Анизотропные напряжения в слоях GaN(1120) на подложке *r*-Al₂O₃ при хлорид-гидридной газофазной эпитаксии

© В.Н. Бессолов, Е.В. Коненкова[¶], Н.В. Середова, В.Н. Пантелеев, М.П. Щеглов

Физико-технический институт им. А.Ф. Иоффе Российской академии наук, 194021 Санкт-Петербург, Россия

[¶] E-mail: lena@triat.ioffe.ru

Поступила в Редакцию 18 октября 2021 г. В окончательной редакции 10 ноября 2021 г. Принята к публикации 10 ноября 2021 г.

Сообщается о росте неполярных GaN(1120) структур методом хлорид-гидридной газофазной эпитаксии с использованием буферного слоя AlN, синтезированного методом эпитаксии из металлоорганических соединений на подложке r-Al₂O₃. Показано, что упругие напряжения в структуре GaN(1120)/r-Al₂O₃ в направлении осей "c" и "a" слоя различаются, коррелируют с величинами полуширин кривых качания спектров рентгеновской дифракции в этих направлениях и обусловлены анизотропией коэффициентов термического расширения решеток как слоя, так и подложки.

Ключевые слова: неполярный нитрид алюминия, анизотропия напряжений в слое.

DOI: 10.21883/FTP.2022.03.52108.9758

1. Введение

Полупроводники группы III-нитридов и их соединений перспективны для оптико-электронных применений, для мобильной связи [1]. Основываясь на хорошо зарекомендовавшем себя опыте при создании AlGaAs/GaAsтранзисторов, простым, но многообещающим решением является выращивание неполярных гетероструктур AlGaN/GaN с модуляционным легированием, и тогда плотность двумерных носителей заряда можно настроить просто путем оптимизации уровня легирования в барьере AlGaN [2].

Однако транзисторы, которые в настоящее время получают на основе квантово-размерного гексагонального GaN, испытывают проблемы из-за квантово-ограниченного эффекта Штарка, который индуцируется спонтанной поляризацией и пьезоэлектрическим полем.

Известно, что этот негативный эффект может быть сведен к минимуму за счет использования неполярных подложек GaN [3]. Одним из известных методов изготовления неполярных подложек является разрезание объемного полярного GaN вдоль неполярного направления [4]. Однако этот метод не подходит для коммерческих целей из-за его низкой производительности и ограничений по размерам. Наиболее популярными способами изготовления неполярных квазиподложек является гетероэпитаксиальное выращивание неполярного GaN на чужеродных подложках с использованием осаждения из металлоорганических соединений (MOCVD) [5], метод молекулярнолучевой эпитаксии (MBE) [6] и метод хлорид-гидридной газофазной эпитаксии (HVPE) [7].

Среди этих методов HVPE является наиболее перспективным для технологии подложек, поскольку он обеспечивает высокую производительность для получения толстых слоев и относительно хорошее качество кристаллов. Однако электрические и структурные свойства неполярных слоев GaN, выращенных HVPE с высокими скоростями роста, как правило, имеют худшие параметры, чем у слоев GaN, выращенных методами MOCVD и MBE. Тем не менее в последнее время росту неполярных слоев методом HVPE уделяется особое внимание [8].

Как правило, неполярный GaN, выращенный на сапфире без каких-либо дополнительных буферных слоев, демонстрирует высокую плотность дефектов (плотность дислокаций > 10^{10} /см²). Поэтому обычно применяют буферные слои, подобранные с наилучшими условиями сопряжения слой — подложка, и стараются подобрать условия роста неполярного GaN таким образом, чтобы получить слои с низкой плотностью дефектов [9].

