09,04

Структурные и спектральные характеристики ортоборатов Pr_{1-x}Lu_xBO₃

© С.З. Шмурак, В.В. Кедров, А.П. Киселев, Т.Н. Фурсова, И.И. Зверькова

Институт физики твердого тела им. Ю.А. Осипьяна РАН, Черноголовка, Россия

E-mail: shmurak@issp.ac.ru

Поступила в Редакцию 27 декабря 2021 г. В окончательной редакции 27 декабря 2021 г. Принята к публикации 28 декабря 2021 г.

Проведены исследования структуры, ИК-спектров поглощения и спектров люминесценции синтезированных при 970°С ортоборатов $Pr_{0.99-x}Lu_x Eu_{0.01}BO_3$ при $0 \le x \le 0.99$. Увеличение концентрации лютеция приводит к последовательному изменению структурного состояния ортоборатов. Вначале ортобораты являются однофазными и имеют структуру арагонита ($0 \le x \le 0.1$), затем становятся двухфазными и содержат фазы арагонита и ватерита (0.1 < x < 0.6). При дальнейшем увеличении x соединения однофазные со структурой ватерита ($0.6 < x \le 0.8$), затем содержат фазы ватерита и кальцита ($0.8 < x \le 0.95$) и, наконец, становятся однофазными со структурой кальцита ($0.95 < x \le 0.99$). Установлено однозначное соответствие между структурной модификацией и ИК-спектрами этих соединений. Показано, что свечение ионов Eu^{3+} наблюдается в образцах, в которых концентрация европия превышает концентрацию празеодима.

Ключевые слова: ортобораты редкоземельных элементов, кристаллическая структура, рентгенофазовый анализ, ИК-спектроскопия, спектры люминесценции.

DOI: 10.21883/FTT.2022.04.52188.265

1. Введение

Спектральные характеристики ортоборатов, легированных оптически активными редкоземельными ионами (Eu³⁺, Tb³⁺, Ce³⁺), зависят от структурного состояния образца [1-4], поэтому исследование способов направленного изменения их структуры представляет значительный интерес. В работе [5] показано, что твердый раствор Lu_{1-x}In_xBO₃, состоящий из бората лютеция (LuBO₃), имеющего две устойчивые структурные модификации ватерит и кальцит [6-8] и бората индия (InBO₃), имеющего только одну структурную модификацию — кальцит [9-11], синтезированный при 780°С (температуре существования ватерита LuBO₃) при x > 0.08 - 0.1 кристаллизуется в структуре кальцита. В то же время, твердые растворы Lu_{1-x}RE_xBO₃ (RE = Eu, Gd, Tb, Dy и Y), состоящие из бората лютеция и REBO₃, имеющих только одну структурную модификацию — ватерит [6–8], при x > 0.15-0.2, синтезированные при $T = 970 - 1100^{\circ}$ С (температуре существования кальцитной фазы LuBO₃), кристаллизуются в структуре ватерита [12-15].

Увеличение концентрации ионов In^{3+} в ортоборатах $Lu_{0.98-x}In_xEu_{0.02}BO_3$, синтезированных при 780°С, приводит к увеличению фазы кальцита: при $0 \le x < 0.03$ твердый раствор имеет структуру ватерита, при $0.03 \le x \le 0.08$ наряду с ватеритом появляется фаза кальцита, а при x > 0.08-0.1 соединение имеет структуру кальцита. Наряду со структурными преобразованиями происходят изменения морфологии образцов. Микрокристаллы ватерита (при $0 \le x < 0.03$) имеют

размер ~ $0.3-1\,\mu$ т. При увеличении концентрации индия наряду с мелкими ($0.3-1\,\mu$ т) появляются более крупные микрокристаллы размером ~ $3\,\mu$ т. Количество крупных микрокристаллов растет с увеличением доли фазы кальцита. В образцах In_{0.98}Eu_{0.02}BO₃, имеющих структуру кальцита, наблюдаются хорошо ограненные микрокристаллы размером $3-5\,\mu$ т [11].

Увеличение концентрации RE в синтезированных при 970°C ортоборатах $Lu_{0.99-x}RE_xEu_{0.01}BO_3$ (RE = Gd, Eu, Ть, Ү) приводит к последовательному изменению их структуры: при $0 \le x \le 0.05 - 0.1$ твердый раствор ортоборатов является однофазным и имеет структуру кальцита (пр. гр. $R\bar{3}c$); при 0.05–0.1 < $x \le 0.1$ –0.25 наряду со структурой кальцита появляется фаза ватерита (пр. гр. C2/c), а при x > 0.1-0.25 твердый раствор является однофазным со структурой ватерита (пр. гр. C2/c) [12–15]. Одновременно со структурой изменяется и морфология микрокристаллов ортоборатов. Микрокристаллы кальцитной модификации имеют размер 15-20 µm. В интервале концентраций RE $0.05-0.1 < x \le 0.1-0.25$, в котором образцы являются двухфазными, наряду с крупными, появляются мелкие микрокристаллы (1-2µm), количество которых растет при увеличении х. При *x* > 0.1–0.25 наблюдаются преимущественно микрокристаллы размером 1-2 µm, имеющие структуру ватерита.

В работах [11–15] исследовались твердые растворы бората лютеция, имеющего две структурные модификации (ватерит и кальцит) и боратов, имеющих только одну из модификаций бората лютеция: либо кальцит (InBO₃), либо ватерит (REBO₃, RE = Eu, Gd, Tb, Dy, Y). В работе [16] проведено изучение структурного

состояния синтезированного при 970°С твердого раствора LuBO₃ и ортобората лантана (LaBO₃), структура которого не является ни кальцитом, ни ватеритом. Соединение LaBO₃ имеет два фазовых состояния: низкотемпературную орторомбическую фазу арагонит (пр. гр. *Pnma*) и высокотемпературную моноклинную фазу (пр. гр. $P2_1/m$), в которую LaBO₃ переходит при температуре 1488°С [6,17]. Ионы La³⁺ в структуре арагонита окружены девятью ионами кислорода, а ионы бора имеют тригональную координацию по кислороду [18-25]. Следует отметить, что в структуре кальцита, например в LuBO₃, ионы Lu³⁺ окружены шестью ионами кислорода, а атомы бора имеют такую же, как в арагоните, тригональную координацию по кислороду — $(BO_3)^{3-}$ [26]. В то же время, в структуре ватерита ионы Lu³⁺ окружены восьмью ионами кислорода, а три атома бора с тетраэдрическим окружением по кислороду образуют группу $(B_3O_9)^{9-}$ в виде трехмерного кольца [27,28].

