18

Оптические свойства и фоторазогрев водных суспензий нанокомпозитных частиц на основе кремния с осажденным золотом

© А.В. Корнилова^{1,2}, С.Б. Икрамова³, Д.У. Мусаева⁴, А.В. Сюй⁵, В.Ю. Тимошенко^{1,2}

¹ Московский государственный университет имени М.В. Ломоносова, физический факультет,

119991 Москва, Россия

² Физический институт им. П.Н. Лебедева РАН,

119991 Москва, Россия

³ Казахский национальный университет имени аль-Фараби,

050040 Алматы, Казахстан

⁴ Национальный исследовательский ядерный университет "МИФИ",

115409 Москва, Россия

⁵ Московский физико-технический институт, центр фотоники и двумерных материалов,

141700 Долгопрудный, Россия

e-mail: shargenga@mail.ru

Поступила в редакцию 20.12.2021 г. В окончательной редакции 20.12.2021 г. Принята к публикации 30.12.2021 г.

Исследованы оптические свойства нанокомпозитных частиц, состоящих из кремниевых ядер с размерами порядка 100 nm с осажденными на их поверхности золотыми наночастицами меньших размеров. Наблюдается рост поглощения света в ближней инфракрасной области спектра для полученных наночастиц по сравнению с таковым для наночастиц чистого кремния или золота. Эксперименты по измерению температуры водных суспензий показали значительно более высокие скорости фоторазогрева нанокомпозитных частиц при облучении лазерным излучением с длиной волны 810 nm по сравнению со случаем наночастиц чистого кремния. Расчеты распределения электрического поля показали многократный рост его напряженности вблизи нанокомпозитных частиц при облучении светом в видимом и ближнем инфракрасном диапазонах, а также позволили найти вклады рассеяния и поглощения в спектры экстинкции суспензий наночастиц. Наблюдаемый усиленный фоторазогрев нанокомпозитных частиц может быть использован для применения в антибактериальной обработке и гипертермии рака.

Ключевые слова: нанофотоника, плазмоника, наночастицы, фотогипертермия, кремний, золото.

DOI: 10.21883/OS.2022.04.52275.62-21

Введение

В настоящее время хорошо исследованы оптические свойства изолированных полупроводниковых и металлических наночастиц (НЧ), проявляющих соответственно квантовый размерный эффект для носителей заряда и локализованный плазмонный резонанс [1,2]. Так, известно, что НЧ золота имеют локализованный плазмонный резонанс в спектрах поглощения и рассеяния света, положение и форма которого зависят от формы НЧ и показателя преломления окружающей их среды. В то же время для широко используемых коллоидных растворов золотых НЧ такой резонанс обычно соответствует зеленой области спектра, что не всегда удобно для биофотонных применений ввиду сильного рассеяния и поглощения света данного диапазона. Для смещения пика плазмонного резонанса в инфракрасную (ИК) область можно использовать НЧ сложной формы или их агрегаты, что, однако, технически сложно и зачастую сопровождается увеличением нежелательной нагрузки на биосистему. Другой метод смещения резонанса осаждение НЧ на подложки или другие НЧ с большим

показателем преломления [3]. В качестве последних можно использовать НЧ кремния.

Возможным биофотонным применением нанокомпозитных частиц может быть использование их как эффективных поглотителей световой энергии в биомедицинском методе фотогипертермии, заключающемся в увеличении температуры биообъекта выше $41-42^{\circ}$ С на определенный промежуток времени [4]. Недавно нами было установлено, что с помощью НЧ золота, иммобилизованных на поверхность галлуазитных нанотрубок, возможен локальный фоторазогрев на длине волны локализованного плазмонного резонанса, что позволяет реализовать контролируемое уничтожение нежелательных клеток [5].

Представляет интерес исследовать иммобилизованные плазмонные НЧ на поверхности компактного носителя, например полупроводниковой НЧ кремния, а также изучить возможность дополнительного усиления локальных электрических полей и эффективности поглощения света в области связанных плазмонных и диэлектрических резонансов в нанокомпозитных частицах кремний/золото. Для решения данной задачи на поверхность сферических кремниевых НЧ были осаждены НЧ золота и исследованы оптические и фототермические свойства водного раствора полученного нанокомпозита.

