07.2;08.2;13.1;13.4 Изучение эффективности теплоотвода композитных подложек "кремний на алмазе" для устройств на основе нитрида галлия

© И.С. Езубченко, М.Я. Черных, И.А. Черных, А.А. Андреев, И.О. Майборода, Е.М. Колобкова, Ю.В. Храповицкая, Ю.В. Грищенко, П.А. Перминов, М.Л. Занавескин

Национальный исследовательский центр "Курчатовский институт", Москва, Россия E-mail: ezivan9@gmail.com

Поступило в Редакцию 21 декабря 2021 г. В окончательной редакции 12 января 2022 г. Принято к публикации 19 января 2022 г.

> Выполнены термометрические измерения встречно-штыревых структур на основе нитрида галлия, созданных на композитных подложках "кремний на алмазе". Проведено сравнение эффективности теплоотвода с аналогичной характеристикой в случае использования стандартной технологии "нитрид галлия на карбиде кремния". Показано, что использование нового типа композитных подложек "кремний на алмазе" позволяет понизить температуру поверхности более чем на 50°С по сравнению со случаем применения подложек карбида кремния при рассеиваемой мощности выше 7 W. Предложенный подход является перспективным для увеличения выходной мощности устройств на основе нитрида галлия, а также для увеличения их надежности.

Ключевые слова: нитрид галлия, теплоотвод, алмаз, рассеиваемая мощность.

DOI: 10.21883/PJTF.2022.07.52287.19111

Нитрид-галлиевые (GaN) гетероструктуры успешно применяются в устройствах связи, радарах и вторичных преобразователях энергии [1]. Высокие значения удельной плотности тока и пробивного напряжения позволяют получать GaN-элементы с удельной выходной мощностью более 5 W/mm [2]. Однако используемые для эпитаксии гетероструктур подложки из кремния и карбида кремния (SiC) обладают сравнительно низкой теплопроводностью, что приводит к существенному нагреву активной области транзисторов. Саморазогрев структуры ограничивает потенциал выходной мощности и уменьшает время наработки приборов до отказа. Алмаз обладает рекордным значением теплопроводности среди объемных материалов. Коэффициент теплопроводности пленок поликристаллического алмаза, выращенных методом химического осаждения из газовой фазы в СВЧ-разряде, достигает значений 800-1800 W/(m · K) [3]. Поэтому алмаз является перспективным материалом для создания эффективного теплоотвода из активной области GaN-транзисторов.

На данный момент продемонстрировано несколько способов интеграции гетероструктур нитрида галлия и алмазного теплоотвода (GaN-on-diamond) [4–6]. Однако до сих пор существенных результатов по снижению температуры активной области транзисторов достичь не удалось. Этот факт сдерживает внедрение технологий GaN-on-diamond в CBЧ-устройствах высокой мощности.

В работах [7,8] нами был продемонстрирован оригинальный масштабируемый подход к интеграции GaNгетероструктур с алмазным теплоотводом, были созданы GaN-гетероструктуры приборного качества на подложках размером 15×15 mm, на их основе сформированы транзисторы, изучены их статические характеристики. В настоящей работе проведены исследования температуры поверхности встречно-штыревых структур с целью изучения эффективности теплоотвода композитных подложек GaN-on-diamond, а также выполнено сравнение результатов со стандартной технологией GaN-on-SiC.

Для исследования в качестве опорных образцов использовались коммерчески доступные транзисторы GaN-on-SiC с расстоянием исток—сток 4 μ m, периодом 25 μ m, длиной затвора 0.2 μ m и общей периферией затвора 1.25 mm (TGF2023-2-01, Qorvo, США). Затвор был предварительно закорочен на исток транзистора, чтобы исключить влияние эффектов плавающего затвора. Для корректного сравнения были изготовлены топологические аналоги встречно-штыревых структур GaN-on-diamond.

Технология создания композитных подложек GaN-ondiamond представлена в работе [7]. Монтаж транзисторных кристаллов осуществлялся в металлокерамический корпус мощного транзистора. С целью обеспечения низкого теплового сопротивления кристалл-корпус был выбран метод напайки при помощи эвтектического сплава Au80/Sn20. Использовался сплав в виде кусочка фольги толщиной 25 µm. Основание корпуса транзистора пластина из псевдосплава Cu-W толщиной 2.5 mm, покрытая слоем гальванического золота толщиной около 5µm. Корпус прибора с кристаллами был смонтирован на массивный медный теплоотвод, для улучшения термического контакта использовалась термопаста. Разварка внутренних выводов СВЧ-транзисторов проводилась на установке F&K Delvotec 5630 золотой проволокой диаметром 25.4 µm.