Можно было бы ожидать, что в результате синтеза при $T = 970^{\circ}$ С твердого раствора ортобората LaBO₃, имеющего при этой температуре структуру арагонита, и LuBO₃, имеющего при $T = 970^{\circ}$ C структуру кальцита, соединение $La_{1-x}Lu_xBO_3$, при увеличении концентрации $Lu^{3+}(x)$ будет иметь вначале структуру арагонита, затем, наряду со структурой арагонита появится фаза кальцита и при дальнейшем увеличении х соединение будет иметь структуру кальцита. Однако, как показано в работе [16], наблюдается другая последовательность чередования структурных состояний в соединении La_{0.98-x}Lu_xEu_{0.02}BO₃ при увеличении x. При 0 ≤ *x* ≤ 0.1 соединения являются однофазными и имеют структуру арагонита. При $0.15 \le x \le 0.8$ образцы La_{0.98-x}Lu_xEu_{0.02}BO₃ являются двухфазными, они содержат фазы арагонита и ватерита. При 0.8 < x < 0.88 ортобораты имеют структуру ватерита (пр. гр. Р63/ттс). При 0.88 < x < 0.93 образцы La_{0.98-x}Lu_xEu_{0.02}BO₃ являются двухфазными, они содержат фазы ватерита и кальцита. Наконец, при 0.93 < x < 0.98 ортобораты являются однофазными и имеют структуру кальцита (пр. гр. R3c). Таким образом, при увеличении концентрации Lu³⁺ в синтезированных при 970°С соединениях La_{0.98-x}Lu_xEu_{0.02}BO₃ наряду с фазой арагонита образуется вначале фаза ватерита, несмотря на то, что синтезированный при $T = 970^{\circ}$ С ортоборат LuBO₃ имеет структуру кальцита. Только лишь при x > 0.88наряду со структурой ватерита появляется фаза кальцита, устойчивая при этой температуре. Следует отметить что 2 at.% Eu³⁺ в соединениях La_{0.98-x}Lu_xEu_{0.02}BO₃, использовались в качестве оптически активной и структурно чувствительной метки и не оказывали заметного влияния на структуру образца.

При увеличении концентрации Lu³⁺(x) образование фазы ватерита в образцах La_{0.98-x}Lu_xEu_{0.02}BO₃, исходно имеющих структуру арагонита, происходит, как и в образцах Lu_{1-x}RE_xBO₃ (RE = Eu, Gd, Tb, Dy и Y), вначале в объеме образцов, а затем ватеритная структура образуется во всем образце. В то же время образование фазы кальцита при 0.88 < x < 0.93 в ортоборатах

 $La_{0.98-x}Lu_xEu_{0.02}BO_3$, которые имеют структуру ватерита, происходит вначале в приповерхностных областях образца, а затем структура кальцита образуется во всем образце, как и в образцах $Lu_{0.98-x}In_xEu_{0.02}BO_3$.

Представляется важным установление того, насколько общей является перестройка структуры, наблюдаемая в образцах $La_{0.98-x}Lu_xEu_{0.02}BO_3$ при увеличении концентрации ионов Lu^{3+} . Как известно, наряду с LaBO₃ ортобораты Pr и Nd, синтезированные при $T = 970^{\circ}C$ имеют также структуру арагонита [6,29–31]. Выяснению изменений структуры, морфологии, спектров ИК-поглощения твердых растворов $Pr_{0.99-x}Lu_xEu_{0.01}BO_3$ при 0 < x < 0.99 посвящена настоящая работа.

Ортоборат празеодима PrBO₃ также, как и ортоборат лантана LaBO₃, имеет два фазовых состояния: низкотемпературную орторомбическую фазу арагонит (λ -PrBO₃) (пр. гр. *Pnma*), и высокотемпературную триклинную фазу ν -PrBO₃ (пр. гр. *P*-1), в которую PrBO₃ переходит при температуре 1500°C [6,29–31]. В структуре арагонита (λ -PrBO₃) ионы Pr³⁺, как и ионы La³⁺ в LaBO₃, окружены девятью ионами кислорода, а ионы бора имеют тригональную координацию по кислороду (BO₃)³⁻ [29–31].

2. Методики эксперимента

2.1. Синтез образцов

Образцы поликристаллических порошков ортоборатов состава $Pr_{0.99-x}Lu_xEu_{0.01}BO_3$ получали взаимодействием оксидов редкоземельных элементов с расплавом тетрабората калия по реакции:

$$(0.99 - x) \operatorname{Pr}_2 \operatorname{O}_3 + x \operatorname{Lu}_2 \operatorname{O}_3 + 0.01 \operatorname{Eu}_2 \operatorname{O}_3 + \operatorname{K}_2 \operatorname{B}_4 \operatorname{O}_7$$
$$= 2 \operatorname{Pr}_{0.99 - x} \operatorname{Lu}_x \operatorname{Eu}_{0.01} \operatorname{BO}_3 + \operatorname{K}_2 \operatorname{B}_2 \operatorname{O}_4.$$

Взятое в реакцию количество тетрабората калия обеспечивало избыток борсодержащего реагента относительно стехиометрического количества на 10-20%. Исходными соединениями для синтеза ортоборатов были тетрагидрат тетрабората калия $K_2B_4O_7 \cdot 4H_2O$ и калиброванные водные растворы азотнокислых солей редкоземельных элементов. Все использованные химические вещества соответствовали квалификации "ЧДА".

Синтез микрокристаллических порошков ортоборатов проводился следующим образом. Взвешенное количество тетрагидрата тетрабората калия помещали в керамическую чашку, добавляли стехиометрические количества водных растворов нитратов редких земель, взятых в необходимом соотношении, и тщательно перемешивали. Полученную водную суспензию нагревали на плитке и при слабом кипении отгоняли воду. Полученный твердый продукт отжигали при температуре 550°C в течение 20 min для удаления воды и продуктов разложения нитратов, после чего тщательно перетирали в агатовой ступке. Полученный порошок переносили в керамический тигель и подвергали высокотемпературному

Рис. 1. Дифрактограммы образцов $Pr_{0.99-x}Lu_xEu_{0.01}BO_3$ ($0 \le x \le 0.99$).