Методика эксперимента

Использовались кремниевые (Si) HЧ, полученные радиочастотным разложением силана (ACS Materials, CША) со средним диаметром порядка 100 nm. Осаждение золотых (Au) НЧ проводилось по методике из работы [6] путем выдержки кремниевых НЧ в водном растворе HAuCl₄ (0.4 mM)/HF (5 M) в течение 10 s, что давало средний размер НЧ Au около 20 nm. Полученный нанокомпозит промывали несколько раз деионизированной водой и обрабатывали ультразвуком в течение 5 min, затем центрифугировали в течение 10 min при центробежном ускорении 10^4 g.

Концентрации элементов (Si и Au) в полученных образцах нанокомпозитных частиц на основе кремния с осажденными НЧ золота (далее — НЧ Si/Au) определялась методом рентгено-флуоресцентного анализа (РФА) на рентгеновском дифрактометре ДР-02 "Радиан" для высушенных на воздухе суспензий НЧ Si/Au. Размеры исходных НЧ Si измерялись с использованием просвечивающего электронного микроскопа (ПЭМ) JEOL JEM-2100. Морфология и химический состав полученных нанокомпозитных частиц, осажденных из раствора на оптически полированные пластины германия, исследовались на сканирующем электронном микросокопе (СЭМ) Tescan Vega с приставкой энергодисперсионного анализа (ЭДА) Oxford Instruments. Для сравнения также исследовались коллоидные растворы Аи НЧ, полученные методом лазерной абляции твердотельных мишеней из золота чистотой 99.9% [7]. Спектры экстинкции водных суспензий НЧ Si/Au и чистых Si и Аи измерялись на спектрофотометре UV-Vis 752Р в диапазоне 300-1000 nm со спектральным разрешением 0.5 nm.

Нагрев водных суспензий исследуемых НЧ под действием лазерного излучения исследовался с помощью тепловизионной камеры Flir C3, имеющей точность 0.01°C и частоту измерений 15 Hz в диапазоне температур от +5 до +50°C. Водные растворы кремниевых НЧ и нанокомпозитных частиц на основе кремния с золотом помещали в пластиковые кюветы объемом по 0.3 ml. Концентрации растворов составляли 1.8 g/l, начальная температура — 20°C. При облучении использовались непрерывные полупроводниковые лазеры с длинами волн 532, 667 и 800 nm и мощностью порядка 200 mW при диаметрах пучка 2 mm.

Моделирование оптических свойств

Расчеты оптических свойств и пространственного распределения локальных электрических полей проводилось для НЧ, состоящей из кремниевого ядра диаметром 100-150 nm с осажденными на его поверхности золотыми НЧ диаметрами 10-20 nm, с использованием программного обеспечения Lumerical Finite Difference IDE (ANSYS, Inc.). Дисперсионные зависимости для показателей преломления воды и кремния были взяты из базы данных Palik, показатели золота — из базы данных CRC для диапазона длин волн от 300 до 1000 nm. Предполагалось, что золотые НЧ случайным образом распределены по внешней поверхности кремниевой НЧ. Задавался источник рассеянного света с амплитудой 1 V/m и длительностью импульса 10 fs. Расчеты сечений рассеяния и поглощения производились, используя численные решения уравнения Максвелла для заданных граничных условий, методом сложения усредненных векторов Пойнтинга и нормировки на интенсивность источника. Также рассчитывалось пространственное распределение модуля напряженности электрического поля, нормированного на поле источника, при облучении светом с длинами волн, соответствующими длинам волн лазеров, использованных в эксперименте.

Результаты и обсуждения

Рисунок 1, *а* демонстрирует ПЭМ-изображение исходных НЧ Si. Из анализа ПЭМ-изображений был определен средний диаметр НЧ, который составил 125 ± 25 nm. На рис. 1, *b* показаны СЭМ-изображения полученных нанокомпозитных частиц, на которых видны как отдельные НЧ с размерами порядка 100 nm, так и их агрегаты больших размеров. Исследование элементного состава НЧ методом ЭДА (рис. 1, *c*) позволило оценить их химический состав, который включал 50.2 аt.% кремния, 49.4 at.% кислорода и 0.4 at.% золота. Близкие к указанным значениям процентные доли кремния и золота были также определены методом РФА для высушенных на воздухе макроскопических количеств суспензий НЧ.

