17,09

Энергетический спектр и спектр оптического поглощения экзоэдрального фуллерена C₅₀Cl₁₀ в модели Хаббарда

© А.В. Силантьев

Марийский государственный университет, Йошкар-Ола, Россия

E-mail: kvvant@rambler.ru

Поступила в Редакцию 17 февраля 2022 г. В окончательной редакции 17 февраля 2022 г. Принята к публикации 1 марта 2022 г.

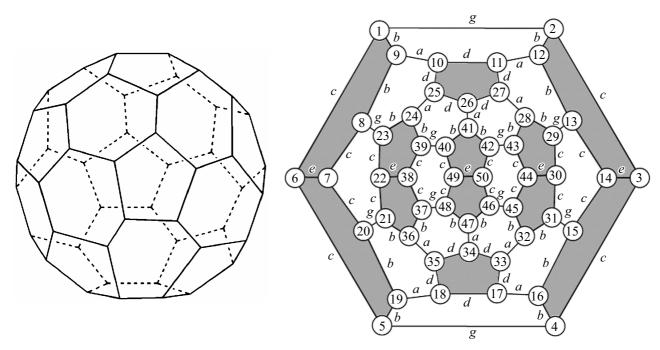
В рамках модели Хаббарда в приближении статических флуктуаций получены энергетические спектры фуллерена C_{50} и экзоэдрального фуллерена $C_{50}Cl_{10}$ с группой симметрии D_{5h} . Используя методы теории групп, проведена классификация энергетических состояний, а также определены разрешенные переходы в энергетических спектрах молекул C_{50} и $C_{50}Cl_{10}$. На основе энергетического спектра молекулы $C_{50}Cl_{10}$ предложена интерпретация наблюдаемых экспериментально полос оптического поглощения экзоэдрального фуллерена $C_{50}Cl_{10}$.

Ключевые слова: модель Хаббарда, функции Грина, энергетический спектр, фуллерены, наносистемы, фуллерен C_{50} , экзоэдральный фуллерен $C_{50}Cl_{10}$.

DOI: 10.21883/FTT.2022.06.52403.290

1. Введение

После открытия в 1985 г. фуллерена C_{60} [1] начались интенсивные экспериментальные исследования по поиску других фуллеренов. Данные исследования показали, что наряду с фуллеренами C_n , где n>60, существуют также так называемые малые фуллерены C_n , для которых n<60. Теоретические исследования показали, что в отличие от фуллеренов C_n , где $n\geq 60$, у малых фуллеренов отсутствуют изомеры, содержащие изолированные пентагоны. Одним из малых фуллеренов является фуллерен C_{50} , который был обнаружен в 1985 г. одновременно с фуллереном C_{60} при изучении массспектров паров углеродных кластеров [1].


После открытия фуллеренов начались интенсивные исследования не только их физических свойств, но и их химических свойств. Эти исследования показали, что целый ряд фуллеренов в свободном состоянии являются неустойчивыми молекулами, а их химические соединения являются достаточно устойчивыми структурами. Например, в 2004 г. в результате применения модифицированного метода дугового разряда [2] в газовой среде, состоящей из молекул четыреххлористого углерода CCl₄ при парциальном давлении 0.013 atm и атомов гелия Не при парциальном давлении 0.395 atm, было впервые получено соединение C₅₀Cl₁₀ в количестве примерно двух миллиграмм с чистотой 99.5% [3]. Исследования молекул C₅₀Cl₁₀ при помощи ядерного магнитного резонанса показали, что эти молекулы обладают симметрией D_{5h}. Проведенные исследования также показали, что у С50С110 статическая поляризуемость и вторая гиперполяризуемость намного больше, чем у С₆₀. Поэтому C₅₀Cl₁₀ считается перспективным материалом

для нелинейной оптики [4]. Исследования эндоэдральных фуллеренов $He@C_{50}$, $Ne@C_{50}$ и $Ar@C_{50}$ показали, что эти молекулы, как и молекула $C_{50}Cl_{10}$, также обладают группой симметрии D_{5h} [5].

Фуллерен C_{50} с группой симметрии D_{5h} , как показано на рис. 1, состоит из 15 гексагонов и 12 пентагонов. Отметим, что из 50 атомов углерода можно построить 271 изомер фуллерена C_{50} [6]. Из диаграммы Шлегеля, изображенной на рис. 1, видно, что фуллерен C_{50} с группой симметрии D_{5h} содержит шесть неэквивалентных связей и четыре группы неэквивалентных атомов углерода: $G_1=\{1,\,2,\,4,\,5,\,8,\,13,\,15,\,20,\,21,\,23,\,29,\,31,\,37,\,39,\,40,\,42,\,43,\,45,\,46,\,48\},\,G_2=\{3,\,6,\,7,\,14,\,22,\,30,\,38,\,44,\,49,\,50\},\,G_3=\{10,\,11,\,17,\,18,\,25,\,26,\,27,\,33,\,34,\,35\},\,G_4=\{9,\,12,\,16,\,19,\,24,\,28,\,32,\,36,\,41,\,47\}.$

Ко множеству G_1 принадлежат атомы, которые находятся в вершинах сочленения двух гексагонов и одного пентагона, и кроме того, каждый из этих атомов имеет одного ближайшего соседа из этого же множества G_1 . Ко множеству G_2 принадлежат атомы, которые находятся в вершинах сочленения двух пентагонов и одного гексагона, и каждый из этих атомов имеет одного ближайшего соседа из этого же множества G_2 . Ко множеству G_3 принадлежат атомы, которые находятся в вершинах изолированного пентагона. Ко множеству G_4 принадлежат атомы, которые находятся в вершинах сочленения двух гексагонов и одного пентагона, и кроме того, каждый из этих атомов не имеет ни одного ближайшего соседа из этого же множества G_4 .