2. Методика эксперимента

Данная работа посвящена получению неполярного GaN на сапфировой подложке комбинированным методом: в начале при высокой температуре методом газофазной эпитаксии из металлоорганических соединений (MOCVD) формировали буферный AlN-слой, затем этот слой охлаждали до комнатной температуры, и наконец, методом хлорид-гидридной газофазной эпитаксии (HVPE) выращивали слой GaN(1120) при высокой температуре. Затем устанавливалась взаимосвязь рентгеноструктурных характеристик слоя с анизотропным характером деформации, вызванной различиями коэффициентов термического расширения решеток как слоя, так и подложки. Рентгенодифракционные и люминесцентные свойства неполярных слоев GaN сравнивались со свойствами полярного GaN(0001), синтезированного методом хлорид-гидридной газофазной эпитаксии (HVPE) по стандартной технологии на подложке

	Публикация	Год	Слой/подложка	Толщина, мкм	ω_{θ} , arcsec	Метод
1	Наша работа	2021	GaN(11 $\overline{2}$ 0) на AlN(MOCVD)/ r -Al ₂ O ₃	19	900 GaN(0002) 1760 GaN(1120)	HVPE
2	[12]	2021	$GaN(11\bar{2}0)$ на r -Al $_2O_3$	~ 1	2426 GaN(0002) 2963 GaN[1120]	MBE
3	[7]	2008	GaN(1120) на <i>r</i> -Al ₂ O ₃	50	2000	HVPE
4	[5]	2006	GaN(1120) на LT-GaN/ r -Al ₂ O ₃	1.5	1008 - 1548	MOCVD
5	[13]	2005	$GaN(11\bar{2}0)$ на DC-AlN/ r -Al $_2O_3$	100	1100	HVPE

Таблица 1. FWHM рентгеновской дифракции ω_{θ} , толщина слоев *h* для неполярного GaN(1120), синтезированного разными методами

сапфира (0001). Предварительно сапфировые подложки подвергались термической очистке при температуре эпитаксии в среде H₂ в течение 10 мин. Эпитаксиальный рост буферного слоя AlN толщиной 40-50 нм проводился методом MOCVD при температуре 1080°C аналогично [10]. Эпитаксиальный рост неполярных слоев осуществлялся на подложках сапфира — r-Al₂O₃ и Al₂O₃(0001) методом HVPE при соотношении газового потока в зоне роста — $H_2/NH_3 = 2:1$, при температуре — 1050° С со скоростью потоков HCl и NH₃ — 1.7и 2.4 л/мин соответственно, аналогично [11]. Толщина слоев GaN была 19 мкм. Структуры исследовались методом рентгеновской дифрактометрии, в котором кривые качания регистрировались для симметричного (0002) и кососимметричного (1120) брэгговских рефлексов в режиме двухкристальной (ω)-скан схемы дифракции и методом фотолюминесценции при $T = 80 \, \text{K}$.

3. Экспериментальные результаты и обсуждение

Результаты рентгенодифракционных измерений GaN(11 $\overline{2}0$), а именно полуширина кривой качания спектров рентгеновской дифракции вдоль различных направлений кристалла (FWHM- ω_{θ}), отображены в табл. 1, где они сравниваются с литературными данными для слоев, выращенных методами HVPE, MOCVD, MBE.

Как известно [7], величина ω_{θ} уменьшается по мере удаления от гетерограницы, поэтому сравнивать эти величины можно только с учетом толщины слоя. Видно, что ω_{θ} в плоскостях GaN(0002) и GaN(11 $\overline{2}0$) в наших экспериментах при сопоставимых толщинах слоев имеет меньшую величину ω_{θ} , чем данные, приведенные в литературе (см. табл. 1). Это преимущество базируется в основном на особенностях зарождения слоя AlN методом MOCVD при высокой температуре и последующем охлаждении слоя до комнатной температуры.

Как известно, при синтезе GaN(0001) на подложке $Al_2O_3(0001)$ несоответствие решетки в плоскости составляет $\sim 13.8\%$ [14]. При синтезе буферного AlN

на подложке r-Al₂O₃ решетки различаются как в направлении [0001], так и в [1100] слоя (рис. 1). Такое различие приводит к формированию поликристаллического зародышевого слоя, который при охлаждении от температуры эпитаксии MOCVD до комнатной и последующем нагревании до температуры эпитаксии HVPE претерпевает воздействие из-за различия коэффициентов термического расширения, что, по нашему мнению, приводит к возникновению ориентированных зародышей неполярного AlN.

