03,10

Упругие постоянные и силовые константы межатомных связей соединений А^{II}В^{III}С^{VI}

© И.А. Мамедова¹, З.А. Джахангирли^{1,2}, Т.Г. Керимова¹, Р.Г. Сеидов¹, Н.А. Абдуллаев^{1,2,¶}

¹ Институт физики НАН Азербайджана, Баку, Азербайджан ² Бакинский государственный университет, Баку, Азербайджан ¶ E-mail: abnadir@mail.ru

Поступила в Редакцию 27 января 2022 г. В окончательной редакции 27 января 2022 г. Принята к публикации 6 февраля 2022 г.

С помощью теории функционала плотности (DFT) рассчитаны величины упругих постоянных c_{ij} тиогалатов CdGa₂S₄, CdGa₂Se₄, CdGa₂Te₄ и ZnGa₂Se₄. Вычислены величины объемных модулей упругости *B*. Установлены закономерности в зависимостях величин частот оптических фононов от масс атомов в соединениях $A^{II}B_2^{III}C_4^{VI}$. Определены силовые константы межатомных связей в соединениях CdGa₂Te₄ и ZnGa₂Se₄.

Ключевые слова: упругие постоянные, силовые константы, фононы, рамановское рассеяние, тетрагональная сингония, приведенная масса, халькопириты.

DOI: 10.21883/FTT.2022.06.52386.283

1. Введение

Полупроводниковые соединения группы $A^{II}B_2^{III}C_4^{VI}$ (A — Zn, Cd; B — Ga; C — S, Se), являются тиогалатами и кристаллизуются в тетрагональную структуру с пространственной группой симметрии I_4^- (точечная группа S_4) [1]. Этой группе тиогалатов характерно наличие упорядоченной катионной вакансии, отличающих их от кристаллохимических и изоэлектронных аналогов со структурой халькопирита и сфалерита, вследствие чего соединения этой группы называются еще дефектными халькопиритами (DC). Соединения $A^{II}B_2^{III}C_4^{VI}$ (A Zn, Cd; B — In, Ga; C — S, Se, Te) перспективны в связи с возможностью использования их в полупроводниковом приборостроении [2]. Для этих соединений характерны дву-лучепреломление, значительные величины коэффициента нелинейной восприимчивости и яркая фотолюминесценция [3]. Наличие большой ширины запрещенной зоны (2-4.0 eV) и высокой фоточувствительности стимулирует создание детекторов ультрафиолетового излучения, уже использующихся в медицине, биологии, космической физике и других областях. Кристаллы группы $A^{II}B_2^{III}C_4^{VI}$, и CdGa₂S₄ в частности, являются перспективными материалами для создания перестраиваемых узкополосных светофильтров из-за наличия т. н. "изотропной точки", в которой пересекаются кривые дисперсии обыкновенного и необыкновенного показателей преломления [4]. В последнее время кристаллы CdGa₂S₄ и CdGa₂Se₄ позиционируются как материалы для солнечных батарей [5].

Если оптоэлектронные свойства соединений $A^{II}B_2^{III}C_4^{VI}$ изучены относительно подробно, то необходимо отме-

тить недостаток информации о термодинамических и тепловых свойствах (теплоемкость, тепловое расширение, теплопроводность), тесно связанных с упругими свойствами этих соединений. Величины семи упругих постоянных с11, с33, с12, с13, с44, с66, с16, присущих соединениям $A^{II}B_2^{III}C_4^{VI}$, CdGa₂S₄ и CdGa₂Se₄, вычисленные из первопринципов, приведены в работе [6]. Согласно [6], если в CdGa₂S₄ упругая постоянная $c_{11} = 61.77$ GPa больше $c_{33} = 50.02$ GPa, то в CdGa₂Se₄ величина $c_{11} = 52.46$ GPa меньше $c_{33} = 60.0$ GPa. Аналогичные расчеты из первопринципов для HgGa₂S₄ [7] и HgGa₂Se₄ [8] приводят к значительно меньшей анизотропии сил упругости: $c_{11} = 65.6$ GPa, $c_{33} = 63.4$ GPa для HgGa₂S₄ [7] и c₁₁ = 54.2 GPa, c₃₃ = 55.5 GPa для HgGa₂Se₄ [8]. Согласно [9], в дефектном халькопирите $ZnGa_2Te_4 c_{11} = 45.4 GPa, c_{33} = 48.47 GPa.$

Таким образом, несмотря на имеющиеся данные о величинах упругих постоянных соединений $A^{II}B_2^{III}C_4^{VI}$, наблюдается разброс в анизотропии упругих постоянных и отсутствие данных по отдельным соединениям $A^{II}B_2^{III}C_4^{VI}$, что требует дополнительных исследований. В данной статье представлены результаты вычислений из первопринципов величин упругих постоянных c_{11} , c_{33} , c_{12} , c_{13} , c_{44} , c_{66} , c_{16} CdGa₂S₄, CdGa₂Se₄, CdGa₂Te₄ и ZnGa₂Se₄, определенные на их основе величины объемных модулей упругости *B*, которые сравнены с известными в литературе экспериментально измеренными и теоретически вычисленными величинами. Также проведены оценки величин силовых констант межатомных связей f_n , ответственных за частоты оптических фононов.