Исследования молекул $C_{50}Cl_{10}$, проведенные при помощи ядерного магнитного резонанса, показали, что атомы хлора в этих молекулах связаны с атомами углерода, которые принадлежат множеству G_2 [3], т.е. атомы

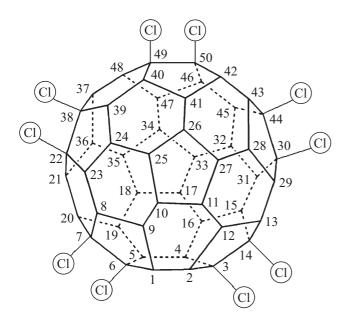


Рис. 1. a — фуллерен C_{50} с группой симметрии D_{5h} , b — его диаграмма Шлегеля с указанием положения атомов углерода, связей между атомами углерода и пентагонов.

хлора, как показано на рис. 2, образуют вокруг фуллерена C_{50} структуру, которая напоминает кольцо Сатурна. Исследованию физических и химических свойств фуллерена C_{50} посвящено довольно много работ [7–9].

Для описания электронных свойств углеродных фуллеренов и нанотрубок [10–19] широко используется модель Хаббарда [20].

В рамках этой модели в приближении статических флуктуаций (Π C Φ) были получены энергетические спек-

Рис. 2. Молекула С₅₀Cl₁₀.

тры и спектры оптического поглощения фуллерена C_{80} с группой симметрии I_h [10], фуллерена C_{70} [11], фуллерена C_{60} [12], фуллерена C_{36} с группой симметрии D_{6h} [13], фуллерена C_{28} с группой симметрии T_d [14], фуллерена C_{26} с группой симметрии D_{3h} [15], фуллерена C_{24} с группами симметрии O_h , O_6 и O_{6d} [16] и фуллерена C_{20} с группами симметрии I_h , O_{5d} и O_{3d} [17], а в работе [19] были исследованы электронные свойства углеродных нанотрубок. Полученные в работах [10–12] результаты достаточно хорошо согласуются с экспериментальными данными.

Целью настоящей работы является исследование энергетического спектра экзоэдрального фуллерена $C_{50}Cl_{10}$ с группой симметрии D_{5h} в рамках модели Хаббарда в приближении статических флуктуаций. Прежде чем рассматривать энергетический спектр молекулы $C_{50}Cl_{10}$, мы рассмотрим энергетический спектр фуллерена C_{50} с группой симметрии D_{5h} .

2. Энергетический спектр фуллерена C₅₀

Для описания π -электронной системы фуллерена C_{50} воспользуемся моделью Хаббарда [20]:

$$H = \sum_{\sigma,i} \varepsilon_i n_{i\sigma} + \sum_{\sigma,i\neq j} t_{ij} c_{i\sigma}^+ c_{j\sigma} + \frac{1}{2} \sum_{\sigma,i} U_i n_{i\sigma} n_{i\bar{\sigma}}, \qquad (1)$$

где $c_{i\sigma}^+, c_{i\sigma}$ — операторы рождения и уничтожения электронов со спином σ на узле $i; n_{i\sigma}$ — оператор числа

752 А.В. Силантьев

частиц со спином σ на узле i; ε_i — энергия одноэлектронного атомного состояния на узле i; t_{ij} — интеграл переноса, описывающий перескоки электронов с узла i на узел j; U_i — энергия кулоновского отталкивания двух электронов, находящихся на i-м узле; $\bar{\sigma} = -\sigma$.

Найдем энергетический спектр фуллерена C_{50} в ПСФ. Для этого воспользуемся методом функций Грина [21], согласно которому, чтобы найти энергетический спектр квантовой системы, достаточно вычислить полюса Фурье-образов антикоммутаторных функций Грина

$$\langle \langle c_{f\sigma}^+ | c_{f\sigma} \rangle \rangle = \langle [c_{f\sigma}^+(\tau), c_{f\sigma}(0)] \rangle,$$
 (2)

где $f=1,\ldots,N;N$ — число узлов квантовой системы. Можно показать [10,12], что фурье-образ антикоммутаторной функции Грина (2) в ПСФ имеет следующий вид:

$$\left\langle \left\langle c_{j\sigma}^{+}|c_{j\sigma}\right\rangle \right\rangle _{E}=\frac{i}{2\pi}\sum_{m=1}^{p}\frac{F_{j,m}}{E-E_{m}+ih},$$

$$E_k = \varepsilon + e_k$$
, $E_{k+p} = E_k + U$, $F_{j,m} = q_{m,\sigma}Q_{j,m}$,

$$Q_{j,k+6} = Q_{j,k}, \ k = 1, \dots, p,$$
 (3)

$$q_{m,\sigma} = \begin{cases} 1 - \frac{n}{2}, & m = 1, \dots, p/2, \\ \frac{n}{2}, & m = p/2 + 1, \dots, p. \end{cases}$$

где p — число энергетических состояний квантовой системы, E_m — энергия m-го состояния квантовой системы, $F_{j,m}$ — спектральная плотность m-го энергетического состояния.

