05

Спектральная эмиссионная способность технического титана вблизи точки плавления

© Д.В. Косенков, В.В. Сагадеев

Казанский национальный исследовательский технологический университет, 420015 Казань, Республика Татарстан, Россия e-mail: Dmi-kosenkov@yandex.ru

Поступило в Редакцию 22 декабря 2021 г. В окончательной редакции 28 февраля 2022 г. Принято к публикации 3 марта 2022 г.

> Проведено экспериментальное исследование нормальной спектральной эмиссионной способности технического титана марки ВТ1-00 в области плавления. Дана схема модернизированного радиометра прямого видения со сменными узкополосными дисперсионными фильтрами спектрального диапазона 0.69–10.9 µm. Проведена оценка возможности расчета эмиссионной способности титана по электромагнитной теории.

> Ключевые слова: нормальная спектральная эмиссионная способность, область плавления, длина волны, титан.

DOI: 10.21883/JTF.2022.05.52375.323-21

Введение

Исследование теплофизических свойств твердых и жидких металлов в области высоких температур представляет большой научный интерес и носит прикладной характер, поскольку его результаты могут применяться в области технологического машиностроения и проектировании энергетических установок.

В настоящей работе произведено экспериментальное исследование нормальной спектральной эмиссионной способности титана в области плавления.

Технический титан находит широкое применение в самых разнообразных производствах и установках. Высокая жаростойкость, отсутствие коррозии и механическая прочность определяют большую ширину области применения титана. Подробная информация по свойствам технического титана и сплавов на его основе дана в [1].

Так как все технологические и технические процессы обработки титана проходят в тепловых переделах, необходимо знание его точных теплофизических свойств, в частности, эмиссионной способности исследуемого металла, которые позволяют оптимизировать проектирование и прогнозировать параметры эксплуатационных температур лучистого теплообмена.

Авторами настоящей работы проведено исследование нормальных спектральных эмиссионных свойств титана марки ВТ1-00, в котором допускается массовая доля алюминия не более 0.3% в соответствии с ГОСТ 19807-91, в области плавления. Температура области плавления титана взята из рекомендуемых значений по Международной температурной шкале [2], что совпадало с температурой плавления опытного образца.

Исследование проводилось на экспериментальной установке, конструкция которой подробно описана в [3]. Титан исследовался как в твердой полированной фазе, так и в области точки плавления (жидкая фаза). Методика проведения эксперимента аналогична методике измерения полусферических интегральных степеней черноты, представленная в [4].

Оценка погрешности эксперимента проведена авторами и составляет 3-8% в зависимости от температур опыта.

В экспериментах применялся усовершенствованный радиометр прямого видения без фокусирующей оптики (рис. 1). Нормальная спектральная эмиссионная способность титана фиксировалась по реперным точкам — полосам пропускания сменных узкополосных фильтров. Применяемые дисперсионные узкополосные фильтры, изготовленные на лабораторно-опытном производстве АН Белоруссии и имеющее паспортные спектральные характеристики, указанные в табл. 1.

Тепловой спектральный поток с поверхности металла обрезался полосой пропускания применяемого фильтра. В экспериментах использовалось принудительное термостатирование как корпуса радиометра с диафрагмами, определяющими угол видения, так и самого светофильтра. В течение эксперимента проводился контроль температуры используемого фильтра по высверленному боковому заглублению в гурте с использованием закерненной индием хромель-копелевой термопары. Таким образом была исключена возможность изменения оптической характеристики — полосы пропускания светофильтра из-за возможного нагрева при замерах. Также после проведения серии опытов спектр полосы пропускания применяемого съемного светофильтра прописывался на спектрофотометрах с необходимыми диапазонами длин волн и сопоставлялся с заявленными в паспортных данных фильтра характеристиками.