2. Упругие постоянные

Хорошо известно, что напряжения и деформации описываются тензорами второго ранга (σ_{ij} и ε_{kl}) в трехмерном пространстве и имеют по 9 компонент. В рамках обобщенного закона Гука (1) они связаны тензором четвертого ранга c_{ijkl} , называемым тензором упругости и содержащим в общем случае 81 коэффициент (упругих постоянных):

$$\sigma_{i\,j} = c_{\,i\,jkl}\,\varepsilon_{kl}.\tag{1}$$

Требование симметричности тензоров напряжения и деформации (2) приводит к уменьшению числа независимых упругих постоянных до 36.

$$c_{ijkl} = c_{jikl} = c_{ijlk} = c_{jilk}.$$
(2)

Принимая во внимание, что энергия упругой деформации W:

$$W = \frac{1}{2} c_{ijkl} \varepsilon_{ij} \varepsilon_{kl}.$$
 (3)

Откуда следует, что $c_{ijkl} = c_{klij}$ и число независимых упругих постоянных уменьшается до 21. Таким образом, в самом общем случае низкосимметричных кристаллов имеется 21 независимая компонента тензора упругости.

Далее, учет симметрии конкретной кристаллической решетки позволяет еще более существенно уменьшить число независимых упругих постоянных. Например, более высокосимметричные кристаллы с тетрагональной симметрией и структурой дефектных халькопиритов описываются семью упругими постоянными. Согласно нотации В. Фойгта (W. Voigt) элементы тензора упругости c_{ijkl} могут быть записаны, используя следующую замену индексов $11 \rightarrow 1$, $22 \rightarrow 2$, $33 \rightarrow 3$, 23, $32 \rightarrow 4$, 12, $21 \rightarrow 6$, в виде матрицы 6×6 :

$$\begin{vmatrix} c_{11} & c_{12} & c_{13} \dots & 0 \dots & 0 \dots & c_{16} \\ c_{12} & c_{11} & c_{13} \dots & 0 \dots & 0 \dots & -c_{16} \\ c_{13} & c_{13} & c_{33} \dots & 0 \dots & 0 \dots & 0 \\ 0 \dots & 0 \dots & 0 \dots & c_{44} \dots & 0 & 0 \\ 0 \dots & 0 \dots & 0 \dots & 0 \dots & c_{44} \dots & 0 \\ 0 \dots & 0 \dots & 0 \dots & 0 \dots & c_{66} \end{vmatrix}$$

$$(4)$$

Необходимо отметить, что для кристаллов тетрагональной симметрии существуют два класса Лауэ (Laue group) — ТІ и ТІІ [8]. Для класса Лауэ ТІІ, к которым принадлежат дефектные халькопириты, присуще семь упругих постоянных, а для ТІ — шесть упругих постоянных c_{11} , c_{12} , c_{13} , c_{33} , c_{44} , c_{66} . Формулы для расчета модулей упругости с использованием констант упругости группе Лауэ ТІІ не могут быть получены аналитически в связи с наличием недиагональной постоянной упругости сдвига c_{16} , которая обычно не равна нулю. Однако возможно преобразовать семь компонентов c_{ij} тензора упругости кристалла ТІІ на шесть компонент тензора упругости c_{ij} кристалла ТІ [8]. С этой целью необходимо провести преобразование с вращением вокруг тетрагональной оси на угол

$$\varphi_{\kappa,\gamma} = \frac{1}{4} \arctan\left(\frac{4c_{16}}{c_{11} - c_{12} - 2c_{66}}\right),\tag{5}$$

здесь $0 < \varphi_{\kappa} < |\pi/2|$, $\varphi_{\gamma} = \varphi_{\kappa} + \pi/4$. В работе [8] показано, что при таком преобразовании величины шести упругих постоянных c_{11} , c_{12} , c_{13} , c_{33} , c_{44} , c_{66} дефектных халькопиритов практически не меняются.

В кристаллах между упругими постоянными необходимо выполнение определенных соотношений, вытекаемых из условия равновесия кристаллической решетки, главным требованием которого является минимальность плотности энергии. Эти соотношения, называемые критериями стабильности Борна-Куня (Born-Huang stability criteria), исходят из необходимости выполнения критерия устойчивости кристаллической решетки [10]. Для того, чтобы решетка была устойчивой, плотность энергии должна быть положительно определенной квадратичной формой так, чтобы энергия возрастала при любой малой деформации. Если расположить коэффициенты квадратичной формы в виде матрицы (4), без упругой постоянной c₁₆, то согласно хорошо известной теореме алгебры, эта квадратичная форма является положительно определенной, если положительны детерминанты всех матриц последовательных рангов (главные миноры). Т.е. должны быть положительны-MM c_{66} , $c_{44}c_{66}$, $c_{44}^2c_{66}$, $c_{33}c_{44}^2c_{66}$, $(c_{11}c_{33} - c_{13}^2)c_{44}^2c_{66}$, $(c_{11}-c_{12})(c_{11}c_{33}+c_{12}c_{33}-2c_{13}^2)$. Таким образом, должны выполняться условия

$$c_{11} > 0; \ c_{44} > 0; \ c_{66} > 0; \ c_{11} - c_{12} > 0,$$

$$c_{11}c_{33} - c_{13}^2 > 0,$$

$$c_{11}c_{33} + c_{12}c_{33} - 2c_{13}^2 > 0.$$

(6)

Аналогичные соотношения для кристаллов гексагональной симметрии приведены в работе [11].