Важной характеристикой энергетического спектра является степень вырождения энергетических состояний, которую можно найти, зная спектральную плотность этих состояний [10,12]:

$$g_i = \sum_{i=1}^{N} Q_{j,i},$$
 (4)

где g_i — степень вырождения i-го энергетического уровня, N — число узлов наносистемы.

Поскольку в фуллерене C_{50} имеется четыре группы неэквивалентных узлов, то для того, чтобы найти энергетический спектр фуллерена C_{50} , необходимо вычислить антикоммутаторные функции Грина для любых четырех неэквивалентных узлов данного фуллерена. Чтобы найти функции Грина, прежде всего определим зависимость операторов рождения от времени. Для этого, используя гамильтониан (1) и диаграмму Шлегеля, изображенную на рис. 1, как и в работах [10-17], запишем в ПСФ уравнения движения для операторов $c_{1\sigma}^+(\tau)$, $c_{1\sigma}^+n_{1\bar{\sigma}}(\tau)$, . . . , $c_{50\sigma}^+(\tau)$, $c_{50\sigma}^+n_{50\bar{\sigma}}(\tau)$, заданных в пред-

ставлении Гейзенберга

$$\begin{cases}
\frac{dc_{1\sigma}^{+}}{d\tau} = \varepsilon c_{1\sigma}^{+} + t_{g}c_{2\sigma}^{+} + t_{c}c_{6\sigma}^{+} + t_{b}c_{9\sigma}^{+} \\
\frac{d(c_{1\sigma}^{+}n_{1\bar{\sigma}})}{d\tau} = (\varepsilon + U)c_{1\sigma}^{+}n_{1\bar{\sigma}} + t_{g}c_{2\sigma}^{+}n_{2\bar{\sigma}} \\
+ t_{c}c_{6\sigma}^{+}n_{6\bar{\sigma}} + t_{b}c_{9\sigma}^{+}n_{9\bar{\sigma}}
\end{cases} , (5)$$

$$\frac{dc_{50\sigma}^{+}}{d\tau} = \varepsilon \cdot c_{50\sigma}^{+} + t_{c}(c_{42\sigma}^{+} + c_{46\sigma}^{+}) + t_{e}c_{49\sigma}^{+} \\
\frac{d(c_{50\sigma}^{+}n_{50\bar{\sigma}})}{d\tau} = (\varepsilon + U)c_{50\sigma}^{+}n_{50\bar{\sigma}} + t_{c}(c_{42\sigma}^{+}n_{42\bar{\sigma}} \\
+ c_{46\sigma}^{+}n_{46\bar{\sigma}}) + t_{e}c_{49\sigma}^{+}n_{49\bar{\sigma}}
\end{cases}$$

где $\tau = it$, t — время.

Система уравнений (5) представляет собой замкнутую систему дифференциальных уравнений. Прежде чем решать эту систему, найдем численные значения для интегралов переноса, которые соответствуют фуллерену C_{50} . Для этого воспользуемся следующим соотношением [10,11]:

$$t_s = -8.17065 \exp(-1.69521x_s). \tag{6}$$

Исследования фуллерена C_{50} [4] показали, что расстояния между атомами углерода в этом фуллерене имеют следующие значения:

$$x_a = 1.399 \,\text{Å}, \quad x_b = 1.449 \,\text{Å}, \quad x_c = 1.444 \,\text{Å},$$

 $x_d = 1.450 \,\text{Å}, \quad x_e = 1.400 \,\text{Å}, \quad x_g = 1.387 \,\text{Å}.$ (7)

Теперь, подставив (7) в соотношение (6), мы получим численные значения интегралов переноса для фуллерена C_{50} с группой симметрии D_{5h} :

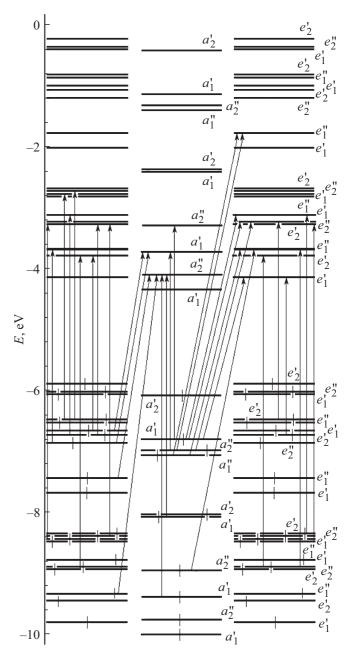
$$t_a = -0.76258 \,\text{eV}, \quad t_b = -0.70061 \,\text{eV},$$
 $t_c = -0.70657 \,\text{eV}, \quad t_d = -0.69942 \,\text{eV},$ $t_e = -0.76129 \,\text{eV}, \quad t_g = -0.77825 \,\text{eV}.$ (8)

Как следует из (3), чтобы найти энергетический спектр фуллерена C_{50} , необходимо еще знать численные значения параметров ε и U. В работе [12], исходя из экспериментально наблюдаемого оптического спектра поглощения фуллерена C_{60} , в рамках модели Хаббарда в ПСФ были найдены численные значения этих параметров $\varepsilon = -7.824\,\mathrm{eV},\,U = 5.662\,\mathrm{eV}.$ Отметим, что численное значение параметра $U = 5.662\,\mathrm{eV}$ согласуется с результатами работы [22], согласно которой $U \sim 5\,\mathrm{eV}.$

