19,11

Влияние дейтерирования на фазовые переходы в (NH₄)₃VOF₅

© Е.В. Богданов^{1,2}, В.С. Бондарев^{1,3}, М.В. Горев^{1,3}, М.С. Молокеев^{1,3}, И.Н. Флёров^{1,3}

¹ Институт физики им. Л.В. Киренского СО РАН — обособленное подразделение ФИЦ КНЦ СО РАН, Красноярск, Россия

² Институт инженерных систем и энергетики, Красноярский государственный аграрный университет,

Красноярск, Россия

³ Институт инженерной физики и радиоэлектроники, Сибирский федеральный университет,

Красноярск, Россия

E-mail: evbogdanov@iph.krasn.ru

Поступила в Редакцию 11 ноября 2021 г. В окончательной редакции 11 ноября 2021 г. Принята к публикации 13 ноября 2021 г.

Выращен $(ND_4)_3VOF_5$ с высокой степенью дейтерирования $(D \approx 92\%)$. Выполнены структурные и теплофизические исследования, определены параметры фазовых переходов. Установлено, что дейтерирование аммонийного катиона в $(NH_4)_3VOF_5$ привело к изменению химического давления, которое сопровождается увеличением объема элементарной ячейки и ростом температур фазовых переходов. Определены барические коэффициенты dT_i/dp и построена фазовая T-p диаграмма $(ND_4)_3VOF_5$. Обнаружено уменьшение температурной устойчивости исходной кубической фазы $Fm\bar{3}m$ в $(ND_4)_3VOF_5$, а также выклинивание промежуточной моноклинной фазы при более низком давлении по сравнению с $(NH_4)_3VOF_5$ Существенное уменьшение в результате дейтерирования изменения энтропии при фазовых переходах свидетельствует в пользу уменьшения ангармонизма колебаний аммонийных тетраэдров.

Ключевые слова: оксифториды, фазовые переходы, теплоемкость, тепловое расширение, давление.

DOI: 10.21883/FTT.2022.03.52101.237

1. Введение

Кристаллическая структура ряда комплексных оксифторидов состоит из полярных анионов $[MO_xF_{6-x}]$ [1], наличие которых может привести к появлению макроскопического дипольного момента в объемном кристалле и созданию новых полярных материалов. Близость размеров и электроотрицательности кислородных и фторных лигандов приводит к разупорядочению фторкислородных октаэдров и макроскопический дипольный момент в структуре оксифторидов в целом реализуется достаточно редко [2]. Один из путей получения упорядоченных структур фторкислородных материалов заключается в создании окружения шести-координированных полиэдров, приводящего к упорядочению лигандов [3-5]. Методология создания упорядоченных оксифторидов состоит в понимании характера разупорядочения трехмерной кристаллической структуры и прогнозировании возможной ориентации локальных полярных моментов [6].

Кристаллы семейства оксифторида ванадия, достаточно многообразны, благодаря способности ванадия менять валентное состояние и формировать различные полярные/неполярные фторкислородные анионы $[VO_x F_{6-x}]$ [7–11]. Наличие двух типов связи центрального атома в октаэдре (V–O и V–F) могло бы приводить к возможности возникновения дипольного момента. Комплексные исследования показали, что кристаллы (NH₄)₃VOF₅ и (NH₄)₃VO₂F₄ имеют два независимых фторкислородных аниона в структуре и при