3. Метод расчета упругих постоянных

Ab initio расчеты упругих постоянных соединений $CdGa_2S_4$, $CdGa_2Se_4$, $CdGa_2Te_4$ и $ZnGa_2Se_4$ проводились с помощью теории функционала плотности DFT (Density Functional Theory) [12–14] с использованием метода псевдопотенциала на основе плоских волн, реализованного в коде ABINIT [15]. В качестве псевдопотенциала и обменно-корреляционного взаимодействия использовались сохраняющие нормы псевдопотенциалы Hartwigsen—Goedecker—Hutter [16] и обобщенное градиентное приближение (GGA) [17]. В разложении волновых функций были учтены плоские волны с энергией до 80 Ry, что обеспечивает хорошую сходимость полной энергии. Суммирования по зоне Бриллюэна проводились на сетке $4 \times 4 \times 4$ Монкхорста—Пака [18]. Параметры решетки и равновесные положения атомов в

Compounds	Elastic constants c_{ij} , GPa						
Compounds	c_{11}	c_{12}	<i>c</i> ₁₃	c 33	C 44	C ₁₆	C 66
CdGa ₂ S ₄ This work	66.1	31.4	37.2	68.9	35.7	-1.9	34.3
CdGa ₂ Se ₄ This work	71.1	29.7	40.6	74.5	39	-0.78	31.7
CdGa ₂ Te ₄ This work	57	22.9	29.4	55.9	28.8	-0.083	25.1
ZnGa ₂ Se ₄ This work	87.2	41.1	42.5	90.1	49.5	-0.61	50.7
CdGa ₂ S ₄ Ref. [6]	61.8	24.7	35.7	50.0	33.9	-2.7	27.0
CdGa ₂ Se ₄ Ref. [6]	52.5	20.4	38.8	60.0	31.6	-1.9	16.0
HgGa ₂ S ₄ Ref. [7]	65.6	32.5	38	63.4	35.6	-2.0	31.6
HgGa ₂ Se ₄ Ref. [8]	54.2	24.3	31.2	55.5	29.9	-0.3	26.2
ZnGa ₂ Te ₄ Ref. [9]	45.4	19.8	26.2	48.5	25.7	_	26.5

Таблица 1. Величины упругих постоянных c_{ij} дефектных халькопиритов в GPa (в квадратных скобках ссылка на работу, откуда взяты данные)

элементарной ячейке определялись минимизацией сил Геллмана–Фейнмана. Равновесные положения атомов в элементарной ячейке были найдены методом BFGS (Broyden–Fletcher–Goldfarb–Shanno) с использованием экспериментальных данных в качестве начальных значений. Процесс минимизации продолжался до тех пор, пока силовые модули не оказывались меньше 10⁻⁸ Ry/Bohr.

В табл. 1 приведены вычисленные нами из первопринципов величины упругих постоянных соединений CdGa₂S₄, CdGa₂Se₄, CdGa₂Te₄ и ZnGa₂Se₄, а также известные в литературе данные о величинах упругих постоянных c_{ij} и других дефектных халькопиритов.

4. Объемные модули упругости

На практике наряду с упругими постоянными широко используются объемные модули упругости *B*. Например, при вычислении параметров Грюнайзена [19], коэффициентов объемного теплового расширения и других ангармонических эффектов [20]. По определению объемные модули упругости определяются из соотношения

$$W = \frac{1}{2}B\xi^2.$$
 (7)

Здесь объемная деформация связана с диагональными компоненами тензора ε_{ii} деформации соотношением

$$\frac{\xi}{3} = \varepsilon_{11} + \varepsilon_{22} + \varepsilon_{33}. \tag{8}$$

Из (3) и (7) с учетом (8) легко получить связь объемного модуля упругости с упругими постоянными для кристаллов тетрагональной симметрии

$$B = \frac{1}{9} \left(2c_{11} + c_{33} + 2c_{12} + 4c_{13} \right).$$
(9)

Выражение, аналогичное (9), для объемного модуля упругости *В* кристаллов тетрагональной симметрии, использовалось в работах [21,22]. В случае кристаллов кубической симметрии при $c_{11} = c_{33}$ и $c_{12} = c_{13}$ выражение (9) переходит в связь объемного модуля упругости с упругими постоянными для кристаллов кубической симметрии

$$B = \frac{1}{3} (c_{11} + 2c_{12}). \tag{10}$$

Величины объемного модуля упругости, возможно также определить экспериментально из известного уравнения состояния Берча–Мурнагана (Birch–Murnaghan equation of state) [23,24]:

$$P = \frac{3}{2} B_0 (x^{7/3} - x^{5/3}) \left[1 + \frac{3}{4} (B_0^I - 4)(x^{2/3} - 1) \right].$$
(11)

Здесь $x = V_0/V$, P — всестороннее (гидростатическое) давление, V_0 — первоначальный объем, B_0 — объемный модуль упругости, B_0^I — первая производная по объему объемного модуля упругости.