Подставив численные значения интегралов переноса (8), также численные значения параметров $\varepsilon=-7.824\,\mathrm{eV}$ и $U=5.662\,\mathrm{eV}$ в систему дифференциальных уравнений (5) и решив данную систему, мы получим выражения для операторов рождения $c_{1\sigma}^+(\tau),\ldots,c_{50\sigma}^+(\tau).$ Используя решение системы уравнений (5), а также соотношения (2), (3) и (4), мы

получим численные значения для E_k , \bar{e}_k и g_k , см. табл. 1, где \bar{e}_k — значение энергии k-го уровня относительно $\varepsilon + U/2$, которая, как видно из соотношения (3), связана с величиной E_k следующим образом:

$$E_k = \varepsilon + \frac{U}{2} + \bar{e}_k, \tag{9}$$


где

$$\bar{e}_k = \begin{cases} e_k - \frac{U}{2}, & k = 1, \dots, p/2, \\ e_k + \frac{U}{2}, & k = p/2 + 1, \dots, p. \end{cases}$$
 (10)

Как следует из соотношений (9) и (10), энергетические состояния фуллерена C_{50} образуют две подзоны Хаббарда, причем нижнюю подзону Хаббарда образуют энергетические состояния, которые сосредоточены вблизи энергии ε , а верхнюю подзону Хаббарда образуют энергетические состояния, которые сосредоточены вблизи энергии $\varepsilon + U$. Энергетические состояния, образующие энергетический спектр фуллерена C_{50} с группой симметрии D_{5h} , можно классифицировать по неприводи-

Таблица 1. Энергетический спектр фуллерена C_{50} : значения энергии уровней, кратность их вырождения и неприводимые представления группы D_{5h} , к которым они относятся

Nο	e_j	E_j , eV	g_j	Γ_j	No	e_j	E_j , eV	g_j	Γ_j
1	-5.005	-9.998	1	$E_1(a_1')$	31	.657	-4.336	1	$E_{31}(a_1')$
2	-4.805	-9.798	2	$E_2(e_1')$	32	.857	-4.136	2	$E_{32}(e_1')$
3	-4.766	-9.759	1	$E_3(a_2'')$	33	.896	-4.097	1	$E_{33}(a_2'')$
4	-4.445	-9.437	2	$E_4(e_2')$	34	1.217	-3.776	2	$E_{34}(e_2')$
5	-4.390	-9.383	1	$E_5(a_1')$	35	1.272	-3.721	1	$E_{35}(a_1')$
6	-4.362	-9.355	2	$E_6(e_1^{\prime\prime})$	36	1.300	-3.693	2	$E_{36}(e_1'')$
7	-3.931	-8.924	1	$E_7(a_2^{\prime\prime})$	37	1.731	-3.262	1	$E_{37}(a_2'')$
8	-3.918	8.911	2	$E_8(e_2')$	38	1.744	-3.249	2	$E_{38}(e_2')$
9	-3.899	-8.892	2	$E_9(e_2'')$	39	1.763	-3.230	2	$E_{39}(e_2'')$
10	-3.780	-8.773	2	$E_{10}(e_1')$	40	1.882	-3.111	2	$E_{40}(e_1')$
11	-3.419	-8.412	2	$E_{11}(e_1'')$	41	2.243	-2.750	2	$E_{41}(e_1'')$
12	-3.417	-8.410	2	$E_{12}(e_1')$	42	2.245	-2.748	2	$E_{42}(e_1')$
13	3.396	-8.389	2	$E_{13}(e_2'')$	43	2.266	-2.727	2	$E_{43}(e_2'')$
14	-3.356	-8.349	2	$E_{14}(e_2')$	44	2.306	2.687	2	$E_{44}(e_2')$
15	-3.064	-8.056	1	$E_{15}(a_1')$	45	2.598	-2.395	1	$E_{45}(a_1')$
16	-3.061	-8.054	1	$E_{16}(a_2')$	46	2.601	-2.392	1	$E_{46}(a_2')$
17	-2.695	-7.688	2	$E_{17}(e_1')$	47	2.967	-2.026	2	$E_{47}(e_1')$
18	-2.442	-7.435	2	$E_{18}(e_1'')$	48	3.220	-1.773	2	$E_{48}(e_1'')$
19	-2.053	-7.046	1	$E_{19}(a_1'')$	49	3.609	-1.384	1	$E_{49}(a_1'')$
20	-1.973	-6.966	1	$E_{20}(a_2'')$	50	3.689	-1.304	1	$E_{50}(a_2'')$
21	-1.859	-6.852	2	$E_{21}(e_2'')$	51	3.803	-1.190	2	$E_{51}(e_2'')$
22	-1.804	-6.797	1	$E_{22}(a_1')$	52	3.858	-1.135	1	$E_{52}(a_1')$
23	-1.745	-6.738	1	$E_{23}(e_2')$	53	3.917	-1.076	1	$E_{53}(e_2^{\prime})$
24	-1.669	-6.662	2	$E_{24}(e_1')$	54	3.993	-1.000	2	$E_{54}(e_1')$
25	-1.533	-6.526	2	$E_{25}(e_1'')$	55	4.129	864	2	$E_{55}(e_1'')$
26	-1.493	-6.486	2	$E_{26}(e_2')$	56	4.169	824	2	$E_{56}(e_2^{\prime})$
27	-1.062	-6.054	1	$E_{27}(a_2')$	57	4.600	393	1	$E_{57}(a_2')$
28	-1.051	-6.044	2	$E_{28}(e_1')$	58	4.611	382	2	$E_{58}(e_1')$
29	1.039	-6.032	2	$E_{29}(e_2'')$	59	4.623	370	2	$E_{59}(e_2'')$
30	897	-5.890	2	$E_{30}(e_2')$	60	4.765	228	2	$E_{60}(e_2')$

Рис. 3. Энергетический спектр фуллерена C₅₀.