При синтезе GaN(11 $\overline{2}0$) на темплейте AlN/*r*-Al₂O₃ из-за несоответствия параметров решетки по оси "*c*" и оси "*a*" рост слоя происходит по островковому механизму при образовании вытянутых вдоль оси "*c*" зародышей GaN(11 $\overline{2}0$). Рентгенодифракционный анализ слоев показал, что они имеют полуширину кривой рентгеновской дифракции $\omega_{\theta} \sim 900$ arcsec для GaN(0002) и $\omega_{\theta} \sim 1760$ arcsec для GaN(11 $\overline{2}0$) (см. табл. 1). Полуширина кривой рентгеновской дифракции полярного GaN(0002), синтезированного в одном процессе на сапфировой подложке Al₂O₃ (0001), была $\omega_{\theta} = 300$ arcsec.

Рис. 1. Схематическое изображение сопряжения буферного слоя AlN на подложке *r*-Al₂O₃.

Таблица 2. Параметры уравнения (1) для "*a*" и "*c*" направлений Al₂O₃

Направление	A, 1/K	B, 1/K	C, 1/K	D, 1/K
"a" "c"	$7.008 \cdot 10^{-6} \\ 7.588 \cdot 10^{-6}$	$\frac{8.496\cdot10^{-10}}{10.169\cdot10^{-10}}$	$\frac{1.862 \cdot 10^{-6}}{1.948 \cdot 10^{-6}}$	$\begin{array}{c} 4.18 \cdot 10^{-3} \\ 4.29 \cdot 10^{-3} \end{array}$

Поверхностная диффузия адатомов Al и Ga по поверхности AlN и GaN играет важную роль при зарождении и роста полуполярных слоев на структурированных подложках. Известно, что величина свободного пробега адатома Ga по поверхности GaN различается для полярной (0001) и полуполярной (1011) граней GaN при MOCVD эпитаксии и составляет 535 и 1430 нм соответственно [15].

Мы предполагаем, что и при HVPE эпитаксии на поверхности (11 $\overline{2}0$) по сравнению с поверхностью (0001) диффузионная длина адатома Ga так же больше, и это приводит в методе HVPE к укрупнению зародившихся островков в более массивные блоки GaN(11 $\overline{2}0$).

При гетероэпитаксии слоев на подложке с большим рассогласованием параметров решеток при зарождении слоев происходит, как правило, релаксация напряжений в слое с образованием дислокаций и дефектов, а напряжения в слое и подложке возникают за счет различия коэффициентов термического расширения при охлаждении гетероструктуры [16].

Величина упругих напряжений в структуре, которые возникают при охлаждении от температуры эпитаксии до комнатной, зависит от различия коэффициентов термического расширения GaN и Al₂O₃ $\Delta \alpha = \alpha_{GaN}^{l} - \alpha_{Al_2O_3}^{s}$ в двух перпендикулярных направлениях: вдоль направления "*a*" и вдоль направления "*c*" слоя (рис. 2). Как известно, сапфировая подложка Al₂O₃ имеет разные коэффициенты термического расширения в направлениях, параллельных оси "*c*" и оси "*a*" [17]. В температурной области 300–1473 К коэффициент термического расширения в виде [17]

$$\alpha(T) = A + B \cdot T - C \cdot \exp(-DT)\left[\frac{1}{K}\right], \qquad (1)$$

где коэффициенты *A*, *B*, *C*, *D* определяются для осей "*a*" и "*c*" (см. табл. 2).