Также стоит отметить, что после проведения экспериментов, проведена оценка содержания основного

Рис. 1. Схематическое изображение радиометра: $1 - \phi$ ланец для крепления радиометра к корпусу ячейки; 2 — термостатируемая рубашка; 3 — вводы для принудительного охлаждения корпуса радиометра и токовводов; 4 — внутренние диафрагмы, определяющие телесный угол радиометра; 5 — термоэлементприемник излучения (условно обозначен точкой); 6 — съемный светофильтр; 7 — винт крепления светофильтра; T_1 , T_2 — хромель-копелевые термопары (условное изображение).

Таблица 1. Спектральные характеристики узкополосных фильтров

Номер фильтра	1	2	3	4	5	6
Полоса пропускания фильтра, µт	0.69	1.63	1.97	4.2	7.3	10.6

химического элемента в образцах титана рентгенофлуоресцентным анализом с целью выявления диффузии материала подложки — танталовой ленты — в исследуемый образец. Исследования показали, что изменения в химической чистоте титана не зафиксированы.

1. Результаты измерений и их обсуждение

При исследовании спектральной нормальной эмиссионной способности титана в твердой фазе получена ниспадающая кривая в зависимости эмиссионной способности ε_{λ} от длины волны. Кривая спектральной зависимости фиксировалась по реперным точкам спектрального пропускания применяемых фильтров (рис. 2). В табл. 2 дано сравнение параметров эксперимента авторов с другими исследованиями.

В результате обсуждения полученных значений спектральной эмиссионной способности титана в твердой

фазе был сделан вывод о росте эмиссионной способности ε_{λ} с увеличением температуры.

Литературный обзор показал, что основной массив экспериментальных данных по спектральной эмиссионной способности титана в твердой фазе исследовался в небольшом интервале длин волн и температур, а в ряде случаев исследования были ограничены единственным замером фиксированной длины волны [8–10].

Проведенный расчет по модели Друде показал хорошее согласие с экспериментальными точкам по всему спектру проведения опыта.

Экспериментальные точки для жидкого состояния в области плавления (рис. 3), как и в предыдущих измерениях твердой фазы, состоят из реперных точек — полос пропускания светофильтров. Было получено удовлетво-

Рис. 2. Нормальная спектральная эмиссионная способность титана (твердая фаза). Треугольник — [5]; круг — [6]; линия I - [7]; квадрат — измерения авторов настоящей работы (сплошная кривая — полиномиальная аппроксимация). Показан также (штриховая кривая) результат расчета по модели Друде.

Рис. 3. Нормальная спектральная эмиссионная способность титана в области плавления (жидкая фаза). Голубой круг — [11]; треугольник — [12]; пустой круг — [13]; ромб — измерения авторов настоящей работы (сплошная кривая — полиномиальная аппроксимация). Показан также (штриховая кривая) результат расчета по модели Друде.

Журнал технической физики, 2022, том 92, вып. 5

Работа	[5]	[6]	[7]	Настоящая работа	
Материал	Титан с чистотой 99.9%	Йодидный титан	Титан с чистотой 99.9%	Титан марки ВТ1-00	
Температура эксперимента, К	1614	1407	1823	1940	
Диапазон длин волн, µm	1-16	0.5-2	0.5-0.7	0.69-10.6	
Погрешность измерений, %	Менее 4	3-10	1	3-8	

Таблица 2. Характеристики параметров экспериментов (твердая фаза)

Таблица З. Характеристики параметров экспериментов (жидкая фаза)

Работа	[11]	[12]	[13]	Настоящая работа
Материал	Титан с чистотой 99.9%	Титан с чистотой 99.9%	Титан с чистотой 99.9%	BT1-00
Температура эксперимента, К	1945	1943	1941	1945
Диапазон длин волн, µm	0.5-0.9	0.7-6	0.8-0.9	0.69-10.6
Погрешность измерений, %	5	до 4	2-4	3-8

рительное совпадение характера поведения и экспериментальных значений ε_{λ} с данными [11–13] в коридоре определяемой оценкой погрешности.

Авторами получена плавная ниспадающая кривая нормальной спектральной эмиссионной способности от длины волны, ограниченная спектральными возможностями радиометра. В табл. 3 дано сравнение параметров эксперимента авторов с другими исследованиями.