В табл. 2 приведены величины объемного модуля упругости *B*, определенные теоретически и из экспериментальных исследований.

Таблица 2. Величины объемного модуля упругости *B*, определенные теоретически и из экспериментальных исследований. В каждой ячейке приведены величины *B*, метод определения (теоретически или экспериментально) и ссылка на работу (в квадратных скобках)

Compounds	Bulk modulus B, GPa						
CdGa ₂ S ₄	45.8 theor	58.4 theor	46 theor	64 exp			
	This work	Ref. [6]	Ref. [23]	Ref. [24]			
CdGa ₂ Se ₄	48.7 theor	36.1 theor	41 theor	41.5 exp Ref.			
	This work	Ref. [6]	Ref. [23]	[26]			
CdGa ₂ Te ₄	37 theor This work	Ι	Ι	_			
ZnGa ₂ Se ₄	57.4 theor This work	52 theor Ref. [25]	-	_			
ZnGa ₂ Te ₄	30 theor	31.3 exp	40 exp	39 theor			
	Ref. [9]	Ref. [9]	Ref. [27]	Ref. [25]			

Таблица 3. Частоты мод A_1 , A_2 и A_3 в соединениях группы $A^{II}B_2^{III}C_4^{VI}$

Modes	CdGa ₂ S ₄ ref. [30]	ZnGa ₂ S ₄ ref. [28]	HgGa ₂ S ₄ ref. [31]	CdGa ₂ Se ₄ ref. [32]	ZnGa ₂ Se ₄ ref. [32]	HgGa ₂ Se ₄ ref. [33]
A_1	219	230	220	140	143	139
A_2	310	320	300	185	180	183
A_3	359	367	358	207	209	206

Оптические фононы в соединениях А^{II}В^{III}С^{VI}

Как известно, в элементарной ячейке дефектных халькопиритов группы $A^{II}B_2^{III}C_4^{VI}$ имеется 7 атомов. Поэтому колебательный спектр состоит из 21 моды и описывается в центре зоны Бриллюэна (при q = 0), следующими неприводимыми представлениями [28]:

$$\Gamma = 3A + 6B + 6E. \tag{12}$$

Все моды симметрии Е дважды вырождены, одна мода В и одна мода Е являются акустическими. Все оптические моды (3А, 5В и 5Е) являются активными в спектрах комбинационного рассеяния света (RS). В спектрах инфракрасного поглощения (IR) активны 5 мод симметрии В, разрешенные в поляризации параллельно тетрагональной оси С, и 5 дважды вырожденных мод симметрии Е. Моды В и Е являются полярными, а моды — А неполярные. Полносимметричные колебания типа А связаны со смещениями атомов анионной подрешетки вдоль кристаллографических осей x, y, z, при этом атомы катионной подрешетки не принимают участия в колебаниях. Колебания типа В связаны со смещениями атомов катионной подрешетки относительно анионной подрешетки вдоль тетрагональной оси с (вдоль оси z). Дву-кратно-вырожденые моды Ех и Еу связаны со смещениями атомов катионной подрешетки вдоль кристаллографических осей х и у, соответственно [29].

Поскольку колебания трех мод симметрии A (12) связаны только со смещениями атомов анионов S, Se и Te, то следует ожидать, что в соединениях дефектных халькопиритов группы $A^{II}B_2^{III}C_4^{VI}$, содержащих одинаковые атомы анионов (например, CdGa₂S₄, ZnGa₂S₄, HgGa₂S₄, unu CdGa₂Se₄, ZnGa₂Se₄, HgGa₂Se₄), соответствующие частоты мод A_1, A_2 и A_3 будут мало отличаться. Действительно, как видно из табл. 3, частоты мод A_1, A_2 и A_3 в соединениях CdGa₂Se₄, ZnGa₂Se₄, HgGa₂Se₄ и в соединениях CdGa₂Se₄, ZnGa₂Se₄, HgGa₂Se₄ очень близки по величине.

Уже в ранних работах по исследованию частот КРактивных мод в дефектных халькопиритах [28,34] было отмечено, что частоты полярных (E, B) и неполярных (A) мод могут быть аппроксимированы следующим простым соотношением

$$\omega^2 = \frac{f}{M}.$$
 (13)

Рис. 1. Зависимость экспериментально определенных частот моды A_1 кристаллов ZnGa₂S₄ (*a*), HgGa₂S₄ (*b*), CdGa₂S₄ (*c*), ZnGa₂Se₄ (*d*), CdGa₂Se₄ (*e*), HgGa₂Se₄ (*f*), ZnIn₂Se₄ (*g*), CdGa₂Te₄ (*h*), CdIn₂Te₄ (*i*) от величины $(4m)^{-1/2}$.