Оценка по формуле (1) показала, что в сапфировой подложке коэффициенты термического расширения различаются: в направлении осей "*a*" и "*c*": $\alpha_{Al_2O_3(a)}^s = 6.86 \cdot 10^{-6} \text{ K}^{-1}$, $\alpha_{Al_2O_3(c)}^s = 7.35 \cdot 10^{-6} \text{ K}^{-1}$, соответственно.

В слое GaN(1120) коэффициенты термического расширения тоже различаются в направлении осей " $a^{"}$ — $a^{l}_{GaN(a)}$ — 5.6 · 10⁻⁶ K⁻¹ [18] и " $c^{"}$ $a^{l}_{GaN(c)} = 4.8 \cdot 10^{-6} \text{ K}^{-1}$ [19]. Тогда, согласно [20], напряжение, возникающее при охлаждении в гетероструктуре из-за разницы коэффициентов термического расширения в направлениях "*a*" и "*c*", можно оценить из выражения (2)

$$\sigma_{\Delta\alpha} \approx \frac{E}{1-\nu} \times \Delta \alpha \Delta T, \qquad (2)$$

где $E = 295 \, \Gamma \Pi a$ и v = 0.25, а ΔT — разница между температурой эпитаксии и комнатной $\Delta T = 1020^{\circ}$ С. В данном выражении используется величина $\Delta \alpha$ разница между коэффициентами термического расширения, которая различается в направлении "а" и "с". Мы оценили по формуле (2) упругие напряжения, которые могут возникать при охлаждении неполярной структуры в направлении оси "а", и получили величину $\sigma_a = -0.45 \, \Gamma \Pi a$. Направления осей "*c*" подложки r-Al₂O₃ и слоя GaN(1120) различаются на угол 32.4° (рис. 2), а из литературных данных известны для сапфировой подложки только коэффициенты термического расширения в направлении "а" и "с", то при оценке напряжений в гетероструктуре необходимо сравнивать коэффициент термического напряжения r-Al₂O₃ в направлении "c" слоя GaN(11 $\overline{2}0$) — $\alpha^{l}_{GaN(c)}$. При оценке мы полагали величину коэффициента термического расширения сапфира в направлении под углом в 32.4° к направлению оси "с" подложки, равной $\alpha^{\rm s}_{{\rm Al}_2{\rm O}_3(c)}=7.0\cdot 10^{-6}\,{\rm K}^{-1}.$ Напряжение для такой структуры оказалось равным σ_c –0.88 ГПа. Слой GaN(1120),

Рис. 2. Схематическое изображение взаимосвязи слоя $GaN(11\overline{2}0)$ и подложки *r*-Al₂O₃ и коэффициентов термического расширения подложки и слоя в направлениях "*a*" и "*c*".

Рис. 3. Спектры фотолюминесценции слоев GaN(0001) и $GaN(11\overline{2}0)$.

синтезированный на подложке r-Al₂O₃, имеет анизотропию напряжений сжатия. При синтезе слоя GaN(0001) на подложке Al₂O₃ (0001) экспериментально определенная величина напряжений была $\sigma_a = -0.7 \, \Gamma \Pi a \, [13],$ что больше, чем при охлаждении неполярного GaN на подложке r-Al₂O₃ в направлении оси "а". Это можно объяснить вкладом дополнительных напряжений в полярной структуре из-за различия постоянных решеток при температуре эпитаксии, присущих "квазидвумерному" механизму зарождения слоя. Итак, сравнивая экспериментальные данные ренгеноструктурных измерений и оценки напряжений, видно, что величина напряжений в направлении оси "а" в 1.95 раза меньше, чем в направлении оси "с". Величина же полуширины кривой качания спектров рентгеновской дифракции в направлении оси "а" так же меньше, чем в направлении оси "с" в ∼ 1.95 раза.