комнатной температуре характеризуются ромбической симметрией (пр. гр. Іттт) [12,13]. Выше комнатной температуры кристаллы претерпевают переходы в высокосимметричные динамически разупорядоченные фазы (пр. гр. $Fm\bar{3}m$) с шестью и двенадцатью пространственными ориентациями фторкислородного октаэдра соответственно для (NH₄)₃VOF₅ и (NH₄)₃VO₂F₄. Аммонийные тетраэдры разупорядочены и/или частично упорядочены в исходной кубической и первой искаженной ромбической фазах. При охлаждении кристаллы претерпевают последовательность фазовых превращений, сопровождающихся изменением симметрии: $(NH_4)_3VO_2F_4 - Fm\bar{3}m \leftrightarrow Immm(I222) \leftrightarrow pombuuec \kappa a s \leftrightarrow P 112/m \leftrightarrow P \overline{1}; (NH_4)_3 VOF_5 - Fm \overline{3}m \leftrightarrow Immm \leftrightarrow$ \leftrightarrow ? \leftrightarrow $P\bar{1}$ [14,15]. Данные колебательной спектроскопии подтверждают динамический характер разупорядочения структуры, а полное замораживание ориентационного движения аммонийных групп наблюдается в кристаллах (NH₄)₃VOF₅ и (NH₄)₃VO₂F₄ в районе *T* ~ 35 K [16]. Изменение валентности центрального атома $(V^{4+} \rightarrow V^{5+})$, сопровождающееся ростом его ионного радиуса ($C_N = 6 - R_{V^{4+}} = 0.58 \text{ A}; R_{V^{5+}} = 0.54 \text{ A}$), приводит к уменьшению химического давления в $(NH_4)_3VOF_5$ и увеличению (~ 1.5%) объема элементарной ячейки по сравнению с $(NH_4)_3VO_2F_4$, а также к ряду особенностей в поведении физических свойств. В частности происходит значительное изменение, во-первых, температур фазовых переходов, во-вторых, чувствительности исходной и искаженных фаз к гидростатическому давлению, в-третьих, суммарной энтропии фазовых превращений [14,15]. Последнее обстоятельство согласуется с моделью разупорядочения структурных элементов в исходной кубической фазе $Fm\overline{3}m$ [13]. При этом природа структурных искажений остается сегнетоэластической (несегнетоэлектрической).

Возможность изменения степени разупорядочения фторкислородных анионов показана на примере замещения катиона $A, A' = NH_4$, ND_4 , K, Cs, Rb в межоктаэдрической полости соединений АА'МО₂F₄ [17,18]. Дейтерирование аммонийной группы в (NH₄)₃VO₂F₄ привело к уменьшению химического давления, при этом объем элементарной ячейки увеличился (~ 1.5%) в $(ND_4)_3VO_2F_4$ по сравнению с $(NH_4)_3VO_2F_4$ [19]. В результате дейтерирования вторая ромбическая фаза в (ND₄)₃VO₂F₄ выклинивается и вместо последовательности фазовых переходов *Immm +> ромбическая фаза* ↔ *P*112/*m* имеет место прямой переход *Іттт* ↔ *P*112/*m*. [14]. Дейтерирование также привело к уменьшению индивидуальных энтропий фазовых переходов $Fm\bar{3}m \leftrightarrow Immm$ и $Immm \leftrightarrow P112/m$. Величина полного изменения энтропии $\Sigma \Delta S_i \approx R \cdot \ln 6$ в (ND₄)₃VO₂F₄, связанная с искажением структуры при понижении симметрии кристаллической решетки от кубической до триклинной, оказалась значительно меньше, чем в протонированном соединении. Уменьшение полной энтропии $\Sigma \Delta S_i$ в результате дейтерирования свидетельствует о значительной роли степени ангармонизма колебаний аммонийных тетраэдров.

В настоящей работе выполнены исследования влияния дейтерирования на термодинамические свойства оксопентафторида ванадия (NH₄)₃VOF₅ в области фазовых переходов, происходящих в результате разупорядочения/упорядочения элементов структуры.

2. Экспериментальные методы и результаты исследований

Для получения дейтерированного соединения исходный кристалл $(NH_4)_3VOF_5$ растворялся в тяжелой воде (~ 99.9% D). Далее раствор помещался в эксикатор с P_2O_5 и выдерживался там до полного поглощения воды. Процесс перекристаллизации в тяжелой воде повторялся несколько раз для достижения максимальной степени дейтерирования. Процентное содержание дейтерия D \approx 92% было определено путем сравнения интенсивностей линий поглощения ЯМР ¹Н протонного и дейтерированного соединений [20].