Также дан результат теоретического расчета спектральной нормальной эмиссионной способности по классической электромагнитной теории (формула Друде [14]) с использованием экспериментальных данных по электросопротивлению титана в твердой и жидкой фазе авторов [15,16]. Теоретический расчет дает заниженные значения ε_{λ} от длины волны. Такое поведение расчетной спектральной нормальной эмиссионной способности было проанализировано в работе [17] и было объяснено наличием механизма изменения внутризонного перехода электронов кристаллической решетки металла, т.е. перехода электронов с одного энергетического уровня на другой.

Принципиальная неприменимость формулы Друде в области коротких волн для расчета эмиссионной способности металлов отмечена автором книги [18].

В общем случае, для металлов основанная на классической теории формула Друде принципиально применима и дает удовлетворительное совпадение с экспериментом лишь начиная с $\lambda \sim 10\,\mu$ m.

На рис. 4 показана зависимость нормальной спектральной эмиссионной способности жидкого и твердого

Рис. 4. Нормальная спектральная эмиссионная способность жидкого и твердого титана в области плавления. Квадрат — измерения авторов (T = 1940 K); ромб — измерения авторов (T = 1945 K); круг — X-точка [19]. Сплошные кривые — полиномиальные аппроксимации.

титана от длины волны в области температуры плавления. Пересечение аппроксимирующих кривых жидкой и твердой фазы титана позволяет предположить, что при $\lambda \approx 1.1 \, \mu$ m ε_{λ} не зависит от температуры металла и наблюдается область X-точки титана. Как известно, область X-точки, присущая чистым металлам, наблюдается у вольфрама, молибдена, тантала и т.д. [17–20].

На рис. 5 представлено отношение φ_{λ} — нормальной способности титана в

Рис. 5. Величина φ_{λ} титана в области плавления. Треугольник — значения φ_{λ} , рассчитанные по реперным точкам спектральных характеристик применяемых узкополосных фильтров (табл. 1); сплошная кривая — аппроксимация полиномом второй степени.

жидкой фазе — к той же величине в твердом состоянии вблизи температуры плавления в зависимости от длины волны:

$$\varphi_{\lambda} = rac{\mathcal{E}_{\lambda, liquid}}{\mathcal{E}_{\lambda, solid}}.$$

Для титана в области $0.69 \mu m \varphi_{\lambda}$ близка к единице (рис. 5). Отсюда следует, что эмиссии титана в жидкой и твердой фазах в области плавления сопоставимы между собой. Металл излучает одинаково, и разрыв нормальной спектральной эмиссионной способности титана в области температуры плавления не фиксируется.

Поведение этого отношения согласуется с подобными измерениями спектральной эмиссионной способности ряда металлов в видимой области спектра (от 0.4 до 0.7 μ m) [21]. С ростом длины волны величина φ_{λ} начинает отклоняться от единицы, достаточно резко уходя вверх.

Выводы

1. Проведено исследование спектральной эмиссионной способности титана марки ВТ1-00 на модернизированном экспериментальном стенде. Исследовались спектральные диапазоны от 0.69 до $10.6\,\mu$ m твердой и жидкой фазы в области плавления титана.

2. Поведение эмиссионной способности твердой фазы титана в области плавления удовлетворительно согласуется с экспериментальными значениями других авторов и моделью Друде.

3. Исследование жидкой фазы показало хорошее согласие с многочисленными измерениями разных авторов. Расчеты по модели Друде дают заниженные значения практически по всему спектральному диапазону экспериментальных замеров. 4. Авторы предполагают нахождение X-области симметрии титана в диапазоне длин волн $1.1-1.5 \mu m$ с фиксированной эмиссионной способностью $\varepsilon_{\lambda} \approx 0.35$.

5. Получено отношение величины φ_{λ} титана в области плавления. Анализ поведения данной величины от длины волны показал, что в коротковолновой области разрыв эмиссионной способности не фиксируется, а с увеличением длины волны наблюдается качественный рост φ_{λ} .

6. Сделан вывод о зависимости длины волны от соотношения "жидкость—твердое" в видимой области спектра, которая определяется в первую очередь прямым межзонным переходом.