Здесь f — силовые константы межатомного взаимодействия, M — массы атомов. Это соотношение имеет сильно упрощенный вид, но правильно отображает характерные закономерности частот для изоструктурных кристаллов, например соединений группы $A_2^V B_3^{VI}$ [20]. Если считать, что наиболее низкочастотная мода A_1 в дефектных халькопиритах обусловлена синфазными смещениями атомов анионов, то в соотношении (13) можно принять массу M = 4m, где m — масса аниона. На рис. 1 приведена зависимость экспериментально определенных частот моды A_1 соединений $A^{II}B_2^{III}C_4^{VI}$ от величины $(4m)^{-1/2}$. Как видно из рисунка, наблюдается удовлетворительная линейная зависимость (13) частот моды A_1 от величин $(M)^{-1/2}$.

Аналогичные выводы можно сделать и для полярных мод E и B. В соединениях $A^{II}B_2^{III}C_4^{VI}$ самые низкочастотные моды E, по всей видимости, обусловлены синфазными смещениями атомов катионов A (Zn, Cd, Hg) и анионов C (S, Se, Te). В этом случае в (13) в приближении линейной цепочки можно считать $M = m_A + m_C$, где m_A — масса катиона, m_C — масса аниона, как это сделано в работе [34].

Таблица 4. Частоты (в сm⁻¹) самых низкочастотных поперечных мод E_{TO} и величины $(m_{\rm A} + m_{\rm C})^{-1/2}$ (в amu^{-1/2}) соединений группы $A^{\rm II}B_2^{\rm III}C_4^{\rm VI}$

	HgGa ₂ Se ₄ ref. [33]	HgGa ₂ S ₄ ref. [31]	CdGa ₂ Se ₄ ref. [28]	ZnGa ₂ Se ₄ ref. [34]	CdGa ₂ S ₄ ref. [28]	ZnGa ₂ S ₄ ref. [28]
Frequences	51	61	68	84	86	108
$(m_{\rm A}+m_{\rm C})^{-1/2}$	0.060	0.066	0.072	0.085	0.083	0.104

Таблица 5. Частоты (в сm $^{-1}$) самых высокочастотных продольных мод B_{LO} и величины $\mu^{-1/2}$ (в ати $^{-1/2}$) соединений группы $A^{II}B_2^{III}C_4^{VI}$

	CdGa ₂ Te ₄ ref. [30]	CdGa ₂ Se ₄ ref. [30]	ZnGa ₂ Se ₄ ref. [32]	$\begin{array}{c} CdGa_2S_4\\ ref. \ [30] \end{array}$	ZnGa ₂ S ₄ ref. [32]
Freq.	234	275	285	389	396
$\mu^{-1/2}$	0.126	0.144	0.157	0.198	0.207

В табл. 4 приведены значения экспериментально определенных частот самых низкочастотных поперечных мод E_{TO} соединений $A^{II}B_2^{III}C_4^{VI}$ вместе с соответствующими ссылками на эти экспериментальные работы.

На рис. 2 приведена зависимость экспериментально определенных частот самых низкочастотных поперечных мод E_{TO} соединений $A^{II}B_2^{III}C_4^{VI}$ от величины $(m_A + m_C)^{-1/2}$. Как видно из рисунка, в этом случае также хорошо наблюдается линейная зависимость (13) частот самых низкочастотных поперечных мод E_{TO} от величин $(M)^{-1/2}$.

Рис. 2. Зависимость экспериментально определенных частот самых низкочастотных поперечных мод E_{TO} кристаллов HgGa₂Se₄ (*a*), HgGa₂S₄ (*b*), CdGa₂Se₄ (*c*), ZnGa₂Se₄ (*d*), CdGa₂S₄ (*e*), ZnGa₂S₄ (*f*) от величины $(m_{\rm A} + m_{\rm C})^{-1/2}$.

Рис. 3. Зависимость экспериментально определенных частот самых высокочастотных продольных мод B_{LO} кристаллов CdGa₂Te₄ (*a*), CdGa₂Se₄ (*b*), ZnGa₂Se₄ (*c*), CdGa₂S₄ (*d*), ZnGa₂S₄ (*e*), от величины $\mu^{-1/2}$.

В соединениях $A^{II}B_2^{III}C_4^{VI}$ самые высокочастотные продольные моды B_{LO} вероятно обусловлены противофазными смещениями атомов катионов A (Zn, Cd, Hg) и анионов C (S, Se, Te). В этом случае используется приведенная масса μ . В [28] для вычисления приведенной массы μ высокочастотных мод симметрии *E* и *B* дефектных халькопиритов $A^{II}B_2^{III}C_4^{VI}$ предлагается использовать соотношение:

$$\frac{4}{\mu} = \frac{2}{m_{\rm A}} + \frac{1}{m_{\rm B}} + \frac{4}{m_{\rm C}}.$$
 (14)

Экспериментально определенные частоты самых высокочастотных продольных мод B_{LO} соединений $A^{II}B_2^{III}C_4^{VI}$ и ссылки на соответствующие работы представлены в табл. 5.