Порошковая рентгенограмма $(ND_4)_3VOF_5$ получена при комнатной температуре на дифрактометре D8 ADVANCE фирмы Bruker, с использованием линейного детектора VANTEC и Cu-К α излучение (рис. 1, *a*). Шаг детектора был равен 0.016°, экспозиция в каждой точке 0.6 s. Основные рефлексы на рентгенограмме были проиндицированы в ромбической структуре (пр. гр. *Immm*), с параметрами близкими для (NH₄)₃VO₂F₄ [12]. Поэтому структура этого оксифторида была использована в качестве исходной модели

Рис. 1. Результаты уточнения структуры $(ND_4)_3OF_5$ методом Ритвельда (*a*). Кристаллическая структура (*b*) (*1* — VOF₅ разупорядочен по многим позициям, *2* — VOF₅ разупорядочен по двум позициям).

для уточнения. Единственное изменение было связано с коррекцией заселенностей позиций атомов фтора и кислорода для того чтобы конечная формула соответствовала $(ND_4)_3VOF_5$. В итоге, изначально полностью упорядоченный полиэдр VO₂F₄ пришлось разупорядочить по 2 позициям, чтобы получить полиэдр VOF₅, так как через VO₂F₄ проходила плоскость симметрии m, не позволявшая упорядочить группу VOF₅ (рис. 1, *b*). На рентгенограмме также обнаружено несколько слабых пиков, не принадлежащих фазе $(ND_4)_3VOF_5$. Часть из них были ассоциированы с фазой $(NH_4)_2VOF_4$, которой оказалось ~ 13% по весу. Уточнение методом Ритвельда выполнено в программе TOPAS 4.2 [21] и дало низкие значения *R* факторов (табл. 1, рис. 1, *a*).

В результате исследования температурной зависимости теплового расширения получена информация о наличии и температурах фазовых превращений в $(ND_4)_3VOF_5$. Измерения проводились на индукционном дилатометре NETZSCH DIL-402C в температурном диапазоне 120–420 К в динамическом режиме со скоростью нагрева ~ 3 K/min, в потоке газообразного гелия

Таблица 1. Основные параметры уточнения структуры кристалла $(ND_4)_3 VOF_5$

Пр. гр.	Immm
a, Å	9.1553 (10)
b, A	18.929 (4)
<i>c</i> , Å	6.3072 (13)
V, Å ³	1093.1 (3)
$2 heta$ интервал, $^{\circ}$	5-90
$R_{\rm wp}$, %	10.17
<i>R</i> _p , %	7.83
$R_{\rm B}, \%$	4.85
χ^2	2.09

при расходе ~ 50 ml/min. Для калибровки прибора и учета теплового расширения измерительной системы использовались эталоны из плавленого кварца [22]. Исследуемые образцы были приготовлены из поликристаллического $(ND_4)_3 VOF_5$ в виде таблеток диаметром ~ 4 mm и высотой ~ 4–6 mm путем прессования при давлении ~ 2 GPa.

Температурное поведение деформации и коэффициента объемного расширения $(ND_4)_3VOF_5$ (рис. 2) качественно согласуются с зависимостями $\Delta V/V_0(T)$ и $\beta(T)$, полученными ранее для $(NH_4)_3VOF_5$ [15]. Дополнительных аномалий, вызванных наличием небольшого количества примеси, обнаружено не было. Ряд отличий связан с величинами изменения деформации и температурами фазовых переходов. Аномальное поведение деформации в $(ND_4)_3VOF_5$ при $T_1 = 355 \pm 1$ K, связанное с переходом первого рода, сопровождается

Рис. 2. Температурные зависимости коэффициента объемного расширения (a) и деформации (b) (ND₄)₃VOF₅.

Рис. 3. Температурные зависимости теплоемкости (a) и энтропии фазовых переходов (b) в $(ND_4)_3VOF_5$ в широком интервале температур. Штриховая линия — решеточная теплоемкость.

Таблица 2.	Термодинамические	параметры	фазовых	перехо-
дов в оксифт	оридах (NH ₄) ₃ VOF ₅	и (ND ₄) ₃ VO	F_5	