Финансирование работы

Работа проведена в соответствии с координационным планом научно-исследовательских работ, утвержденных Ученым Советом Института нефтяного и химического машиностроения ФГБОУ ВО КНИТУ.

Конфликт интересов

Авторы заявляют, что у них нет конфликта интересов.

Список литературы

- A. Donchev, H.-E. Zschau. Mater. Corrosion, 55, 556 (2004). DOI: 10.1002/maco.200490059
- [2] R. Bedford, G. Bonnier, H. Maas, F. Pavese. Metrologia, 33, 133 (1996). DOI: 10.1088/0026-1394/33/2/3
- [3] D.V. Kosenkov, V.V. Sagadeev, V.A. Alyaev. Thermophys. Aeromechan., **28** (6), 951 (2021).
- [4] Д.В. Косенков, В.В. Сагадеев, В.А. Аляев. ЖТФ, 91 (7), 1090 (2021). DOI: 10.21883/JTF.2021.07.50949.9-21 [D.V. Kosenkov, V.V. Sagadeev, V.A. Alyaev. Tech. Phys., 66 (7), 1063 (2021).]
- [5] G. Teodorescu, P. Jones, R. Overfelt, B. Guo. In High Temperature Emissivity of High Purity Titanium and Zirconium. In: Proceedings of the Sixteenth Symposium on Thermophysical Properties, 2006.
- [6] E.A. Belskaya, N.Ya. Isaeva. TVT, **24**(5), 884 (1986).
- [7] Y.S. Touloukian, D.P. DeWitt. *Thermal Radiative pPoperties: Metallic Elements and Alloys. Vol. 7, Thermophysical Properties of Matter*, ed. by Y.S. Touloukian, C.Y. Ho (IFI/Plenum, NY, 1970)
- [8] G. Pottlacher, K. Boboridis, C. Cagran, T. Hüpf, A. Seifter,
 B. Wilthan. AIP Conf. Proceed., 1552, 704 (2013).
 DOI: 10.1063/1.4819628
- [9] A. Cezairliyan, J.L. McClure, A.P. Miiller. Int. J. Thermophys., 15, 993 (1994). DOI: 10.1007/BF01447109
- [10] S. Kumar, S.V. Krishnamurthy, K. Balasubramaniam. 10.21611/qirt.2019.048, (2019).
- [11] A. Cezairliyan, A.P. Miiller. J. Res. Natl. Bur. Stand., 82, 119 (1977).
- [12] T. Ishikawa, C. Koyama, Y. Nakata, Y. Watanabe, P.-F. Paradis. J. Chem. Thermodyn., 131, 557 (2019).
- [13] M. Watanabe, M. Adachi, H. Fukuyama. J. Molec. Liquids, 324 (2021). DOI: 10.1016/j.molliq.2020.115138
- [14] *Thermal Radiation Heat Transfer*, ed. by R. Siegel, J.R. Howell (Hemisphere publ. corp., Washington, 2000)

- [15] K. Boboridiss. Intern. J. Thermophys., 23, 277 (2002).
 DOI: 10.1023/A:1013977732267
- [16] B. Wilthan, C. Cagran, G. Pottlacher. Intern. J. Thermophys., 26, 1017 (2005). DOI: 10.1007/s10765-005-6682-z
- [17] H. Watanabe, M. Susa, H. Fukuyama, K. Nagata. Intern. J. Thermophys., 24, 223 (2003).
 DOI: 10.1023/A:1022374501754
- [18] Д.Я. Свет. Оптические методы измерения истинных температур (Наука, М., 1982)
- [19] P. Herve, A. Sadou. Infrared Phys. Technol., 51, 249 (2008). DOI: 10.1016/j.infrared.2007.07.002
- [20] L.N. Latyev, V.Ya. Chekhovskoi, E.N. Shestakov. Phys. Stat. Sol., 38 (2), K149 (1970).
- [21] H. Watanabe, M. Susa, K. Nagata. Metallurgical and Materials Transactions A, 28, 2507 (1997).
 DOI: 10.1007/s11661-997-0008-7