отжигу при $T = 970^{\circ}$ С в течение 2 h. Продукт отжига обрабатывали водным раствором соляной кислоты с концентрацией 5 wt.% в течение 0.2 h при непрерыв-

ном перемешивании на магнитной мешалке. Выделение поликристаллов ортоборатов проводили фильтрованием полученной водной суспензии с последующей про-

Концентрация RE, at.%				А,	$V_{\rm A},$	В,	$V_{\rm B},$	К,	<i>V</i> _K ,
Pr	Lu	Eu	Tb	%	Å ³	%	Å ³	%	Å ³
99	0	1	0	100	118.6	0	_	0	_
89	10	1	0	100	118.4	0	_	0	_
74	25	1	0	67	118.2	33	112.1	0	_
49	50	1	0	19	118.2	81	111.9	0	_
29	70	1	0	0	_	100	109.8	0	_
19	80	1	0	0	_	100	108.1	0	_
9	90	1	0	0	_	31	106.4	69	114.6
4	95	1	0	0	_	2	_	98	114.0
1	98	1	0	0	_	0	_	100	113.2
0	99	1	0	0	_	0	_	100	113.1
1	97	2	0	0	_	0	_	100	113.3
1	96	3	0	0	_	0	_	100	113.5
2	96	0	2	0	—	0	_	100	113.5
2	94	0	4	0	—	0	—	100	113.6

Таблица 1. Содержание фаз арагонита (A), ватерита (B) и кальцита (K) в образцах $Pr_{1-x-y-z}Lu_xEu_yTb_zBO_3$

Примечание. V_A — объем элементарной ячейки арагонита, приведенный к Z = 2, V_B — объем элементарной ячейки ватерита, Z = 2, V_K — объем элементарной ячейки кальцита, приведенный к Z = 2.

мывкой водой, спиртом и сушкой продукта на фильтре. Полученные порошки поликристаллов ортоборатов окончательно сушились на воздухе при $T = 200^{\circ}$ С в течение 0.5 h.

2.2. Методы исследований

Рентгендифракционные исследования проводили с использованием дифрактометра Rigaku SmartLab SE на CuK α излучении, $\lambda = 1.54178$ Å, 40 kV, 35 mA. Угловой интервал $2\theta = 10-140^{\circ}$. Фазовый анализ образцов и расчет параметров решетки проводили с использованием программ Match и PowderCell 2.4.

ИК-спектры образцов измерялись на Фурье-спектрометре VERTEX 80v в спектральном диапазоне 400-5000 сm⁻¹ с разрешением 2 cm^{-1} . Для измерений порошки поликристаллов перетирались в агатовой ступке, а затем тонким слоем наносились на кристаллическую шлифованную подложку KBr.

Морфология образцов изучалась с использованием рентгеновского микроанализатора Supra 50VP с пристав-кой для EDS INCA (Oxford).

Спектры фотолюминесценции и спектры возбуждения люминесценции изучались на установке, состоящей из источника света — лампы ДКСШ-150, двух монохроматоров МДР-4 и МДР-6 (спектральный диапазон 200–1000 nm, дисперсия 1.3 nm/mm). Регистрация свечения осуществлялась фотоумножителем ФЭУ-106 (область спектральной чувствительности 200–800 nm) и усилительной системой. Монохроматор МДР-4 использовался для изучения спектров возбуждения люминесценции образцов, монохроматор МДР-6 применялся для изучения спектров люминесценции.

Спектральные и структурные характеристики, а также морфология образцов, исследовались при комнатной температуре.

3. Рентгеноструктурные исследования

Дифрактограммы порошковых образцов ортоборатов $Pr_{0.99-x}Lu_xEu_{0.01}BO_3$ представлены на рис. 1. Фазовый состав исследуемых соединений и объемы элементарных ячеек приведены в табл. 1.

Ортобораты $\Pr_{0.99-x}Lu_xEu_{0.01}BO_3$ при $0 \le x \le 0.1$ являются однофазными и имеют структуру арагонита ($\Pr BO_3$, $\Pr DF$ 01-079-8645) — Pnma (пр. гр. \mathbb{N}_{2} 62), Z = 4. В интервале 0.1 < x < 0.6 образцы двухфазные — наряду с арагонитом в них содержится фаза ватерита ($\Pr F$ 74-1938) — $P6_3/mmc$ (пр. гр. \mathbb{N}_{2} 194), Z = 2. В интервале $0.6 < x \le 0.8$ образцы имеют структуру ватерита. При x > 0.8 наряду с ватеритом появляется фаза кальцита, пр. гр. ($R\bar{3}c$) \mathbb{N}_{2} 167 ($\Pr F$ 72-1053), Z = 6, количество которой увеличивается с ростом концентрации Lu^{3+} . В интервале концентраций $0.8 < x \le 0.95$ образцы являются двухфазными и содержат фазы ватерита и кальцита. При x > 0.95 образцы однофазные со структурой кальцита.

В интервале $0 \le x \le 0.1$ в однофазных образцах со структурой арагонита происходит монотонное уменьшение объема элементарной ячейки с ростом концентрации ионов Lu³⁺. Это свидетельствует о замещении ионов Pr³⁺, имеющих ионный радиус 1.052 Å, ионами Lu³⁺, которые имеют значительно меньший ионный радиус (0.867 Å) [32]. Максимально возможное растворение ионов Lu³⁺ в фазе арагонита Pr_{0.99}Eu_{0.01}BO₃ составлянет ~ 10 ат.% (рис. 2). Состав образующегося твердого раствора ~ Pr_{0.89}Lu_{0.10}Eu_{0.01}BO₃. В ходе дальнейшего легирования дополнительный лютеций уже не входит в структуру арагонита, а расходуется на рост количества фазы ватерита.

В двухфазной области арагонит-ватерит, при 0.1 < x < 0.6, объемы элементарных ячеек фаз арагонита и ватерита остаются практически постоянными (рис. 3). Примерный состав фазы

Таблица 2. Области концентраций Pr и La, в которых существуют определенные структурные состояния ортоборатов Pr_{0.99-x}Lu_xEu_{0.01}BO₃ и La_{0.98-x}Lu_xEu_{0.02}BO₃

	Значения x, при которых существуют указанные структуры							
Соединение	Арагонит (<i>Pnma</i>)	Арагонит + Ватерит	Ватерит (<i>P</i> 6 ₃ / <i>mmc</i>)	Ватерит + Кальцит	Кальцит (<i>R</i> 3 <i>c</i>)			
$Pr_{0.99-x}Lu_xEu_{0.01}BO_3$ $^1La_{0.98-x}Lu_xEu_{0.02}BO_3$	$\begin{array}{l} 0 \le x \le 0.1 \\ 0 \le x < 0.15 \end{array}$	0.1 < x < 0.6 $0.15 \le x \le 0.8$	$\begin{array}{l} 0.6 < x \leq 0.8 \\ 0.8 < x < 0.88 \end{array}$	$\begin{array}{c} 0.8 < x \le 0.95 \\ 0.88 \le x < 0.93 \end{array}$	$\begin{array}{l} 0.95 < x \le 0.99 \\ 0.93 \le x \le 0.98 \end{array}$			

Примечание. ¹ — Данные работы [16].