Параметр	$(NH_4)_3VOF_5$ [15]	$(ND_4)_3VOF_5$
<i>T</i> ₁ , K	348.1 ± 0.5	353.2 ± 0.5
ΔS_1 , J/mol · K	5.4 ± 0.5	3.0 ± 0.3
$(dT_1/dp)_{\text{calc}}, \text{K/GPa}$	115	93
T_2, \mathbf{K}	229.1 ± 0.2	230.2 ± 0.2
$(A_T^2/B)_{T2}$, J/mol · K ²	-0.6	-0.5
$(A_T^3/C)_{T2}, J^2/mol^2 \cdot K^3$	4.6	6.3
$T_2 - T_{C2}$, K	3.2	6.3
N_2	-0.13	-0.19
ΔS_2 , J/mol · K	7.6 ± 0.7	7.9 ± 0.7
$(dT_2/dp)_{\rm exp}$, K/GPa	23 ± 2	—
$(dT_2/dp)_{\text{calc}}, \text{K/GPa}$	26	13
T_3, \mathbf{K}	218 ± 1	224 ± 1
$(A_T^2/B)_{T3}$, J/mol · K ²	—	-0.29
$(A_T^3/C)_{T3}, J^2/mol^2 \cdot K^3$	—	2.1
$T_3 - T_{C3}$, K	—	6.1
N_3	—	-0.19
ΔS_3 , J/mol · K	0.4 ± 0.06	0.2 ± 0.05
$(dT_3/dp)_{\rm exp},{\rm K/GPa}$	92 ± 4	—
$(dT_3/dp)_{\text{calc}}, \text{K/GPa}$	120	88

значительным скачком $\delta(V/V_0)(T_1) = 2 \cdot 10^{-2}$ (рис. 2, *b*). В низкотемпературной области наблюдается последовательность из двух слабовыраженных аномалий, которые более наглядно проявляются на температурной зависимости коэффициента объемного теплового расширения: $\Delta\beta(T_2) = 0.25 \cdot 10^{-4} \, 1/\text{K}$ и $\Delta\beta(T_3) = 0.65 \cdot 10^{-4} \, 1/\text{K}$ (рис. 2, *a*).

Исследования температурной зависимости теплоемкости $C_p(T)$ (ND₄)₃VOF₅ методом адиабатической калориметрии позволили уточнить температуры фазовых переходов и определить их энергетические и энтропийные характеристики. Поликристаллический образец с общей массой ~ 0.3 g герметично упаковывался в инертной атмосфере гелия в фурнитуру с нагревателем. Измерения теплоемкости системы проводились в режимах непрерывных (dT/dt = 0.15 K/min) и дискретных ($\Delta T = 2.5 - 3.0$ K) нагревов. Теплоемкость фурнитуры измерялась в отдельном эксперименте.

Температурное поведение молярной изобарной теплоемкости $(NH_4)_3VOF_5$ (рис. 3, *a*) качественно согласуется с $C_p(T)$ зависимостью, полученной для протонированного соединения [15]. Сравнение уточненных температур фазовых переходов, реализующихся в $(NH_4)_3VOF_5$ и $(ND_4)_3VOF_5$, показывает, что дейтерирование привело к их росту (табл. 2).

3. Обсуждение результатов

Высокая степень дейтерирования оксопентафторида ванадия $(NH_4)_3VOF_5$ (~ 92% D) не привела к изменению симметрии реализующейся при комнатной температуре ромбической фазы (пр. гр. *Immm*). При этом

объем элементарной ячейки (ND₄)₃VOF₅ по сравнению с протонированным ванадатом (NH₄)₃VOF₅ увеличился всего на ~ 0.2%. Полученное значение существенно отличается от величины изменения объема элементарной ячейки, которым сопровождалось дейтерирование диоксотетрафторида ванадия $(NH_4)_3VO_2F_4$ (~ 1.5%) [19]. Небольшая величина изменения объема при дейтерировании аммонийного катиона наблюдалась в системе оксифторидов $(NH_4)_2 MO_2 F_4$ (M = Mo, W) с изолированными октаэдрами [20,23]. Оценка изменения химического давления $\Delta p \approx \Delta T / (dT/dp)$ в (ND₄)₃VOF₅, выполнена с использованием фазовой Т-р диаграммы исходного кристалла (NH₄)₃VOF₅ и изменений температур фазовых превращений в результате замещения D — H. Полученная величина $\Delta p \approx 0.1 \, \mathrm{GPa}$ оказалась достаточно близка к значению ($\Delta p \approx -0.08 \, \mathrm{GPa}$), полученному ранее при исследовании влияния дейтерирования (NH₄)₃VO₂F₄. Таким образом, аммонийные оксифториды ванадия, структура которых состоит из связанных октаэдров [VO_xF_{6-x}], характеризуются значительно большей чувствительностью к изменению химического давления, возникающему в результате замещения D — H, чем аммонийные оксифториды $(NH_4)_2WO_2F_4$ и $(NH_4)_2MoO_2F_4$ с изолированными октаэдрами ($\Delta p \approx 0.02 \,\text{GPa}$) [20,23].