Опираясь на данные ПЭМ и СЕМ, была построена модель исследуемой композитной НЧ, представляющей собой сферическое ядро диаметром 125 nm из кристаллического Si и массива случайно распределенных по его поверхности НЧ Au диаметром 20 nm с поверхностной плотностью порядка $200 \,\mu \text{m}^{-2}$ (рис. 2, *a*). На рис. 2, *b*-*d* показаны рассчитанные распределения модуля напряженности электрического поля в сечении нанокомпозитной частицы. Значения напряженности нормировались на величину поля источника. Рассматриваются картины электрического поля, образующиеся при воздействии на НЧ света с длинами волн, равными используемым в эксперименте. При облучении НЧ Si/Au светом с длиной волны 532 nm напряженность электрического поля между золотыми НЧ увеличивалась в 7 раз по сравнению с исходной (рис. 2, b), при 667 nm — в 153 раза (рис. 2, c), при 810 nm — в 12 раз (рис. 2, d). Полученные результаты можно объяснить тем, что длина волны 667 nm находится в области усиленного поглощения света, связанного с комбинацией эффектов

Рис. 1. (*a*) ПЭМ-изображение исходных НЧ Si; (*b*) СЭМ изображение композитных НЧ Si/Au и (*c*) соответствующая карта распределения элементов, полученная методом ЭДА.

Рис. 2. (*a*) Модель кремниевой НЧ диаметром 125 nm со случайно осажденными НЧ золота 20 nm и (*b*, *c*, *d*) поперечные сечения распределений напряженности электрического поля, нормированной на исходное значение, при освещении светом с длинами волн 530 (*b*), 667 (*c*) и 810 nm (*d*). Направления электрического поля и волнового вектора показаны синими и красными стрелками.

локализованного плазмонного резонанса в НЧ Au и резонанса Ми в НЧ Si [1].

Рисунок 3 демонстрирует результаты расчетов сечений поглощения (рис. 3, *a*) и рассеяния (рис. 3, *b*) нанокомпозитной частицы Si/Au в воде, а также НЧ Si и ансамбля НЧ Au с теми же параметрами и пространственным расположением. Сложная структура резонансов в спектре последних связана с взаимным

Рис. 3. Расчетные спектры (*a*) сечений поглощения и (*b*) рассеяния для нанокомпозитной частицы, состоящей из кремниевого ядра 125 nm с осажденными на его поверхности НЧ золота 20 nm (сплошная линия — Si/Au) и спектры такого же количества НЧ золота (штриховая линия — Au) и отдельной НЧ кремния (пунктирная линия — Si) в воде.

Рис. 4. Спектры экстинкции водных растворов НЧ кремния с золотом (сплошная линия — Si/Au), золота (штриховая линия — Au) и кремния (пунктирная линия — Si).

наложением рассеянных полей НЧ Au из-за их близкого расположения друг к другу. Для нанокомпозитной частицы Si/Au наблюдается также дополнительное усиление сечений поглощения и рассеяния в спектральной области наложения плазмонного резонанса золота и резонанса Ми кремниевой НЧ. При этом для НЧ Si/Au и сечение поглощения, и сечение рассеяния в ближней ИК области увеличились более чем на порядок по сравнению со значениями для НЧ чистого Si и ансамбля НЧ Au.

На рис. 4 представлены экспериментально измеренные спектры экстинкции водных растворов НЧ Si/Au и суспензий НЧ чистого Si и Au. На спектрах последних отчетливо выражен пик на длине волны 520 nm, соответствующий локализованному плазмону в золотых НЧ [2]. Для раствора кремниевых НЧ наблюдается обычное снижение степени поглощения в длинноволновой части спектра, в то время как для образца с НЧ Si/Au виден рост коэффициента экстинкции в ближней ИК области более чем в 2 раза.