мым представлениям группы D_{5h} , см. табл. 1. Энергетический спектр фуллерена C_{50} изображен на рис. 3.

3. Энергетический спектр молекулы $C_{50}CI_{10}$

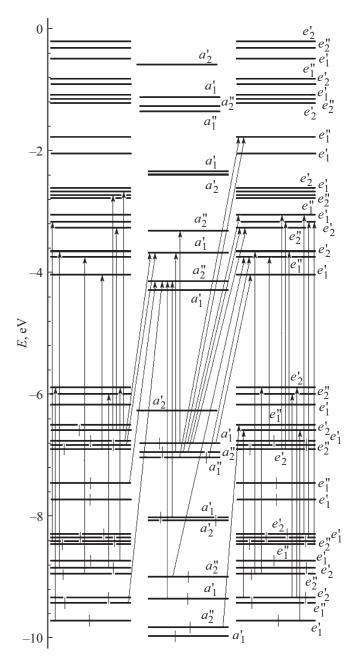
Экспериментальные исследования показывают, что фуллерен C_{50} является неустойчивой молекулой, стабилизацию которой можно осуществить при помощи образования химических соединений этого фуллерена с другими молекулами. В работе [3] был получен стабильный экзоэдральный фуллерен $C_{50}Cl_{10}$ в макроскопических количествах.

754 А.В. Силантьев

Рассмотрим энергетический спектр экзоэдрального фуллерена $C_{50}Cl_{10}$, который, как показали исследования [4], обладает группой симметрии D_{5h} . Исследования экзоэдрального фуллерена $C_{50}Cl_{10}$ [4] также показали, что расстояния между атомами углерода в этой молекуле имеют следующие значения:

$$x_a = 1.403 \,\text{Å}, \ x_b = 1.424 \,\text{Å}, \ x_c = 1.515 \,\text{Å},$$

 $x_d = 1.430 \,\text{Å}, \ x_e = 1.598 \,\text{Å}, \ x_g = 1.373 \,\text{Å}.$ (11)


Из соотношений (6) и (11) следует, что у молекулы $C_{50}Cl_{10}$ интегралы переноса имеют следующие численные значения:

$$t_a = -0.75743 \,\text{eV}, \quad t_b = -0.73094 \,\text{eV},$$
 $t_c = -0.62645 \,\text{eV}, \quad t_d = -0.72354 \,\text{eV},$
 $t_e = -0.54422 \,\text{eV}, \quad t_g = -0.79694 \,\text{eV}.$ (12)

Зная численные значения для интегралов переноса (12), а также численные значения для параметров $\varepsilon=-7.824\,\mathrm{eV}$ и $U=5.662\,\mathrm{eV}$, и используя соотношения (5) и (2)—(4), мы получим для молекулы $\mathrm{C}_{50}\mathrm{Cl}_{10}$

Таблица 2. Энергетический спектр фуллерена $C_{50}Cl_{10}$: значения энергии уровней, кратность их вырождения и неприводимые представления группы D_{5h} , к которым они относятся