Спектры фотолюминесценции (PL) представляют особый интерес из-за их связи с наличием дефектов и напряжений (рис. 3). Спектр полярного GaN состоит из линии излучения с энергией максимума спектра hv = 3.47 эВ и шириной спектра половины ее высоты FWHM = 38 мэB, а в спектре неполярного GaN(1120) линия PL образца имеет энергию максимума спектра $hv = 3.439 \, \text{эB}$ с FWHM = 72 мэВ. В спектрах люминесценции GaNкристаллов обычно наблюдают несколько линий, связанных с дефектами, возникающими при гетероэпитаксии (BSFs I_1 - и BSF I_2 basal-plane stacking faults) [21]. Для гексагональной структуры GaN характерны следующие типы дефектов упаковки в плоскости (0001), характеризующиеся различными векторами смещения: I₁ $(R = 1/3[01\overline{1}0] + 1/2[0001]), I_2 (R = 1/3[01\overline{1}0])$ и Е (R = 1/2 [0001]) [22].

Наиболее распространенный тип дефектов упаковки I₁ наблюдается при формировании трехмерных зародышей по механизму Volmer-Weber [23]. Экспериментально показано, что люминесценция в интервале hv = 3.40 - 3.42 эВ относится к типу дефектов I₁ [24]. Сравнивая наши экспериментальные данные с литературными, можно заключить, что люминесценция GaN(1120) слоя так же обусловлена I₁ дефектами, которые связаны с напряжениями в дефектах упаковки слоя. Пик на 3.47 эВ в полярной структуре обычно связывают с полосой рекомбинации свободных электронов.

4. Заключение

Мы считаем, что выращивание слоев GaN(1120) таким комбинированным методом является перспективным направлением для разработки неполярных подложек. Различие данных полуширин кривой рентгеновской дифракции направлений "a" и "c" находится в определенной связи с изменениями напряжений в этих же направлениях и обусловлено анизотропией коэффициентов термического расширения решеток как подложки r-Al₂O₃, так и неполярного слоя GaN(1120).

Финансирование работы

Исследования частично выполнены при финансовой поддержке Российского фонда фундаментальных исследований в рамках научного проекта № 20-08-00096.

Благодарности

Авторы благодарят С.Н. Родина за нанесение буферного слоя AlN.

Конфликт интересов

Авторы заявляют, что у них нет конфликта интересов.

Список литературы

- M. Khan, J.N. Kuznia, A.R. Bhattarai, D.T. Olson. Appl. Phys. Lett., 62, 1786 (1993).
- [2] M.A. Alim, A.Z. Chowdhury, Sh. Islam, Ch. Gaquiere, G. Crupi. Electronics, 10, 1115 (2021).
- [3] K.J. Singh, Y.-M. Huang, T. Ahmed, A.-Ch. Liu, S.-W. Huang Chen, F.-J. Liou, T. Wu, Ch.-Ch. Lin, Ch.-W. Chow, G.-R. Lin, H.-Ch. Kuo. Appl. Sci., 10, 7384 (2020).
- [4] T. Paskova, R. Kroeger, D. Hommel, P.P. Paskov, B. Monemar, E. Preble, A. Hanser, N.M. Williams, M. Tutor. Phys. Status Solidi C, 4, 25369 (2007).
- [5] X. Ni, Y.Fu, Y.T. Moon, N. Biyikli, H. Morkoc. J. Cryst. Growth, 290, 166 (2006).
- [6] R.K. Pant, D.K. Singh, B. Roul, A.M. Chowdhury, G. Chandan, K.K. Nanda, S.B. Krupanidhi. Phys. Status Solidi A, 216, 1900171 (2019).
- [7] A.A. Donskov, L.I. D'yakonov, A.V. Govorkov, Y.P. Kozlova, S.S. Malakhov, A.V. Markov, M.V. Mezhennyi, V.F. Pavlov, A.Y. Polyakov, N.B. Smirnov, T.G. Yugova, S.J. Pearton. J. Vac. Sci. Technol. B, **26** (6), 1937 (2008).
- [8] M. Lee, M. Yang, S. Park. Cryst. Eng. Commun., 20, 1 (2018).