Рис. 2. Фазовый состав синтезированных образцов Pr_{0.99-x}Lu_xEu_{0.01}BO₃ в зависимости от концентрации Lu в шихте: квадрат — арагонит, треугольник — ватерит, круг — кальцит.

ватерита, оцененный по границе изменения объема элементарной ячейки ватерита — Pr_{0.4}Lu_{0.59}Eu_{0.01}BO₃. Как видно из рис. 2, в интервале концентраций 0.1 < x < 0.6 изменяется соотношение между фазами арагонита и ватерита. В интервале концентраций $0.95 < x \le 0.99$ наблюдается только кальцитная фаза, объем элементарной ячейки которой уменьшается ростом х. Следовательно, при легировании с Lu_{0.99}Eu_{0.01}BO₃ ионами Pr³⁺ в диапазоне концентраций 0-4 at.% происходит увеличение объема элементарной ячейки кальцита, что свидетельствует о растворении празеодима в ортоборате лютеция, имеющего структуру кальцита. Максимально возможное растворение ионов \Pr^{3+} в фазе кальцита составляет $\sim 4-5$ at.% (согласно границе изменения объема элементарной ячейки). Состав образующегося твердого раствора $\sim Pr_{0.05}Lu_{0.94}Eu_{0.01}BO_3.$

При дальнейшем увеличении концентрации празеодима в $Lu_{0.99}Eu_{0.01}BO_3$, в интервале концентраций $0.95 \ge x \ge 0.9$, наряду с фазой кальцита появляется фаза ватерита, объем ячейки которой растет с увеличением содержания празеодима в шихте (т. е. растет с уменьшением содержания лютеция), изменяется и соотношение между количеством фаз ватерита и кальцита (таблица, рис. 2, 3).

В интервале концентраций $0.6 < x \le 0.8$ образцы однофазные со структурой ватерита, все добавочное количество празеодима растворяется в ватерите и приводит к увеличению объема элементарной ячейки. При концентрации $Pr^{3+} \sim 39$ at.% (60 at.% Lu³⁺) достигается предел растворимости Pr^{3+} в ватеритной фазе. Дальнейший рост концентрации празеодима не приводит к изменению объема элементарной ячейки ватерита, а расходуется на увеличение количества фазы арагонита в двухфазной области при 0.1 < x < 0.6.

Таким образом, на основании рентгеноструктурных исследований можно сделать следующие выводы. В ортоборатах $\Pr_{0.99-x}Lu_xEu_{0.01}BO_3$, как и в соединениях $La_{0.98-x}Lu_xEu_{0.02}BO_3$ [16], можно выделить пять областей концентраций Lu^{3+} , в которых существуют определенные структурные состояния. С ростом концентрации лютеция происходит последовательная смена трех типов кристаллических фаз: арагонита, ватерита и кальцита (табл. 2). Схематически этот процесс можно представить следующим образом: арагонит (при $0 \le x \le 0.1$) — арагонит + ватерит (0.1 < x < 0.6) — ватерит $(0.6 < x \le 0.8)$ — ватерит + кальцит $(0.8 < x \le 0.95)$ — кальцит $(0.95 < x \le 0.99)$.

Рис. 3. Объемы элементарных ячеек структурных модификаций $Pr_{0.99-x}Lu_xEu_{0.01}BO_3$, приведенные к Z = 2: квадрат арагонит, треугольник — ватерит, круг — кальцит.

Максимально возможное растворение ионов Lu³⁺ в фазе арагонита Pr_{0.99}Eu_{0.01}BO₃ составляет ~ 10 ат.%. Примерный состав фазы ватерита, согласно границе изменения объема элементарной ячейки ватерита, — Pr_{0.40}Lu_{0.59}Eu_{0.01}BO₃. Максимально возможное растворение ионов Pr³⁺ в фазе кальцита составляет ~ 5 ат.%. Низкое значение величины предельной растворимости Pr³⁺ в кальцитной фазе состава Lu_{0.99}Eu_{0.01}BO₃ обусловлено, по-видимому, большим различием величин ионных радиусов Pr³ и Lu³⁺.

Важно отметить, что интервал концентраций Lu³⁺, в котором существует фаза ватерита в ортоборатах $Pr_{0.99-x}Lu_xEu_{0.01}BO_3$ (0.6 < $x \le 0.8$), намного больше, чем в La_{0.98-x}Lu_xEu_{0.02}BO₃ (0.8 < x < 0.88) (табл. 2).

4. Морфология образцов

Образцы $\Pr_{0.99-x}$ Lu_xEu_{0.01}BO₃ при $0 \le x \le 0.1$, имеющие согласно данным рентгенофазового анализа структуру арагонита (табл. 1), содержат микрокристаллы размером $\sim 2-8\,\mu{\rm m}$ (рис. 4, *a*). При увеличении концентрации Lu³⁺ $(0.25 \le x \le 0.7)$ в образцах наблюдаются мелкие (0.5-1 µm) и более крупные микрокристаллы (3-5µm). Согласно данным рентгенофазового анализа увеличение концентрации ионов Lu³⁺ приводит к уменьшению количества арагонита и увеличению доли ватерита (табл. 1). С ростом количества фазы ватерита увеличивается количество мелких кристаллов $(0.5-1\,\mu\text{m})$ (рис. 4, *b*, *c*). Образцы $Pr_{0.99-x}Lu_xEu_{0.01}BO_3$ при x = 0.7 и 0.8, содержащие 100% ватерита (табл. 1), состоят из микрокристаллов размером 0.5-3 µm (рис. 4, c). При дальнейшем увеличении концентрации Lu^{3+} (при 0.8 < x < 0.95) количество мелких микрокристаллов (0.5-1 µm) уменьшается, а более крупных (~ 2-4 µm) — увеличивается (рис. 4, d). В этом диапазоне концентраций ионов Lu³⁺ наблюдается уменьшение количества фазы ватерита и увеличение доли фазы кальцита (табл. 1). В образцах Pr_{0.04}Lu_{0.95}Eu_{0.01}BO₃, содержащих 98% кальцита наблюдаются преимущественно микрокристаллы размером $\sim 2-4 \,\mu m$ (рис. 4, *e*). Ортобораты Lu_{0.99}Eu_{0.01}BO₃, которые имеют структуру кальцита, состоят из микрокристаллов размером $3-10\,\mu\text{m}$ (рис. 4, *f*).