Измерение зависимостей температуры поверхности от величины рассеиваемой мощности выполнялось в

Рис. 1. Зависимость повышения максимальной температуры активной области транзистора относительно температуры основания ΔT от рассеиваемой мощности для транзисторных структур GaN-on-SiC и GaN-on-diamond. На вставках — карты распределения температуры на транзисторных структурах GaN-on-SiC и GaN-on-diamond при рассеиваемой мощности 6.6 W.

режиме постоянного тока на установке термомикроскопического анализа QFI's InfraScope. Изменения температуры регистрировались камерой MWIR с охлаждением жидким азотом, работающей на длине волны $1-5\,\mu$ m. Карта интенсивности 1000×1000 пикселей и поле зрения $750 \times 750\,\mu$ m дают разрешение примерно $0.75\,\mu$ m на пиксель. Установка оснащена термостабилизированным столом с диапазоном поддерживаемых температур $10-140^{\circ}$ С. Чувствительность прибора составляет 0.1° С.

Измерения проводились при температуре основания 85°С, являющейся опорной точкой при работе устройств в условиях возможности использования только воздушного внешнего охлаждения.

Измерение вольт-амперных характеристик (ВАХ) проводилось на зондовой станции Cascade PM5 с помощью двухканального источника-измерителя Keithley 2636B.

На рис. 1 представлена зависимость повышения максимальной температуры активной области транзистора относительно температуры основания ΔT от рассеиваемой мощности.

Производители дискретных транзисторов GaN-on-SiC не рекомендуют использовать режимы работы, в которых температура канала превышает 200°С, так как это приводит к существенному уменьшению времени наработки до отказа. В частности, для опорного транзистора температура поверхности, заявленная производителем, не должна превышать 184°С при максимальной рекомендуемой рассеиваемой мощности 6.25 W в режиме постоянного тока. Это соответствует значению $\Delta T = 99^{\circ}$ С и совпадает с результатом, приведенным на рис. 1. При рассеиваемой мощности 8.5 W разогрев ΔT для структуры на SiC уже превышает 120°C, в то время как для структуры на алмазе ΔT составляет менее 70°С. Такая разница температур соответствует различию времени наработки до отказа кристаллов на два порядка [9]. В то же время $\Delta T = 115^{\circ}$ С (что соответствует температуре канала 200°С) для структур на алмазе достигается при рассеиваемых мощностях более 13 W. Также на рис. 1 (см. вставки) приведены карты распределения температуры, полученные при рассеиваемой мощности, равной 6.6 W (это значение соответствует типичной для современных устройств удельной мощности \sim 5 W/mm). Максимальная температура в рабочей области канала транзистора на SiC составила 172°C, что соответствует времени наработки до отказа менее 10⁹ h. Для структуры на алмазе максимальная температура в рабочей области канала составила 133°С. С учетом данных по исследованиям в области наработки устройств до отказа транзисторы на базе GaN-on-diamond потенциально смогут обеспечить более 10¹¹ h стабильной работы в данном режиме [9].

Таким образом, предложенная технология формирования алмазного теплоотвода позволяет повысить время наработки до отказа или рассеиваемые мощности при сохранении температур каналов транзисторов. Приме-

Рис. 2. Вольт-амперные характеристики транзисторов GaN-on-SiC и встречно-штыревых структур GaN-on-diamond.

нение данной технологии позволит уменьшить площадь активной области транзистора при сохранении общей ширины затвора.

На рис. 2 представлены измеренные ВАХ структур. Максимальная плотность тока стока для транзисторов GaN-on-SiC и встречно-штыревых структур GaN-on-diamond составила 0.82 и 0.88 A/mm соответственно. Видно, что для транзисторов GaN-on-SiC при напряжениях выше 6 V существует область падения тока стока из-за эффекта саморазогрева, в то время как для встречно-штыревых структур GaN-on-diamond саморазогрев отсутствует во всем диапазоне измерений. Таким образом, структуры GaN-on-diamond позволяют повысить рассеиваемую мощность на 37% при напряжении питания 15 V.