Nο	e_j	E_j , eV	g_j	Γ_j	No	e_j	E_j , eV	g_j	Γ_j
1	-4.957	-9.950	1	$E_1(a_1')$	31	0.705	-4.288	1	$E_{31}(a_1')$
2	-4.811	-9.804	1	$E_3(a_2'')$	32	0.851	-4.142	1	$E_{33}(a_2'')$
3	-4.709	-9.702	2	$E_2(e_1')$	33	0.953	-4.040	2	$E_{32}(e_1')$
4	-4.402	-9.395	2	$E_6(e_1'')$	34	1.260	-3.733	2	$E_{36}(e_1'')$
5	-4.332	-9.325	1	$E_5(a_1')$	35	1.330	-3.663	1	$E_{35}(a_1')$
6	-4.324	-9.317	2	$E_4(e_2')$	36	1.338	-3.655	2	$E_{34}(e_2')$
7	-3.978	-8.971	1	$E_7(a_2^{\prime\prime})$	37	1.684	-3.309	1	$E_{37}(a_2'')$
8	-3.931	-8.924	2	$E_9(e_2'')$	38	1.731	-3.262	2	$E_{39}(e_2'')$
9	-3.836	-8.829	2	$E_8(e_2')$	39	1.826	-3.167	2	$E_{38}(e_2')$
10	-3.720	-8.713	2	$E_{10}(e_1')$	40	1.942	-3.051	2	$E_{40}(e_1')$
11	-3.428	-8.421	2	$E_{11}(e_1'')$	41	2.234	-2.759	2	$E_{41}(e_1'')$
12	-3.406	-8.399	2	$E_{13}(e_2'')$	42	2.256	-2.737	2	$E_{43}(e_2'')$
13	-3.346	-8.339	2	$E_{12}(e_1')$	43	2.316	-2.677	2	$E_{42}(e_1')$
14	-3.288	-8.281	2	$E_{14}(e_2')$	44	2.374	-2.619	2	$E_{44}(e_2')$
15	-3.055	-8.048	1	$E_{16}(a_2')$	45	2.607	-2.386	1	$E_{46}(a_2')$
16	3.025	-8.018	1	$E_{15}(a_1')$	46	2.637	-2.356	1	$E_{45}(a_1')$
17	-2.718	-7.711	2	$E_{17}(e_1')$	47	2.944	-2.049	2	$E_{47}(e_1')$
18	-2.446	-7.439	2	$E_{18}(e_1'')$	48	3.216	-1.777	2	$E_{48}(e_1'')$
19	-2.034	-7.027	1	$E_{19}(a_1'')$	49	3.628	-1.365	1	$E_{49}(a_1'')$
20	-1.948	-6.941	1	$E_{20}(a_2'')$	50	3.714	-1.279	1	$E_{50}(a_2'')$
21	-1.892	-6.885	2	$E_{23}(e_2')$	51	3.770	-1.223	2	$E_{53}(e_2')$
22	-1.821	-6.814	2	$E_{21}(e_2'')$	52	3.841	-1.152	2	$E_{51}(e_2'')$
23	-1.798	-6.791	1	$E_{22}(a_1')$	53	3.864	-1.129	1	$E_{52}(a_1')$
24	-1.777	-6.770	2	$E_{24}(e_1')$	54	3.885	-1.108	2	$E_{54}(e_1')$
25	-1.595	-6.588	2	$E_{26}(e_2')$	55	4.067	-0.926	2	$E_{56}(e_2')$
26	-1.496	-6.489	2	$E_{25}(e_1'')$	56	4.166	-0.827	2	$E_{55}(e_1'')$
27	-1.266	-6.259	1	$E_{27}(a_2')$	57	4.396	-0.597	1	$E_{57}(a_2')$
28	-1.163	-6.156	2	$E_{28}(e_1')$	58	4.498	-0.494	2	$E_{58}(e_1')$
29	-0.996	-5.989	2	$E_{29}(e_2'')$	59	4.666	-0.327	2	$E_{59}(e_2'')$
30	-0.882	-5.875	2	$E_{30}(e_2')$	60	4.780	-0.213	2	$E_{60}(e_2')$
				•	•				•

Рис. 4. Энергетический спектр молекулы C₅₀Cl₁₀.

численные значения для величин E_k , \bar{e}_k и g_k , см. табл. 2. На рис. 4 изображен энергетический спектр экзоэдрального фуллерена $C_{50}Cl_{10}$. Из рис. 3 и 4 видно, что у фуллерена C_{50} нижняя подзона Хаббарда полностью занята, а у экзоэдрального фуллерена $C_{50}Cl_{10}$ десять энергетических состояний в нижней подзоне Хаббарда свободны. Это связано с тем, что при образовании молекулы $C_{50}Cl_{10}$ десять валентных электронов фуллерена C_{50} пошли на образование прочных химических связей с атомами хлора.

Важной физической характеристикой любой молекулы является ее оптический спектр поглощения. Используя полученный выше энергетический спектр экзоэдрально-

го фуллерена $C_{50}Cl_{10}$ с группой симметрии D_{5h} , можно найти переходы, которые формируют оптический спектр этой молекулы. С помощью теории групп [23] можно по-

Таблица 3. Экспериментальные и теоретические значения длин волн и энергий, которые соответствуют полосам поглощения в оптическом спектре молекулы $C_{50}Cl_{10}$

Полосы поглощения	[3], λ, nm	[3] <i>E</i> , eV	Teop. E, eV
а	454.6	2.73	2.7294
b	433.8	2.86	2.8448
c	400.8	3.10	3.1076
d	376.6	3.30	3.2971
e	356.6	3.48	3.4822
f	334.0	3.72	3.7177
g	322.0	3.86	3.8510
h	238.5	5.21	5.2295

Таблица 4. Переходы, формирующие полосы поглощения a,b,c,d,e,f,g,h,y молекулы $C_{50}Cl_{10}$