Таким образом, добавление в Lu_{0.99}Eu_{0.01}BO₃ небольшого количества ионов Pr^{3+} (~ 5 at.%), также как La³⁺ [16], приводит к заметному изменению размеров микрокристаллов, но не изменяет структуру образца (табл. 1).

В ортоборатах LuBO₃, содержащих 1 at.% Pr, 2 и 3 at.% Eu, которые имеют структуру кальцита (табл. 1), наблюдаются микрокристаллы размером $3-10\,\mu$ m (рис. 4, g). Такие же микрокристаллы наблюдаются в образцах LuBO₃, содержащих 2 at.% Pr, 2 и 4 at.% Tb, которые также имеют структуру кальцита (табл. 1) (рис. 4, h).

На основании исследования морфологии $\Pr_{0.99-x}Lu_xEu_{0.01}BO_3$ при $0 \le x \le 0.99$ можно сделать

следующие выводы. При использованном в настоящей работе способе синтеза образцы, имеющие структуру арагонита, состоят из микрокристаллов размером $\sim 2-8\,\mu\text{m}$ (рис. 4, *a*). Ортобораты $\text{Pr}_{0.29}\text{Lu}_{0.7}\text{Eu}_{0.01}\text{BO}_3$ и $\text{Pr}_{0.19}\text{Lu}_{0.8}\text{Eu}_{0.01}\text{BO}_3$ (100% ватерита), состоят из микрокристаллов размером $\sim 0.5-3\,\mu\text{m}$ (рис. 4, *c*). Следует отметить, что полученные таким же методом и имеющие структуру ватерита соединения $\text{Lu}_{1-x}\text{RE}_x\text{BO}_3$ (RE = Eu, Gd, Tb) состоят из микрокристаллов размером ($\sim 1-2\,\mu\text{m}$) [23,24]. Соединения $\text{Pr}_{0.99-x}\text{Lu}_x\text{Eu}_{0.01}\text{BO}_3$ (0.95 $\leq x \leq 0.99$), имеющие структуру кальцита, состоят из микрокристаллов, размеры которых при x = 0.95 и 0.99 равны $\sim 2-4$ и $\sim 3-10\,\mu\text{m}$ соответственно (рис. 4, *e*, *f*).

5. Результаты ИК-спектроскопии

Как известно, бораты редкоземельных элементов с общей формулой REBO3 (RE = La-Lu) характеризуются структурами со сложными анионами, образованными плоскими тригональными группами ВО3 или тетраэдрами BO₄, или BO₃ и BO₄ группами одновременно [26]. В ряду ортоборатов соединение PrBO₃ относится к структурному типу арагонита, в кристаллической решетке которого анионы (ВО3)³⁻ представляют собой плоские тригональные группы. На рис. 5 приведены спектры ИК-поглощения соединений Pr_{0.99-x}Lu_xEu_{0.01}BO₃ при $0 \le x \le 0.98$ в частотном диапазоне колебаний В-О-связей. В спектре образца состава Pr_{0.99}Eu_{0.01}BO₃ (рис. 5, спектр 1) наблюдаются полосы поглощения 594, 615, 717, 791, 947 и 1306 ст⁻¹. Спектр поглощения Pr_{0.99}Eu_{0.01}BO₃ (рис. 5, спектр 1) подобен спектру PrBO₃ со структурой арагонита, приведенному в работах [30,33]. Анализ колебаний планарных ионов (BO₃)³⁻, выполненный в [26], позволяет отнести полосы поглощения 594, 615 и дублет 717, 791 ст⁻¹ к деформационным колебаниям v4 и v2, соответственно, а полосы поглощения 947 и 1306 ст⁻¹ — к валентным колебаниям v_1 и v_3 связей В-О соответственно.

ИК-спектры образцов Pr_{0.99}Eu_{0.01}BO₃ и $Pr_{0.89}Lu_{0.1}Eu_{0.01}BO_3$ (рис. 5, спектры 1 и 2) совпадают. По данным рентгенофазового анализа оба образца имеют структуру арагонита (табл. 1). С увеличением концентрации Lu в спектрах образцов $Pr_{0.99-x}Lu_xEu_{0.01}BO_3$ при $0.25 \le x \le 0.8$ наряду с фазой арагонита появляются дополнительные полосы "v" (рис. 5, спектры 3, 4). Их интенсивность возрастает с увеличением концентрации Lu, а интенсивность полос фазы арагонита "а" уменьшается. В спектре поглощения образца Pr_{0.19}Lu_{0.8}Eu_{0.01}BO₃ (рис. 5, спектр 5) наблюдается группа интенсивных полос поглощения в диапазоне 800-1200 сm⁻¹ с максимумами при 876, 933, и 1088 cm⁻¹, а также слабые полосы поглощения 569 и 712 ст⁻¹. Присутствия линий фазы арагонита в спектре не наблюдается, спектр подобен спектру образца La0.1Lu0.88Eu0.02BO3 со структурой ватерита [16]. Колебательный спектр

Рис. 4. Морфология образцов $Pr_{0.99-x}Lu_xEu_{0.01}BO_3$: $a - Pr_{0.99}Eu_{0.01}BO_3$, $b - Pr_{0.49}Lu_{0.5}Eu_{0.01}BO_3$, $c - Pr_{0.29}Lu_{0.7}Eu_{0.01}BO_3$, $d - Pr_{0.09}Lu_{0.9}Eu_{0.01}BO_3$, $e - Pr_{0.04}Lu_{0.95}Eu_{0.01}BO_3$, $f - Lu_{0.99}Eu_{0.01}BO_3$, $g - Pr_{0.01}Lu_{0.97}Eu_{0.02}BO_3$, $h - Pr_{0.02}Lu_{0.96}Tb_{0.02}BO_3$.

Рис. 5. ИК-спектры ортоборатов $Pr_{0.99-x}Lu_{x}Eu_{0.01}BO_{3}$: Pr_{0.99}Eu_{0.01}BO₃, 2 Pr_{0.89}Lu_{0.1}Eu_{0.01}BO₃, 1 3 Pr_{0.74}Lu_{0.25}Eu_{0.01}BO₃, 4 Pr_{0.49}Lu_{0.5}Eu_{0.01}BO₃, _ 5 $Pr_{0.19}Lu_{0.8}Eu_{0.01}BO_3$, 6 Pr_{0.09}Lu_{0.9}Eu_{0.01}BO₃, $Pr_{0.04}Lu_{0.95}Eu_{0.01}BO_3$, 8 — 7 Pr_{0.01}Lu_{0.98}Eu_{0.01}BO₃. Для спектров 1-7 нулевые значения осей ординат показаны штриховой линией.

