Plasmon spectroscopy of anisotropic gold nanoclusters on GaAs(001) surface passivated by sulphur atoms

© V.L. Berkovits¹, V.A. Kosobukin¹, V.P. Ulin¹, P.A. Alekseev¹, F.Yu. Soldatenkov¹, V.A. Levitskii²

194021 St. Petersburg, Russia

194064 St. Petersburg, Russia

E-mail: vladimir.berkovits@mail.ioffe.ru

Received December 24, 2021 Revised December 27, 2021 Accepted for publication December 27, 2021

This work demonstrates how to create the structures Au/GaAs with perfect on-surface gold nanoclusters. In doing so, used is covering the GaAs substrate with chemically stable atomic monolayers of sulphur to prevent subsequently a chemical reaction of Au with GaAs. The structures Au/S/GaAs with monolayers of chemisorbed sulphur atoms are fabricated, characterized and studied by polarized reflection spectroscopy. The anisotropy of on-surface gold nanoclusters is established, and the anisotropic plasmons localized in Au clusters are investigated using the spectra of polarized reflection and interpreted theoretically.

Keywords: sulphide passivation, gold nanoclusters, plasmon anisotropy, polarized reflectance.

Full text of the paper will appear in journal SEMICONDUCTORS.

¹ loffe Institute,

² R&D Center TFTE.