ΔE	ΔE , eV	δ	ΔE	ΔE , eV	δ	ΔE	ΔE , eV	δ
a			$E_{27}-E_{6}$	3.1361	_	$E_{40}-E_{22}$	3.7398	+
$E_{27} - E_7$	2.7120	_	$E_{31}-E_{18}$	3.1505	_	$E_{31}-E_{16}$	3.7598	-
$E_{29}-E_{10}$	2.7236	_	$E_{35}-E_{21}$	3.1509	+	$E_{40}-E_{21}$	3.7627	_
$E_{26} - E_4$	2.7294	+	$E_{36}-E_{23}$	3.1519	_	$E_{39}-E_{19}$	3.7655	_
$E_{32}-E_{24}$	2.7307	_	d			$E_{38}-E_{20}$	3.7747	_
$E_{26} - E_5$	2.7373	_	$E_{35}-E_{20}$	3.2786	+	$E_{35}-E_{18}$	3.7762	_
$E_{31}-E_{19}$	2.7386	_	$E_{37}-E_{26}$	3.2789	_	g		
$E_{33} - E_{23}$	2.7426	_	$E_{34}-E_{20}$	3.2865	_	$E_{29}-E_3$	3.8145	_
$E_{32}-E_{22}$	2.7511	+	$E_{36}-E_{19}$	3.2945	+	$E_{30}-E_{2}$	3.8267	+
$E_{28} - E_9$	2.7675	_	$E_{33}-E_{18}$	3.2971	+	$E_{41} - E_{26}$	3.8286	_
$E_{32}-E_{21}$	2.7740	_	$E_{25}-E_3$	3.3153	+	$E_{40}-E_{23}$	3.8335	+
b			$E_{39}-E_{26}$	3.3260	+	$E_{43} - E_{26}$	3.8510	+
$E_{26} - E_6$	2.8070	_	$E_{29}-E_4$	3.3275	+	$E_{38} - E_{19}$	3.8603	_
$E_{28} - E_7$	2.8145	_	$E_{29}-E_5$	3.3354	_	$E_{33} - E_{15}$	3.8762	+
$E_{25} - E_4$	2.8284	_	e			$E_{40} - E_{20}$	3.8904	_
$E_{25} - E_5$	2.8363	_	$E_{30}-E_{4}$	3.4420	+	$E_{33}-E_{16}$	3.9064	_
$E_{30} - E_{10}$	2.8381	+	$E_{27} - E_2$	3.4432	+	$E_{42} - E_{26}$	3.9102	+
$E_{29} - E_8$	2.8393	+	$E_{30}-E_{5}$	3.4499	_	h		
$E_{32}-E_{23}$	2.8448	+	$E_{37} - E_{24}$	3.4618	_	$E_{48} - E_{20}$	5.1645	+
$E_{36}-E_{26}$	2.8550	_	$E_{25}-E_1$	3.4619	_	$E_{35}-E_{8}$	5.1659	_
$E_{33}-E_{19}$	2.8851	_	$E_{37} - E_{22}$	3.4822	+	$E_{38} - E_{12}$	5.1725	+
$E_{32} - E_{20}$	2.9018	_	$E_{37}-E_{21}$	3.5051	_	$E_{34}-E_{8}$	5.1739	+
$E_{25} - E_6$	2.9060	_	$E_{39}-E_{24}$	3.5089	_	$E_{33}-E_4$	5.1750	_
c			$E_{30}-E_{6}$	3.5196	_	$E_{33}-E_{5}$	5.1829	+
$E_{30}-E_{9}$	3.0486	+	$E_{39}-E_{22}$	3.5293	+	$E_{36}-E_{9}$	5.1909	+
$E_{36}-E_{22}$	3.0582	_	f			$E_{49} - E_{26}$	5.2225	_
$E_{27} - E_4$	3.0584	_	$E_{32}-E_{17}$	3.6710	_	$E_{40} - E_{14}$	5.2295	+
$E_{27} - E_5$	3.0663	_	$E_{39}-E_{20}$	3.6800	+	$E_{38} - E_{13}$	5.2318	+
$E_{36}-E_{21}$	3.0811	+	$E_{27} - E_1$	3.6919	_	$E_{36}-E_{7}$	5.2380	+
$E_{30}-E_{7}$	3.0956	_	$E_{36} - E_{18}$	3.7064	_	$E_{48} - E_{19}$	5.2500	+
$E_{35}-E_{24}$	3.1076	+	$E_{29}-E_2$	3.7122	_	$E_{33}-E_{6}$	5.2527	+
$E_{26} - E_2$	3.1141	+	$E_{38} - E_{23}$	3.7177	+	$E_{38}-E_{11}$	5.2542	+
$E_{34} - E_{24}$	3.1155	+	$E_{37} - E_{19}$	3.7184	_	$E_{41} - E_{15}$	5.2591	_
$E_{35} - E_{22}$	3.1280	_	$E_{40} - E_{24}$	3.7194	_	$E_{35}-E_{9}$	5.2607	_
$E_{34}-E_{22}$	3.1359	_	$E_{31}-E_{15}$	3.7296	-	$E_{34}-E_{9}$	5.2686	+

казать, что у молекулы с группой симметрии D_{5h} в энергетическом спектре разрешены следующие переходы:

$$a'_{1} \leftrightarrow e'_{1}, \ a'_{1} \leftrightarrow a''_{2}, \ a'_{2} \leftrightarrow e'_{1}, \ e'_{1} \leftrightarrow e'_{2},$$

$$e'_{1} \leftrightarrow e''_{1}, \ e'_{2} \leftrightarrow e'_{2}, \ e''_{2} \leftrightarrow e''_{2}, \ a''_{1} \leftrightarrow e''_{1},$$

$$e'_{2} \leftrightarrow e''_{2}, \ a'_{2} \leftrightarrow a''_{1}, \ a''_{2} \leftrightarrow e''_{1}, \ e''_{2} \leftrightarrow e''_{1}. \tag{13}$$

В работе [3] был получен спектр оптического поглощения экзоэдрального фуллерена $C_{50}Cl_{10}$, находящегося в циклогексане. Исследования оптического спектра поглощения этой молекулы показали, что в ее оптическом спектре поглощения можно выделить восемь явно выраженных полос поглощения: a,b,c,d,e,f,g,h, которые представлены в табл. 3.