- [9] J. Yang, T. Wei, Q. Hu, Z. Huo, B. Sun, R. Duan, J. Wang. Mater. Sci. Semicond. Process., 29, 357 (2015).
- [10] V. Bessolov, A. Kalmykov, E. Konenkova, S. Kukushkin, A. Myasoedov, N. Poletaev, S. Rodin. J. Cryst. Growth, 457, 202 (2017).
- [11] С.А. Смирнов, В.Н. Пантелеев, Ю.В. Жиляев, С.Н. Родин, А.С. Сегаль, Ю.Н. Макаров, А.В. Буташин. ЖТФ, 78 (12), 70 (2008).
- [12] V. Aggarwal, C. Ramesh, P. Tyagi, S. Gautam, A. Sharma, S. Husale, M.S. Kumar, S.S. Kushvaha. Mater. Sci. Semicond. Proc., **125**, 105631 (2021).
- [13] T. Paskova, V. Darakchieva, P.P. Paskov, J. Birch, E. Valcheva, P.O.A. Persson, B. Arnaudov, S. Tungasmitt, B. Monemar. J. Cryst. Growth, 281, 55 (2005).
- [14] H. Shin, K. Jeon, Y. Jang, M. Gang, M. Choi, W. Park, K. Park, J. Korean Phys. Soc., 63 (8), 1621 (2013).
- [15] T. Narita, T. Hikosaka, Y. Honda, M. Yamaguchi, N. Sawaki. Phys. Status Solidi C, 0 (7), 2154 (2003).
- [16] В.Н. Бессолов, Е.В. Коненкова, В.Н. Пантелеев. ЖТФ, 90 (12), 123 (2020).
- [17] G. Grabowski, R. Lach, Z. Pedzich, K. Swierczek, A Wojteczko. Arch. Civil Mechan. Engin., 18, 188 (2018).
- [18] W. Qian, M. Skowronski, G.R. Rohrer. Mater. Res. Soc. Symp. Proc., 423, 475 (1996).
- [19] K. Wang, R.R. Reeber. Mater. Res. Soc. Symp. Proc., 482, 863 (1998).
- [20] H.P. Maruska, J.J. Tietjen. Appl. Phys. Lett., 15, 327 (1969).
- [21] J. Lahnemann, U. Jahn, O. Brandt, T. Flissikowski, P. Dogan,
- H.T. Grahn. J. Phys. D: Appl. Phys., **47**, 423001 (2014). [22] C.M. Drum. Phil. Mag., **11** (110), 313 (1965).
- [23] P. Vennégués, J.M. Chauveau, Z. Bougrioua, T. Zhu, D. Martin, N. Grandjean. J. Appl. Phys., **112**, 113518 (2012).
- [24] M. Albrecht, S. Christiansen, G. Salviati, C. Zanotti-Fregonara, Y.T. Rebane, Y.G. Shreter, M. Mayer, A. Pelzmann, M. Kamp, K.J. Ebeling, M.D. Bremser, R.F. Davis, H.P. Strunk. Mater. Res. Soc. Symp. Proc., 468, 293 (1997).

Редактор Г.А. Оганесян

Anisotropic stresses in GaN($11\overline{2}0$) layers on an *r*-Al₂O₃ substrate during hydride vapor phase epitaxy

V.N. Bessolov, E.V. Konenkova, N.V. Seredova, V.N. Panteleev, M.E. Scheglov

loffe Institute, 194021 St. Petersburg, Russia

Abstract It has been reported the growth of nonpolar GaN(11 $\overline{2}0$) structures by hydride vapor phase epitaxy, which used an AlN buffer layer synthesized by epitaxy from organometallic compounds on an *r*-Al₂O₃ substrate. It has been shown that the elastic stresses in the GaN(11 $\overline{2}0$)/*r*-Al₂O₃ structure in the direction of the "*c*"and "*a*"axes of the layer differ, correlate with the values of the full width at half maximum of the *X*-ray diffraction spectra in these directions and are due to the anisotropy of the thermal expansion coefficients of the lattice, both the layer and the substrate.