В заключение отметим, что выполненные термометрические измерения встречно-штыревых структур на композитных подложках "кремний на алмазе" демонстрируют существенное снижение температуры поверхности в сравнении с SiC. Это позволяет повысить в 100 раз и более время наработки до отказа за счет понижения температуры канала более чем на 50°C при рассеиваемой мощности выше 7 W. Показано, что для структур GaN-on-diamond отсутствуют эффекты саморазогрева при измерении BAX до 15 V, что позволяет поднять рассеиваемую мощность на 37% по сравнению с таковой для коммерческих транзисторов GaN-on-SiC.

Разработанный подход открывает новые возможности для дальнейшего раскрытия потенциала технологии GaN благодаря уменьшению эффекта саморазогрева за счет эффективного теплоотвода.

Благодарности

Авторы выражают благодарность В.С. Седову, А.К. Мартьянову, А.С. Алтахову, М.С. Комленоку, В.П. Пашинину, В.И. Конову (Институт общей физики им. А.М. Прохорова РАН) и А.Г. Синогейкину (ООО "Вандер Технолоджис") за изготовление композитных подложек "кремний на алмазе", а также А.А. Кищинскому (АО "Микроволновые системы") за помощь в корпусировании кристаллов.

Финансирование работы

Работа выполнена при финансовой поддержке Национального исследовательского центра "Курчатовский институт" (приказ № 2753 от 28.10.2021 г.).

Конфликт интересов

Авторы заявляют, что у них нет конфликта интересов.

Список литературы

- P. Fay, D. Jena, P. Maki, *High-frequency GaN electronic devices* (Springer, Cham, 2020), p. 1–40. DOI: 10.1007/978-3-030-20208-8
- [2] MACOM RF Power Amplifier GaN [Электронный ресурс]. URL: https://www.macom.com/products/rfpower-amplifiers- 5w/rf-power-amplifier—gan (дата обращения 15.10.2021).
- [3] A.V. Inyushkin, A.N. Taldenkov, V.G. Ralchenko,
 A.P. Bolshakov, A.V. Koliadin, A.N. Katrusha, Phys. Rev. B,
 97 (14), 144305 (2018). DOI: 10.1103/PhysRevB.97.144305
- [4] S. Hiza, M. Fujikawa, Y. Takiguchi, K. Nishimura, E. Yagyu, T. Matsumae, Y. Kurashima, H. Takagi, M. Yamamuka, in 2019 Int. Conf. on solid state devices and materials (Nagoya University, Japan, 2019), p. 467. DOI: 10.7567/SSDM.2019.K-4-04
- [5] Y. Minoura, T. Ohki, N. Okamoto, A. Yamada, K. Makiyama, J. Kotani, S. Ozaki, M. Sato, N. Nakamura, Jpn. J. Appl. Phys., 59 (SG), SGGD03 (2020). DOI: 10.7567/1347-4065/ab5b68
- [6] Y. Zhou, R. Ramaneti, J. Anaya, S. Korneychuk,
 J. Derluyn, H. Sun, J. Pomeroy, J. Verbeeck, K. Haenen,
 M. Kuball, Appl. Phys. Lett., **111** (4), 041901 (2017).
 DOI: 10.1063/1.4995407
- [7] М.Я. Черных, И.С. Езубченко, И.О. Майборода, И.А. Черных, Е.М. Колобкова, П.А. Перминов, В.С. Седов, А.С. Алтахов, А.А. Андреев, Ю.В. Грищенко, А.К. Мартьянов, В.И. Конов, М.Л. Занавескин, Рос. нанотехнологии, 15 (6), 820 (2020). DOI: 10.1134/S1992722320060072
- [8] И.О. Майборода, И.А. Черных, B.C. Седов, Ю.В. A.C. Алтахов, A.A. Андреев, Грищенко, E.M. Колобкова, А.К. Мартьянов, В.И. Конов, М.Л. Занавескин, Письма в ЖТФ, 47 (7), 13 (2021). DOI: 10.21883/PJTF.2021.07.50792.18630 [I.O. Maiboroda, I.A. Chernykh, V.S. Sedov, A.S. Altakhov, A.A. Andreev, Yu.V. Grishchenko, E.M. Kolobkova, A.K. Mart'yanov, V.I. Konov, M.L. Zanaveskin, Tech. Phys. Lett. (2021). DOI: 10.1134/S1063785021040118].
- [9] S. Lee, R. Vetury, J.D. Brown, S.R. Gibb, W.Z. Cai, J. Sun, D.S. Green, J. Shealy, in 2008 IEEE Int. Reliability Physics Symp. (Phoenix, USA, 2008), p. 446. DOI: 10.1109/RELPHY.2008.4558926