusion in infinite medium, while the second

term represents the reduction of the single inclusion energy

because of screening the elastic fields by the cylinder free

surface. By considering two dilatation inclusions in an

infinite elastic medium, it is possible to make sure that their

interaction energy is zero (if no overlapping of the inclusions

takes place) since the hydrostatic stress component is absent

outside the inclusion. Inside the cylinder, as relation (3)
shows, this component is present, which gives rise to

nonzero interaction of dilation inclusions expressed as (7)
and, hence, to elastic interaction of QDs in NW.

Fig. 2 presents the dependence of interaction energy

W on distance L between the equal-sized dilatation QDs

(h1 = h2 = h, ε
(1)
m = ε

(2)
m = εm) in the cylinder. One can

see that QDs with arbitrary axial dimensions (the results

were validated for h > 0.05a that is 2.5 nm at a = 50 nm)
exhibit a negative interaction energy at low L, then energy

leaves the negative range with increasing L, and the

energy maximum Wmax(h) is observed in the range from

L ∼ 0.65a−0.66a at h > 2a to L ∼ 1.3a at h ≈ 0.1a . The
energy of interaction between two QDs becomes insensitive

to parameter h at h > 2a . Moreover, it gets almost zero

when QDs become spaced by L ≈ 2.5a .
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Figure 2. Energy of interaction between two identical quantum

disks (dilatation inclusions) versus the distance between them

along the nanowire (elastic cylinder) axis. The energy is given

in the Gε2ma3 units where G is the shear modulus, εm is the

QD/NW lattice misfit, a is the cylinder radius. The calculations

were performed for the Poisson coefficient ν = 0.3.

The obtained results open the way for further inves-

tigation of different relaxation processes in NWs leading

to reduction of the NW strain energy, for instance, due

to either redistribution and segregation of impurities or

formation of misfit dislocations which is in the focus of

our current interest. The effect of mutual attraction of QDs

with three-dimensional dilatation eigenstrain revealed in this

study raises the question on the dimensional stability of

such heterostructures. Notice that the effect of attraction

(repulsion) of point defects with dilatation eigenstrains of

the same (or opposite) sign takes place in the case of their

elastic interaction near the flat free surface [17] and also

for dilatation defects located in an elastically anisotropic

material [18].

Thus, a problem was set and solved on elastic interaction

of quantum disks in hybrid QD/NW structures where the

disk material possesses lattice misfit with the nanowire

material. The quantum disks were represented as inclusions

with dilatation eigenstrain incorporated in the nanowire

material in the form of inserts. Earlier unknown effect of

mutual attraction of quantum disks with dilatations of the

same sign was revealed, and its intensity was shown to be

defined by the reduced (relative to the NW radius) thickness
of the interacting quantum disks.
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