Для определения энергетических и энтропийных характеристик фазовых переходов в $(ND_4)_3VOF_5$ выполнено разделение теплоемкости на регулярный C_{reg} и аномальный $\Delta C_p(T)$, связанный с последовательностью переходов, вклады. Для этого участки температурной зависимости теплоемкости вне области существования аномалий рассматривались как соответствующие C_{reg} и аппроксимировались комбинацией функций Дебая и Эйнштейна. Интерполяция функции $C_{reg}(T)$ на области аномального поведения $C_p(T)$ позволила определить избыточную теплоемкость (рис. 3, *a* и 4, *a*). Величины изменения энтропии $\Delta S_i = \int (\Delta C_p/T) dT$, полученные в результате интегрирования температурной зависимости $\Delta C_p(T)$, представлены в табл. 2.

Дейтерирование (NH₄)₃VOF₅ привело к существенному уменьшению энтропии высокотемпературного фазового превращения ΔS_1 (табл. 2), что косвенно подтверждает его связь с процессами упорядочения как фтор-кислородных октаэдров, так и аммонийных тетраэдров [15]. Аномальное поведение теплофизических свойств в низкотемпературной области, характерное для фазовых переходов второго рода, не изменилось. Это обстоятельство позволило выполнить анализ температурной зависимости избыточной теплоемкости $\Delta C_p(T)$ в рамках термодинамической теории Ландау [24] (рис. 4, а) и определить величины изменения энтропии ΔS_2 и ΔS_3 , а также ряд других параметров фазовых переходов при T₂ и T₃. Квадрат обратной избыточной теплоемкости вблизи низкотемпературных фазовых переходов в (ND₄)₃VOF₅ достаточно хорошо описывается линейной функцией температуры (рис. 4, b): $(\Delta C_p/T)^{-2} = [2 \cdot (B^2)]^{-2}$ $(-3 \cdot A^{2}C)^{0.5}/A_{T}^{2}^{2}^{2}^{2} + 12 \cdot C(T_{0} - T)/A_{T}^{3}^{3}$, где величины $A = A_{T} \cdot (T_{0} - T_{C}) + A_{T} \cdot (T - T_{0}) = A^{2} + A_{T} \cdot (T - T_{0}), B$

Рис. 4. Температурные зависимости избыточной теплоемкости (a) и квадрата обратной ее величины (b) в окрестности T_2 и T_3 .

и *С* являются коэффициентами термодинамического потенциала: $\Delta \Phi(p, T, \eta) = A \cdot \eta^2 + B \cdot \eta^4 + C \cdot {}^6 (\eta$ — параметр перехода, T_C — температура Кюри, T_0 — температура фазового перехода).

Оказалось, что энтропии низкотемпературных фазовых превращений в результате замещения $D \rightarrow H$ практически не изменились (табл. 2), что, в свою очередь, подтверждает преимущественный вклад фтор-кислородных октаэдров в механизм фазовых переходов типа упорядочения и смещения соответственно при T_2 и T_3 .

Сравнение феноменологических параметров ванадиевых оксифторидов показало (табл. 2), что в результате дейтерирования низкотемпературные превращения в (ND₄)₃VOF₅ оказались значительно дальше от трикритической точки ($T_i - T_{Ci} = 0$ и N = 0, где $N = \pm [B^2/(3 \cdot A_T C T_0)]^{-0.5}$ — степень близости перехода к трикритической точке), чем соответствующие фазовые переходы в (NH₄)₃VOF₅ [15].