На рис. З приведена зависимость экспериментально определенных частот самых высокочастотных продольных мод B_{LO} соединений $A^{II}B_2^{III}C_4^{VI}$ от величины приведенной массы μ , вычисленной согласно (14). Наблюдаемая зависимость частоты от приведенной массы удовлетворительно описывается линейной зависимостью (13).

Силовые константы межатомных связей, f _n	CdGa ₂ Te ₄ (This work)	ZnGa ₂ Se ₄ (This work)	CdGa ₂ Se ₄ ref. [38]	CdGa ₂ S ₄ ref. [38]
$f_1 (A^{II} - C^{VI})$	13.71	9.23	13.9	14.28
$f_2 (\mathbf{B}_1^{\mathrm{III}} - \mathbf{C}^{\mathrm{VI}})$	7.89	4.05	6.38	6.28
$f_3 (B_2^{III} - C^{VI})$	5.61	4.01	6.87	7.89
$f_4 (\mathbf{A}^{\mathrm{II}} - \mathbf{B}_1^{\mathrm{III}})$	-1.68	-0.08	-10.6	-0.6
$f_5 (A^{II} - B_2^{III})$	2.99	0.38	1.68	3.0
$f_6 (\mathbf{B}_1^{\mathrm{III}} - \mathbf{B}_2^{\mathrm{III}})$	1.87	3.92	1.03	3.0
$f_7 (C^{VI} - C^{VI})$	1.77	1.29	1.37	0.74

Таблица 6. Значения силовых констант межатомных связей в CdGa₂Te₄, ZnGa₂Se₄, CdGa₂Se₄, CdGa₂Se₄, B eд.10⁴ dyn/cm

6. Силовые константы межатомных связей в соединениях А^{II}В^{III}С^{VI}₄

Впервые динамика решетки соединений A^{II}B^{III}C^{VI}₄ (CdGa₂S₄ и CdGa₂Se₄) была рассчитана в [35]. Для расчета была выбрана модель Киттинга [36]. При расчете учитывая кристаллохимическую близость соединений со структурой халькопирита (А^IВ^{III}С^{VI}₂ -AgGaS₂, AgGaSe₂) и тиогаллата ($A^{II}B_2^{III}C_4^{VI}$ — CdGa₂S₄ и CdGa₂Se₄) силовые константы межатомных связей $B^{III}-C^{VI}$ были взяты такими же как в AgGaS₂, AgGaSe₂, а силовые константы А^{II}-С^{VI}, V-С^{VI} (V — вакансия) определялись методом наименьших квадратов подгонкой под экспериментальные частоты. Для подгонки было использовано незначительное количество частот (одна мода симметрии А, две моды симметрии В и две моды симметрии Е). Учитывая вышеизложенное, для расчета динамики решетки CdGa2Te4 и ZnGa2Se4 была использована модель силовых постоянных [37]. Ранее подобная модель была использована нами для расчета динамики решетки $CdGa_2S_4$ и $CdGa_2Se_4$ [38].

При составлении элементов динамической матрицы были введены семь силовых констант $(f_n, n = 1-7),$ учитывающих взаимодействие как между атомами ближайших соседей f_1 (A^{II}-C^{VI}), f_2 (B^{III}₁-C^{VI}), f_3 (${\bf B}_2^{\rm III} - {\bf C}^{\rm VI}$), так и между атомами катионной f_4 ($A^{II} - B_1^{III}$), f_5 ($A^{II} - B_2^{III}$), f_6 ($B_1^{III} - B_2^{III}$), и анионной f₇ (C-C) подрешеток. В данном случае B₁ и B₂ атомы галлия Ga, занимающие различные положения в элементарной ячейке. Силовые константы находились как значения переменных, соответствующих минимуму функции $F = \Sigma (\omega_i^{\exp} - \omega_i(f_n))^2$. Поиск минимума осуществлялся с помощью стандартной программы минимизации функции многих переменных методом наименьших квадратов. Массы атомов М в соотношении (13) для расчетов выбиралось в соответствии с подходами, описанными в предидущем параграфе 5. Силовые константы межатомных связей f_n соединений CdGa₂S₄, CdGa₂Se₄, CdGa₂Te₄, ZnGa₂Se₄ приведены в табл. 6.