боратов в структуре ватерита заметно отличается от их спектров в структуре арагонита и кальцита. Это обусловлено тетрагональной координацией атомов бора с образованием аниона $(B_3O_9)^{9-}$ в виде трехмерного кольца в этой структуре. Полоса поглощения валентных колебаний B–O-связей в структуре ватерита находится в диапазоне $800-1200 \,\mathrm{cm^{-1}}$, в то время как в структурах арагонита и кальцита, в которых тригональное окружение атомов бора, — в диапазоне $1200-1400 \,\mathrm{cm^{-1}}$ [26,33,34]. Согласно данным рентгенофазового анализа образец $Pr_{0.19}Lu_{0.8}Eu_{0.01}BO_3$ является однофазным и имеет структуру ватерита (табл. 1).

При дальнейшем увеличении концентрации Lu³⁺ (0.8 < x < 0.98) в ИК-спектрах соединений Pr_{0.99-x}Lu_xEu_{0.01}BO₃ кроме полос поглощения фазы ватерита "v" появляются дополнительные полосы "c" (рис. 5, спектры 6-8). В спектре образца Pr_{0.01}Lu_{0.98}Eu_{0.01}BO₃ наблюдаются только полосы поглощения 631, 748, 773 и 1242 с плечом ~ 1260 cm⁻¹ (рис. 5, спектр 8), соответствующие спектру структуры кальцита [13,26]. Полосы поглощения 631, 748, 773 ст⁻¹ обусловлены деформационными колебаниями, а полоса с максимумом 1242 ст⁻¹ — валентными колебаниями связей В-О.

Таким образом, исследование ИК-спектров показало, что увеличение концентрации Lu^{3+} в системе $Pr_{0.99-x}Lu_xEu_{0.01}BO_3$ ($0 \le x \le 0.98$) приводит к изменению ИК-спектров образцов в соответствии с последовательностью изменения их фазового состава (табл. 1 и 2): арагонит — арагонит + ватерит — ватерит — ватерит — кальцит.

6. Спектры люминесценции и спектры возбуждения люминесценции

В ортоборатах $Pr_{0.99-x}Lu_xEu_{0.01}BO_3$ при $0 \le x \le 0.98$ в исследованном нами диапазоне длин волн 350-800 nm свечение не наблюдается. Одна из возможных причин отсутствия свечения в этих соединениях связана с тем, что в боратах, содержащих празеодим и европий, происходит перенос заряда от Pr³⁺ к Eu³⁺ по следующей схеме: $Pr^{3+} + Eu^{3+} \rightarrow Pr^{4+} + Eu^{2+}$. Такой процесс возможен, так как празеодим может иметь валентность 3+ и 4+, в то время как европий может иметь валентность 2+ и 3+ [32]. Перенос заряда от ионов Се³⁺ к ионам Eu³⁺ (metal-metal charge transfer (MMCT)) по схеме $Ce^{3+} + Eu^{3+} \rightarrow Ce^{4+} + Eu^{2+}$ наблюдался ранее в пионерских работах [35,36] в целом ряде соединений, в том числе и боратах, легированных церием и европием. Перенос заряда от одного активатора к другому приводит к гашению люминесценции участвующих в этом процессе активаторов.

При реализации стехиометрии процесса переноса заряда от празеодима к европию количество ионов Eu³⁺, свечение которых погашено, должно быть равно количеству ионов Pr³⁺. Поэтому, если концентрация ионов европия в образце будет превосходить концентрацию ионов празеодима, то должно наблюдаться свечение избыточного количества Eu³⁺. Для проверки этого предположения были синтезированы образцы LuBO₃, легированные 1 at.% Pr и 1 at.% Eu, 1 at.% Pr и 2 at.%Eu, а также 1 at.% Pr и 3 at.%Eu. Согласно данным рентгенофазового анализа все три образца имеют структуру кальцита (табл. 1). В соответствии с высказанным выше предположением, в образцах Pr_{0.01}Lu_{0.98}Eu_{0.01}BO₃ свечение не наблюдается, однако свечение ионов Eu^{3+} наблюдается в ортоборатах Рг_{0.01}Lu_{0.97}Eu_{0.02}BO₃ и Рг_{0.01}Lu_{0.96}Eu_{0.03}BO₃, спектры люминесценции и спектры возбуждения люминесценции которых представлены на рис. 6, спектры 1,2 и рис. 7, спектры *1*, *2*. В спектрах люминесценции этих образцов наибольшую интенсивность имеют полосы с $\lambda_{\text{max}} = 589.8$ и 595.7 nm (электронный переход ${}^{5}\text{D}_{0} \rightarrow {}^{7}\text{F}_{1}$), характерные для кальцитной модификации LuBO₃(Eu) [1,37,38]. В спектрах возбуждения наиболее интенсивной полосы люминесценции (589.8 nm) в ультрафиолетовой области наблюдается широкая полоса с максимумом при $\lambda_{\text{ex}} = 254$ nm, соответствующая полосе с переносом заряда (ППЗ) [1,3,39]. Полоса с $\lambda_{\text{ex}} = 394$ nm (электронный переход ${}^{7}\text{F}_{0} \rightarrow {}^{5}\text{L}_{6}$), соответствующая резонансному возбуждению ионов Eu³⁺, более чем в ~ 40 раз меньше ППЗ (рис. 7, спектры *1*, *2*), что характерно для кальцитной модификации LuBO₃(Eu) [1,3,13,14].

Следует отметить, что в образцах $Pr_{0.01}Lu_{0.96}Eu_{0.03}BO_3$ (обр. 2) количество избыточных ионов Eu^{3+} относительно ионов Pr^{3+} в 2 раза выше, чем в образцах $Pr_{0.01}Lu_{0.97}Eu_{0.02}BO_3$ (обр. 1). Поэтому, если в этих соединениях осуществляется перенос заряда от Pr^{3+} к Eu^{3+} , то интенсивность свечения ионов Eu^{3+} в обр. 2 должна быть в 2 раза больше чем в обр. 1. Эксперимент подтверждает это предположение. Отношения интенсивностей наиболее интенсивных полос с $\lambda_{max} = 589.8$ и 595.7 nm в спектрах обр. 2 и 1

Рис. 6. Спектры люминесценции ортоборатов $\Pr_{0.99-x-y}Lu_xEu_yBO_3$. 1 - x = 0.97, y = 0.02; 2 - x = 0.96, y = 0.03.

Puc. 7. Спектры возбуждения люминесценции ортоборатов $Pr_{1-x-y-z}Lu_xEu_yTb_zBO_3$. *1* — *x* = 0.97, *y* = 0.02, *z* = 0; *2* — *x* = 0.96, *y* = 0.03, *z* = 0; *3* — *x* = 0.96, *y* = 0, *z* = 0.02; *4* — *x* = 0.94, *y* = 0, *z* = 0.04.