Совместный анализ экспериментальных калориметрических и дилатометрических данных позволил оценить величины барических коэффициентов dT_i/dp в (ND₄)₃VOF₅ (табл. 2). Величина dT_1/dp для высокотемпературного превращения рассчитана из уравнения Клапейрона–Клаузиуса для переходов первого рода, а коэффициенты dT_2/dp и dT_3/dp для фазовых переходов второго рода определены в рамках соотношения Эренфеста ($\Delta C_p = \Delta \beta \cdot T_i/(dT_i/dp)_p = 0$) [25].

Аналогичные оценки барических коэффициентов, выполненные ранее для $(NH_4)_3VOF_5$ [15], показали хорошее согласие между рассчитанными величинами dT_i/dp и полученными путем прямых измерений.

На основе данных о температурах фазовых переходов и вычисленных барических коэффициентах построена фазовая T-p диаграмма (ND₄)₃VOF₅ (рис. 5), которая качественно соответствует диаграмме протонированного кристалла (NH₄)₃VOF₅. Таким образом, можно сделать

Рис. 5. Фазовая диаграмма температура–давление кристалла $(ND_4)_3VOF_5$, построенная на основе расчета барических коэффициентов $(dT_i/dp)_{calc}$.

вывод, о том, что дейтерирование аммонийного катиона не привело к изменению симметрии фаз и последовательности сегнетоэластических фазовых переходов $Fm\bar{3}m \leftrightarrow Immm \leftrightarrow моноклинная \leftrightarrow P\bar{1}(P1).$

Дейтерирование (NH₄)₃VOF₅ приводит к увеличению температуры T₁ высокотемпературного фазового перехода в $(ND_4)_3VOF_5$, которое сопровождается уменьшением барического коэффициента dT_1/dp . В результате на фазовой T-p диаграмме (ND₄)₃VOF₅ область существования исходной кубической фазы (пр. гр. $Fm\bar{3}m$) сужается, а ромбическая фаза (пр. гр. Іттт) становится энергетически выгодной в более широком интервале температур. Замещении D — H оказывает влияние как на температуры Т₂ и Т₃, так и на величины барических коэффициентов dT_2/dp и dT_3/dp . В результате, на фазовой T-p диаграмме (ND₄)₃VOF₅ происходит сужение области стабильности промежуточной моноклинной фазы и последующее выклинивание при увеличении внешнего давления. Тройная точка в (ND₄)₃VOF₅ реализуется при меньшем значении избыточного давления $p_{tr} \approx 0.08 \, \mathrm{GPa}$ $(p_{tr} \approx 0.1 \text{ GPa в случае (NH₄)}_3 \text{VOF}_5 [15])$. Изменение области стабильности высокотемпературной кубической фазы и смещение тройной точки в (ND₄)₃VOF₅ в области низких давлений согласуется с поведением фазовых переходов в (NH₄)₃VOF₅ при увеличении внешнего гидростатического давления.

Комплексные исследования дейтерированых кристаллов $(ND_4)_3VOF_5$ и $(ND_4)_3VO_2F_4$ [15] показали, что замещение $D \rightarrow H$ приводит не только к изменению температур фазовых переходов, но и к существенному изменению структурных, энергетических и барических характеристик фазовых переходов, происходящих в результате изменения химического давления. С другой стороны, химическое давление, связанное с дейтерированием аммонийного катиона, не приводит к изменению природы и механизмов фазовых превращений.

Сегнетоэластические фазовые переходы, реализующиеся в оксифторидах ванадия, сопровождаются значительными величинами изменения энтропии $\Sigma\Delta S_i$ и барических коэффициентов dT_i/dp . Поэтому соединения (NH₄)₃VOF₅ и (NH₄)₃VO₂F₄ могут представлять интерес с точки зрения исследования их барокалорической эффективности.

4. Заключение

Выращены кристаллы дейтерированного оксопентафторида ванадия (IV), $(ND_4)_3VOF_5$, и выполнены исследования теплофизических свойств в широком интервале температур.

1. Установлено, что замещения $D \to H$ не повлияло на последовательность сегнетоэластических фазовых переходов в $(ND_4)_3VOF_5$.

2. Дейтерирование привело к изменению химического давления, которое сопровождается увеличением объема элементарной ячейки и ростом температур фазовых переходов в (ND₄)₃VOF₅.

3. Выполнена оценка барических коэффициентов dT_i/dp и построена предполагаемая фазовая T-p диаграмма.