Из данных табл. 6 следует, что:

а) в соединениях $A^{II}B_2^{III}C_4^{VI}$ значения силовых констант f_1 ($A^{II}-C^{VI}$) значительно превышают значения силовых констант межатомной связи f_2 ($B^{III}-C^{VI}$). Это свидетельствует о том, что природа химической связи в кадмиевых тетраэдрах более ковалентная, чем в галлиевых;

б) связи катион-анионы f_1 ($A^{II}-C^{VI}$) значительно сильнее связей катион-катионы f_5 ($A^{II}-B_2^{III}$) и f_6 ($B_1^{III}-B_2^{III}$), f_3 ($B_2^{III}-C^{VI}$);

в) знак связей катион-катион f_4 ($A^{II}-B_1^{III}$) отрицательный, но это не означает отрицательность величины f в соотношении (13), поскольку значение f является сложной комбинацией величин f_n [38], каждый атом в этих соединениях имеет несколько связей с соседними атомами;

г) связи катион–анионы f_1 (A^{II}–C^{VI}), f_2 (B^{III}–C^{VI}), f_3 (B^{III}–C^{VI}) значительно сильнее связей анион–анионы f_7 (C^{VI}–C^{VI}).

7. Заключение

В настоящей работе представлены данные вычислений из первопринципов величин семи упругих постоянных c_{ii} соединений CdGa₂S₄, CdGa₂Se₄, CdGa₂Te₄ и ZnGa₂Se₄. Приведены критерии стабильности кристаллической решетки дефектных халькопиритов. Используя вычисленные величины упругих постоянных определены значения объемных модулей упругости В. На основе имеющихся данных собственных исследований и данных в литературе о частотах оптических фононов, установлены закономерности в зависимостях величин частот КР-активных фононов от масс атомов в соединениях группы А^{II}В^{III}С^{VI}. Методом наименьших квадратов, подгонкой под экспериментальные частоты, были вычислены силовые константы межатомных связей соединений CdGa₂Te₄ и ZnGa₂Se₄. Полученные данные о силовых константах свидетельствуют о том, что природа химической связи в кадмиевых тетраэдрах более ковалентная, чем в галлиевых.

Благодарности

Авторы считают своим долгом выразить благодарность А.С. Бондякову (ОИЯИ, Россия) и Д.А. Кулиеву (Институт Физики НАН Азербайджана), а также всему коллективу Дата-центра Института физики НАН Азербайджана, за предоставленные ресурсы и техническую поддержку теоретических расчетов.

Финансирование работы

Работа выполнена при финансовой поддержке Фонда развития науки при Президенте Азербайджанской республики (грант № EIF-BGM-3-BRFTF-2+/2017-15/02/1).

Конфликт интересов

Авторы заявляют, что у них нет конфликта интересов.

Список литературы

- H. Hahn, G. Frank, W. Kligler, A.D. Storger. Z. Anorg. Allg. Chem. 279, 241 (1955).
- [2] А.Н. Георгобиани, С.И. Радауцан, И.М. Тигиняну. ФТП 19, 2, 193 (1985).
- [3] H. Park, Y.-S. Kim, S.-C. Hyun, C.-D. Kim, M.-S. Jin, D.-T. Kim, K. Jang, H.-G. Kim, W.-T. Kim. Phys. Status Solidi C 3, 8, 2915 (2006).
- [4] В.В. Бадиков, И.Н. Матвеев, С.М. Пшеничников, О.В. Рычик, Н.К. Троценко, Н.Д. Устинов. Квантовая электрон. 8, 4, 910 (1981) [Sov. J. Quantum Electron. 11, 4, 548 (1981)].
- [5] P. Kumar, J. Sahariya, A. Soni, K.C. Bhamu. Mater. Sci. Forum 90, 69 (2017).
- [6] S.-H. Ma, Z.-Y. Jiao, X.-Z. Zhang. J. Mater. Sci. 47, 8, 3849 (2012).
- [7] O. Gomis, D. Santamaría-Pérez, R. Vilaplana, R. Luna, J.A. Sans, F.J. Manjón, D. Errandone, E. Pérez-González, P. Rodríguez-Hernández, A. Muñoz, I.M. Tiginyanu, V.V. Ursaki. J. Alloys Comp. 583, 70 (2014).
- [8] O. Gomis, R. Vilaplana, F.J. Manjon, D. Santamaria-Perez, D. Errandonea, E. Perez-Gonzalez, J. Lopez-Solano, P. Rodriguez-Hernandez, A. Muñoz, I.M. Tiginyanu, V.V. Ursaki. J. Appl. Phys. 113, 073510 (2013).
- [9] Rishikanta Mayengbam, S.K. Tripathy, G. Palai, S.S. Dhar. J. Phys. Chem. Solids 119, 193 (2018).
- [10] М. Борн, Х. Кунь. Динамическая теория кристаллических решеток. ИЛ, М. (1958), 488 с.
- [11] Н.А. Абдуллаев. ФТТ 48, 4, 623 (2006). [N.A. Abdullayev. Phys. Solid State 48, 4, 663 (2006)].
- [12] P. Gianozzi, S. de Gironcoli, P. Pavone, S. Baroni. Phys. Rev. B 43, 7231 (1991).
- [13] S. Baroni, S. de Gironcoli, A. Dal Corso, P. Gianozzi. Rev. Mod. Phys. 73, 515 (2001).
- [14] X. Gonze. Phys. Rev. B 55, 10337 (1997).
- [15] X. Gonze, J.M. Beuken, R. Caracas, F. Detraux, M. Fuchs. G.M. Rignanese, L. Sindic, M. Verstraete, G. Zerah, F. Jallet. Comput. Mater. Sci. 25, 478 (2002).