На рис. 5 представлены измеренные зависимости роста температуры для водных суспензий исходных НЧ Si (рис. 5, a) и композитных HЧ Si/Au (рис. 5, b) от времени лазерного облучения. Скорость нагрева водных суспензий НЧ Si при освещении зеленым (532 nm) и красным (667 nm) лазерами составляла 8 K/min на начальном этапе, в то время как при облучении лазером с длиной волны 810 nm скорость нагрева была не более 1 К/min. Для НЧ Si с золотыми НЧ величина нагрева суспензий повысилась в соответствии с увеличением сечения поглощения частиц (рис. 3, а). Скорость нагрева образца Si/Au под воздействием лазеров с длинами волн 532 и 667 nm в начальный момент составила 12 K/min, при облучении светом с длиной волны 810 nm — 7 K/min. Полученные данные подтверждают, что водные суспензии НЧ Si/Au обладают значительно большей эффективностью поглощения света, особенно в ближней ИК области спектра, что хорошо соответствует как результатам расчетов (рис. 3), так и эксперимента (рис. 4).

Заключение

Таким образом, в работе были получены и исследованы композитные НЧ, представляющие собой НЧ кремния с размерами порядка 100 nm с осажденными на их поверхность НЧ золота меньших размеров. Экспериментально и теоретически обнаружено значительное увеличения поглощения и рассеяния в водных суспензиях композитных НЧ Si/Au по сравнению с аналогичным количеством НЧ чистого кремния или золота. Получен-

572

Рис. 5. (*a*) Зависимости от времени изменения температуры водных суспензий кремниевых НЧ и (*b*) нанокомпозитных НЧ Si/Au при лазерном облучении с длиной волны 532 nm (зеленые кружки), 667 nm (красные треугольники) и 810 nm (черные квадраты). Начальная температура 20°C, концентрации НЧ 1.8 g/l.

ные зависимости объясняются одновременным взаимодействием световой волны как с НЧ Si вблизи резонанса рассеяния Ми, так и с НЧ Au в области локализованного плазмонного резонанса, что приводит к возникновению комбинированных резонансов, наблюдаемых в спектрах экстинкции водных суспензий НЧ Si/Au. При этом, согласно выполненным расчетам, возникает резкое увеличение напряженности электрического поля вблизи НЧ Au при облучении светом с резонансной длиной волны. Рост сечения поглощения света проявляется также в более эффективном нагреве суспензии нанокомпозитных НЧ, особенно при лазерном облучении в ближней ИК области спектра. Полученные результаты перспективны для дальнейшего использования в фотогипертермии рака при облучении в окне прозрачности биотканей.

Благодарности

Авторы благодарны С.И. Кудряшову за полезные обсуждения, а также А.Е. Рупасову и С.Н. Шелыгиной за помощь в проведении экспериментов. Исследование выполнено при поддержке Междисциплинарной научно-образовательной школы Московского университета "Фотонные и квантовые технологии. Цифровая медицина".

Конфликт интересов

Авторы заявляют, что у них нет конфликта интересов.

Список литературы

 А.В. Федоров, И.Д. Рухленко, А.Ф. Баранов, С.Ю. Кручинин. Оптические свойства полупроводниковых квантовых точек (Наука, СПб, 2011).

- [2] A. Trügler. Optical Properties of Metallic Nanoparticles: Basic Principles and Simulation (Springer Ser. Mat. Sci., 2016).
- [3] N. Sardana, V. Talalaev, F. Heyroth, G. Schmidt, Ch. Bohley, A. Sprafke, J. Schilling. Opt. Express, 24, 254–261 (2016).
- [4] M. Mallory, E. Gogineni, G. Jones, L. Greerd, C. Simone. Crit. Rev. Oncol./Hematol., 97, 56–64 (2016).
- [5] A.V. Kornilova, G.A. Kuralbayeva, A.V. Stavitskaya, M.V. Gorbachevskii, O.V. Karpukhina, I.V. Lysenko, V.V. Pryadun, A.A. Novikov, A.N. Vasiliev, V.Yu. Timoshenko. Appl. Surf. Sci., 566, 150671 (2021).
- [6] S. Amdouni et al. Mat. Sci. Semicond. Proc., 75, 206–213 (2018).
- [7] A.V. Kabashin, M. Meunier. J. Appl. Phys., 94, 7941–7943 (2003).