равно ~ 2 и ~ 1.9 соответственно (рис. 6, спектры 1 и 2). Это является дополнительным подтверждением высказанного выше предположения о том, что перенос заряда от ионов Pr^{3+} к ионам Eu^{3+} (MMCT) действительно происходит. При осуществлении процесса ММСТ свечение ионов Eu^{3+} может наблюдаться только в образцах, в которых концентрация ионов Eu^{3+} больше концентрации ионов Pr^{3+} . Этим обстоятельством объясняется отсутствие свечения в ортоборатах $Pr_{0.99-x}Lu_xEu_{0.01}BO_3$ при $0 \le x \le 0.98$.

Представляет интерес исследование спектральных характеристик ортоборатов $Pr_{1-z}Lu_{x-z}Tb_zBO_3$, в которых оптически активными являются ионы Tb^{3+} . Спектры возбуждения люминесценции и спектры люминесценции наиболее интенсивных полос свечения ортоборатов $Pr_{0.02}Lu_{0.96}Tb_{0.02}BO_3$ (обр. 3) и $Pr_{0.02}Lu_{0.94}Tb_{0.04}BO_3$ (обр. 4), имеющих, согласно данным рентгенофазового анализа, структуру кальцита (табл. 1), представлены на рис. 7 и рис. 8 соответственно.

В спектре возбуждения люминесценции образцов 3 и 4 наблюдаются четыре полосы в коротковолновой области спектра с $\lambda_{\rm ex} \sim 235$, 260, 274 и 283 nm

Рис. 8. Спектры люминесценции ортоборатов $Pr_{0.99-x-z}Lu_xTb_zBO_3$. I - x = 0.96, z = 0.02; 2 - x = 0.94, z = 0.04.

(переход $4f^8 \rightarrow 4f^75d^1$) и узкая резонансная полоса с $\lambda_{\rm ex} = 378 \, {\rm nm} ~(^7{\rm F}_6 \rightarrow {}^5{\rm D}_3)$ (рис. 8, спектр 1). Такой спектр характерен для свечения тербия в кальцитной модификации LuBO₃(Tb) [1,4,13]. В спектре люминесценции образцов Pr_{0.02}Lu_{0.96}Tb_{0.02}BO₃ Pr_{0.02}Lu_{0.94}Tb_{0.04}BO₃ наибольшую интенсивность И имеют, характерные для кальцитной модификации LuBO₃(Tb), полосы свечения с $\lambda_{max} = 541.8$ и 549.5 nm $({}^{5}D_{4} \rightarrow {}^{7}F_{5})$, амплитуды которых сравнимы (рис. 8, спектры *1, 2*) [1,4,13]. Интенсивность свечения обр. 3 и 4 пропорциональна концентрации ионов Тb в этих образцах: в обр. 4 она в ~ 2 раза выше, чем в обр. 3. Можно было бы ожидать, что в ортоборатах Pr_{0.98-x}Lu_xTb_{0.02}BO₃ свечение ионов тербия будет наблюдаться при концентрации ионов Pr значительно больших, чем 2 at.%. Однако свечение ионов Tb³⁺ отсутствует в образцах, содержащих 98 и 28 at.% Pr. Возможно, так как Тb может иметь валентность 2+, 3+ и 4+ [32], то при больших концентрациях ионов Pr³⁺ также реализуется процесс переноса заряда от Pr³⁺ к Tb³⁺, в результате которого происходит гашение свечения ионов тербия. Таким образом, свечение ионов Eu³⁺ наблюдается в ортоборатах $Pr_{1-x}Lu_xBO_3(Eu)$, в которых концентрация ионов Eu³⁺ больше концентрации ионов Pr³⁺. Свечение ионов Tb³⁺ наблюдается в образцах LuBO₃(Pr, Tb), содержащих 2 at.% Pr³⁺ и 2 at.% Tb³⁺, но отсутствует в ортоборатах Pr_{0.98-x}Lu_xTb_{0.02}BO₃ при 0.7 $\geq x \geq 0$.

7. Заключение

В настоящей работе проведены исследования структуры, морфологии, ИК-спектров синтезированных при 970°С ортоборатов $Pr_{0.99-x}Lu_xEu_{0.01}BO_3$ при $0 \le x \le 0.99$.

Установлено однозначное соответствие между структурной модификацией и ИК-спектрами этих соединений.

В ортоборатах $Pr_{0.99-x}Lu_xEu_{0.01}BO_3$ можно выделить пять областей концентраций Lu^{3+} , в которых существуют определенные структурные состояния.

При $0 \le x \le 0.1$ ортобораты $\Pr_{0.99-x} Lu_x Eu_{0.01} BO_3$ являются однофазными со структурой арагонита (пр. гр. *Рпта*). В ИК-спектрах наблюдаются полосы поглощения 594, 615, 717, 791, 947 и 1306 сm⁻¹, соответствующие фазе арогонита $\Pr BO_3$.

При 0.1 < *x* < 0.6 образцы являются двухфазными — содержат фазы арагонита и ватерита. В ИК-спектрах наблюдаются полосы, характерные для структур арагонита и ватерита.

При $0.6 < x \le 0.8$ соединения становятся однофазными со структурой ватерита (пр. гр. $P6_3/mmc$). В ИК-спектрах наблюдаются полосы поглощения 569, 712, 876, 933 и 1088 сm⁻¹, характерные для ортоборатов со структурой ватерита.

При 0.8 < x ≤ 0.95 образцы двухфазные — они содержат фазы ватерита и кальцита. В ИК-спектрах наблюдаются полосы, характерные для ватеритной и кальцитной модификаций этих образцов.

При $0.95 < x \le 0.99$ ортобораты однофазные со структурой кальцита (пр. гр. $R\bar{3}c$). ИК-спектры содержат полосы поглощения 631, 748, 773, 1242 сm⁻¹, характерные для ортоборатов со структурой кальцита.

Показано, что свечение ионов Eu³⁺ наблюдается в образцах LuBO₃(Pr, Eu), в которых концентрация европия превышает концентрацию празеодима.

Таким образом, в синтезированных при 970° С ортоборатах $Pr_{0.99-x}Lu_xEu_{0.01}BO_3$, как и в соединениях $La_{0.98-x}Lu_xEu_{0.02}BO_3$, с ростом концентрации лютеция происходит последовательная смена трех типов кристаллических фаз: арагонита, ватерита и кальцита.

Финансирование работы

Работа выполнена в рамках госзадания ИФТТ РАН.