- [16] C. Hartwigsen, S. Goedecker, J. Hutter. Phys.Rev. B 58, 3641 (1998).
- [17] J.P. Perdew, A. Zunger. Phys. Rev. B 23, 5048 (1981).
- [18] H. Monkhorst, J. Pack. Phys. Rev. B 13, 5188 (1976).
- [19] Н.А. Абдуллаев. ФТТ **43**, *4*, 697 (2001). [N.A. Abdullayev. Phys. Solid State **43**, *4*, 727 (2001)].
- [20] З.И. Бадалова, Н.А. Абдуллаев, Г.Х. Аждаров, Х.В. Алигулиева, С.Ш. Кахраманов, С.А. Немов, Н.Т. Мамедов. ФТП **53**, *3*, 309 (2019). [Z.I. Badalova, N.A. Abdullayev, G.H. Azhdarov, Kh.V. Aliguliyeva, S.Sh. Gahramanov, S.A. Nemov, N.T. Mamedov. Semiconductors **53**, *3*, 291 (2019)].
- [21] H. Zhai, X. Li, J. Du. Mater. Transact. 53, 7, 1247 (2012).
- [22] S. Wu, S.S. Naghavi, G.H. Fecher, C. Felser. J. Mod. Phys. 9, 4, 775 (2018).
- [23] M. Fuentes-Cabrara. J. Phys. Condens. Matter 13, 10117 (2001).
- [24] D. Errandonea, R.S. Kumar, F.J. Manjón, V.V. Ursaki, I.M. Tiginyanu. J. Appl. Phys. 104, 063524 (2008).
- [25] J. Xiao-Shu, Y. Ying-Ce, Y. Shi-Min, M. Shu, N. Zhen-Guo, L. Jiu-Qing. Chin. Phys. B 19, 10, 107104 (2010).
- [26] A. Grzechnik, V.V. Ursaki, K. Syassen, I. Loa, I.M. Tiginyanu, M. Hanfland, J. Solid State Chem. 160, 205 (2001).
- [27] D. Errandonea, R.S. Kumar, O. Gomis, F.J. Manjon, V.V. Ursaki I.M. Tiginyanu. J. Appl. Phys. 114, 233507 (2013).
- [28] P.P. Lottici, C. Razzetti. J. Phys. C 16, 3449 (1983).
- [29] З.А. Джахангирли, Т.Г. Керимова, Н.А. Абдуллаев, И.А. Мамедова, Н.Т. Мамедов. ФТП **51**, *5*, 585 (2017). [Z.A. Jahangirli, T.G. Kerimova, N.A. Abdullayev, I.A. Mamedova, N.T. Mamedov. Semiconductors **51**, *5*, 556 (2017)].
- [30] З.А. Джахангирли, Т.Г. Керимова, И.А. Мамедова, С.А. Набиева, Н.А. Абдуллаев. ФТТ 62, 8, 1270 (2020).
 [Z.A. Jahangirli, T.G. Kerimova, I.A. Mamedova, S.A. Nabieva, N.A. Abdullayev. Phys. Solid State 62, 8, 1426 (2020)].
- [31] R. Vilaplana, M. Robledillo, O. Gomis, J.A. Sans, F.J. Manjón E. Perez-Gonzalez, J. Lopez-Solano, P. Rodriguez-Hernandez, A. Munoz, I.M. Tiginyanu, V.V. Ursaki. J. Appl. Phys. 113, 093512 (2013).
- [32] V.V. Ursaki, I.I. Burlakov, I.M. Tiginyanu, Y.S. Raptis, E. Anastassakis, A. Anedda. Phys. Rev. B 59, *1*, 257 (1999).
- [33] R. Vilaplana, O. Gomis, F.J. Manjón, H.M. Ortiz, E. Pérez-González, J. López-Solano, P. Rodríguez-Hernández, A. Muñoz, D. Errandonea, V.V. Ursaki, I.M. Tiginyanu. J. Phys. Chem. C 117, 15773 (2013).
- [34] P.P. Lottici, C. Razzetti. Solid State Commun. 46, 9, 681 (1983).
- [35] В.Г. Тютерев, С.И. Скачков, Л.А. Брыснева. ФТТ 21, 8, 2236 (1982).
- [36] P.N. Keating. Phys. Rev. B 145, 2, 637 (1966).
- [37] Е. Вильсон, Д. Дешиус, П. Лросс. Теория колебательных спектров молекул. Мир, М. (1960), 327 с.
- [38] Т.Г. Керимова, А.Ш. Хидиров, Э.Ю. Салаев, В.Я. Штейншрайбер. ФТТ 27, 5, 1570 (1985).

Редактор Т.Н. Василевская