Зная энергетический спектр экзоэдрального фуллерена C₅₀Cl₁₀, можно дать следующую интерпретацию его экспериментально наблюдаемого спектра оптического поглощения. Полосы спектра оптического поглощения молекулы $C_{50}Cl_{10}$, которые соответствуют экспериментально наблюдаемым энергиям E_a , E_b , E_c , E_d , E_e , E_f , E_g , E_h , представленным в табл. 3, можно интерпретировать как полосы, формирующиеся переходами, которые представлены в табл. 4. Из табл. 4 видно, что энергии этих переходов близки к экспериментальным значениям [3]. Символ δ в табл. 4 показывает, какие переходы с точки зрения симметрии разрешены, а какие запрещены. Если $\delta = +$, то такой переход с точки зрения симметрии разрешен, если же $\delta = -$, то такой переход является запрещенным. Отметим, что в молекуле C₅₀Cl₁₀ атомы совершают малые колебания около положения равновесия. Это приводит к тому, что у молекулы $C_{50}Cl_{10}$ происходит нарушение симметрии. В результате этого запрещенные согласно симметрии системы оптические переходы становятся разрешенными. Некоторые из запрещенных переходов в результате нарушения симметрии могут сформировать явно наблюдаемую полосу оптического поглошения.

4. Заключение

Таким образом, спектр оптического поглощения экзоэдрального фуллерена $C_{50}Cl_{10}$, который наблюдается экспериментально, достаточно хорошо согласуется со спектром оптического поглощения этой молекулы, который получен из энергетического спектра молекулы $C_{50}Cl_{10}$ в рамках модели Хаббарда в приближении статических флуктуаций.

Отметим также, что в работах [12,11,10] были исследованы энергетические спектры фуллеренов C_{60} , C_{70} и эндоэдральных фуллеренов $Lu_3N@C_{80}$ и $Y_3N@C_{80}$, выполненные также в рамках модели Хаббарда в приближении статических флуктуаций. Данные исследования показали, что спектры оптического поглощения этих молекул, которые наблюдались экспериментально, также достаточно хорошо согласуются со спектрами

756 А.В. Силантьев

оптического поглощения молекул C_{60} , C_{70} , $Y_3N@C_{80}$ и $Y_3N@C_{80}$, которые были получены в рамках модели Хаббарда в приближении статических флуктуаций. Это позволяет считать, что модель Хаббарда в приближении статических флуктуаций достаточно хорошо описывает электронные свойства углеродных наносистем.

Конфликт интересов

Автор заявляет, что у него нет конфликта интересов.

Список литературы

- H.W. Kroto, J.R. Heath, S.C. O'Brien, R.F. Curl, R.E. Smalley. Nature 318, 162 (1985).
- [2] S. Gao, S.-Y. Xie, R.-B. Huang, L.-S. Zheng. Chem. Commun. 9, 21, 2676 (2003).
- [3] S.-Y. Xie, F. Gao, X. Liu, R.-B. Huang, C.-R. Wang, X. Zhang, M.-L. Liu, S.-L. Deng, S.-L. Zheng. Sci. 304, 5671, 699 (2004).
- [4] Y. Yang, F.-H. Wang, Y.-S. Zhou, L. Yuan, J. Yang. Phys. Rev. A 71, 1, 013202 (2005).
- [5] Н.Н. Бреславская, А.А. Левин, А.Л. Бучаченко. Изв. АН. Сер. хим. 53, 19 (2004).
- [6] P.W. Fowler, D.E. Manolopoulous. An atlas of fullerenes. Clarendon: Oxford (1995).
- [7] R.-H. Xie, G.W. Bryant, C.F. Cheung, V.H. Smith Jr, J. Zhao. J. Chem. Phys. 121, 7, 2849 (2004).
- [8] X. Lu, Z.F. Chen, W. Thiel, P.V.R. Schleyer, R.B. Huang, L.S. Zheng. J. Am. Chem. Soc. 126, 45, 14871 (2004).
- [9] L. Zhechkov, T. Heine, G. Seifert. J. Phys. Chem. A 108, 52, 11733 (2004).
- [10] А.В. Силантьев. ФТТ 64, 2, 279 (2022).
- [11] А.В. Силантьев. Изв. вузов. Физика 60, 6, 50 (2017).
- [12] А.В. Силантьев. ЖЭТФ 148, 749 (2015).
- [13] А.В. Силантьев. Изв. вузов. Физика 62, 6, 3 (2019).
- [14] А.В. Силантьев. ФТТ 62, 11, 1960 (2020).
- [15] А.В. Силантьев. ФТТ 63, 11, 1951 (2021).
- [16] А.В. Силантьев. ФТТ 62, 3, 473 (2020).
- [17] А.В. Силантьев. ФТТ 61, 2, 395 (2019).
- [18] А.В. Силантьев. Изв. вузов. Физика. 56, 2, 70 (2013).
- [19] Г.С. Иванченко, Н.Г. Лебедев. ФТТ 49, 1, 183 (2007).
- [20] J. Hubbard. Proc. Roy. Soc. London A 276, 1365, 238 (1963).
- [21] С.В. Тябликов. Методы квантовой теории магнетизма. Наука, М. (1975).
- [22] R.A. Harris, L.M. Falicov. J. Chem. Phys. 51, 11, 5034 (1969).
- [23] Р. Хохштрассер. Молекулярные аспекты симметрии. Мир, М. (1968).

Редактор Е.В. Толстякова