Авторы выражают благодарность ЦКП ИФТТ РАН за исследование морфологии образцов, а также их характеризацию методами ИК-спектроскопии и рентгенофазового анализа.

Конфликт интересов

Авторы заявляют, что у них нет конфликта интересов.

Список литературы

- C. Mansuy, J.M. Nedelec, C. Dujardin, R. Mahiou. Opt. Mater. 29, 6, 697 (2007).
- [2] Jun Yang, Chunxia Li, Xiaoming Zhang, Zewei Quan, Cuimiao Zhang, Huaiyong Li, Jun Lin. Chem. Eur. J. 14, 14, 4336 (2008).
- [3] Y.H. Zhou, J. Lin, S.B. Wang, H.J. Zhang. Opt. Mater. 20, 1, 13 (2002).
- [4] J. Yang, G. Zhang, L. Wang, Z. You, S. Huang, H. Lian, J. Lin. J. Solid State Chem. 181, 12, 2672 (2008).
- [5] С.З. Шмурак, В.В. Кедров, А.П. Киселев, Т.Н. Фурсова, И.И. Зверькова. ФТТ 62, 12, 2110 (2020).
- [6] E.M. Levin, R.S. Roth, J.B. Martin. Am. Miner. 46, 9–10, 1030 (1961).
- [7] J. Hölsä, Inorg. Chim. Acta 139, 1–2, 257 (1987).
- [8] G. Chadeyron, M. El-Ghozzi, R. Mahiou, A. Arbus, C. Cousseins. J. Solid State Chem. 128, 261 (1997).
- [9] D. Santamaría-Pérez, O. Gomis, J. Angel Sans, H.M. Ortiz, A. Vegas, D. Errandonea, J. Ruiz-Fuertes, D. Martinez-Garcia, B. Garcia-Domene, Andreé L.J. Pereira, F. Javier Manjoón, P. Rodríguez-Hernández, A. Muñoz, F. Piccinelli, M. Bettinelli, C. Popescu. J. Phys. Chem. C 118, 4354 (2014).
- [10] Wen Ding, Pan Liang, Zhi-Hong Liu. Mater. Res. Bull. 94, 31 (2017).
- [11] Wen Ding, Pan Liang, Zhi-Hong Liu. Solid State Sci. 67, 76 (2017).
- [12] С.З. Шмурак, В.В. Кедров, А.П. Киселев, И.М. Шмытько. ФТТ 57, 1, 19 (2015).
- [13] С.З. Шмурак, В.В. Кедров, А.П. Киселев, Т.Н. Фурсова, И.М. Шмытько. ФТТ 57, 8, 1558 (2015).
- [14] С.З. Шмурак, В.В. Кедров, А.П. Киселев, Т.Н. Фурсова, И.И. Зверькова, Е.Ю. Постнова. ФТТ 63, 7, 933 (2021).
- [15] С.З. Шмурак, В.В. Кедров, А.П. Киселев, Т.Н. Фурсова, И.И. Зверькова, Е.Ю. Постнова. ФТТ 63, 10, 1615 (2021).
- [16] С.З. Шмурак, В.В. Кедров, А.П. Киселев, Т.Н. Фурсова, И.И. Зверькова, С.С. Хасанов. ФТТ 63, 12, 2142 (2021).
- [17] R.S. Roth, J.L. Waring, E.M. Levin. Proc. 3rd Conf. Rare Earth Res. Clearwater, Fla. (1964). P. 153.
- [18] И.М. Шмытько, И.Н. Кирякин, Г.К. Струкова. ФТТ 55, 7, 1369 (2013).
- [19] Н.И. Стеблевская, М.И. Белобелецкая, М.А. Медков. Журн. неорган. химии **66**, *4*, 440 (2021).
- [20] J. Guang, C. Zhang, C. Wang, L. Liu, C. Huang, S. Ding. Cryst. Eng. Commun. 14, 579 (2012).
- [21] J. Zhang, M. Yang, H. Jin, X. Wang, X. Zhao, X. Liu, L. Peng. Mater. Res. Bull. 47, 247 (2012).
- [22] Heng-Wei Wei, Li-Ming Shao, Huan Jiao, Xi-Ping Jing. Opt. Mater. 75, 442 (2018).
- [23] R. Nayar, S. Tamboli, A.K. Sahu, V. Nayar, S.J. Dhoble. J. Fluoresc. 27, 251 (2017).
- [24] S.K. Omanwar, N.S. Savala. Appl. Phys. A 123, 673 (2017).
- [25] C. Badan, O. Esenturk, A. Yelmaz. Solid State Sci. 14, 11–12, 1710 (2012).
- [26] C.E. Weir, E.R. Lippincott. J. RES. Natl. Bur. Std.-A. Phys. Chem. 65A, 3, 173 (1961).
- [27] A. Szczeszak, T. Grzyb, St. Lis, R.J. Wiglusz. Dalton Transactions 41, 5824 (2012).
- [28] Ling Li, Shihong Zhou, Siyuan Zhang. Solid State Sci. 10, 1173 (2008).
- [29] A. Haberer, R. Kaindl, H.Z. Huppertz. Naturforsch. B 65, 1206 (2010).

- [30] R. Velchuri, B.V. Kumar, V.R. Devi, G. Prasad, D.J. Prakash, M. Vital. Mater. Res. Bull. 46, 8, 1219 (2011).
- [31] Jin Teng-Teng, Zhang Zhi-Jun, Zhang Hui, Zhao Jing-Tai. J. Inorganic Mater. 28, 10, 1153 (2013).
- [32] А.Г. Рябухин. Изв. Челябинского науч. центра 4, 33 (2000).
- [33] J.P. Laperches, P. Tarte. Spectrochim. Acta 22, 1201 (1966).
- [34] C.E. Weir, R.A. Schroeder. J. RES. Natl. Bur. Std.-A. Phys. Chem. 68A, 5, 465 (1964).
- [35] G. Blasse. A. Bril. J. Chem. Phys. 47, 6, 1920 (1967).
- [36] G. Blasse. Phys. Status Solidi A 75, 1, K41 (1983).
- [37] J. Yang, G. Zhang, L. Wang, Z. You, S. Huang, H. Lian, J. Lin. J. Solid State Chem. 181, 12, 2672 (2008).
- [38] G. Blasse, B.C. Grabmaier. Luminescent Materials. Springer-Verlag, Berlin-Heiderberg (1994). 233 p.
- [39] D. Hrrniak, E. Zych, L. Kepinski, W. Strek. J. Phys. Chem. Solids 64, 1, 11 (2003).

Редактор Т.Н. Василевская