4. Величина избыточного химического давления в $(ND_4)_3VOF_5$ определена на основе анализа фазовой T-p диаграммы $(NH_4)_3VOF_5$ и оказалась близка к величине изменения давления, возникающего при дейтерировании $(NH_4)_3VOF_5$.

5. Установлено уменьшение температурной устойчивости исходной кубической фазы в $(ND_4)_3VOF_5$, а также выклинивание промежуточной *моноклинной* фазы при более низком давлении по сравнению с $(NH_4)_3VOF_5$.

6. Дейтерирование $(NH_4)_3VOF_5$ приводит к уменьшению величины ΔS_1 , что косвенно подтверждает связь фазового перехода при T_1 с процессами упорядочения фтор-кислородного октаэдра и аммонийных тетраэдров.

7. Показано, что низкотемпературные превращения в $(ND_4)_3VOF_5$ в результате дейтерирования характеризуются меньшей степенью близости к трикритической точки, чем соответствующие переходы в $(NH_4)_3VOF_5$.

8. Уменьшение величины полного изменения энтропии $\Sigma \Delta S_i \approx R \cdot \ln 4$ в $(ND_4)_3 \text{VOF}_5$ в сравнении $\Sigma \Delta S_i \approx R \cdot \ln 6$ в $(NH_4)_3 \text{VOF}_5$ свидетельствует об участии аммонийного катиона в процессах упорядочения структуры, а также о возможности уменьшения степени ангармонизма колебаний аммонийных тетраэдров в результате дейтерирования.

Благодарности

Рентгенографические и дилатометрические данные получены с использованием оборудования Красноярского регионального центра коллективного пользования ФИЦ КНЦ СО РАН.

Конфликт интересов

Авторы заявляют, что у них нет конфликта интересов.

Список литературы

- [1] G. Pausewang, K. Dehnicke. Z. Anorg. Allg. Chem. **369**, 265 (1969).
- [2] N.F. Stephens, M. Buck, P. Lightfoot. J. Mater. Chem. 15, 4298 (2005).
- [3] F.H. Aidoudi, C. Black, K.S. Athukorala Arachchige, A.M.Z. Slawin, R.E. Morris, P. Lightfoot. Dalton Trans. 43, 568 (2014).
- [4] R. Gautier, M.D. Donakowski, K.R. Poeppelmeier. J. Solid State Chem. 195, 132 (2012).
- [5] G.A. Senchyk, V.O. Bukhan'ko, A.B. Lysenko, H. Krautscheid, B. Rusanov, A.N. Chernega, M. Karbowiak, K.V. Domasevitch. Inorg. Chem. **51**, 8025 (2012).
- [6] R.A.F. Pinlac, M.R. Marvel, J.J.-M. Lesage, K.R. Poeppelmeier. Mater. Res. Soc. Symp. Proc. 1148, PP01-04 (2009).
- [7] Р.Л. Давидович, Л.Г. Харламова, Л.В. Самарец. Координационная химия 3, 850 (1977).
- [8] B.R. Wani, U.R.K. Rao, K.S. Venkateswarlu, A.S. Gokhale. Thermochim. Acta 58, 87 (1982).
- [9] K. Kobayashi, T. Matsuo, H. Suga, S. Khairoun, A. Tressaud. Solid State Commun. 53, 719 (1985).
- [10] P. Bukovec, N. Bukovec, A. Demšar. J. Therm. Anal. 36, 1751 (1990).
- [11] B. Dojer, M. Kristl, Z. Jagličić, M. Drofenik, A. Meden. Acta Chim. Slov. 55, 834 (2008).
- [11] S.J. Patwe, S.N. Achary, K.G. Girija, C.G.S. Pillai, A.K. Tyagi. J. Mater. Res. 25, 1251 (2010).
- [12] M. Leimkühler, R.J. Mattes. Solid State Chem. 65, 260 (1986).
- [13] A.A. Udovenko, E.I. Pogoreltsev, Y.V. Marchenko, N.M. Laptash Acta Cryst. B 73, 1 (2017).
- [14] V.D. Fokina, M.V. Gorev, A.G. Kocharova, E.I. Pogoreltsev, I.N. Flerov. Solid State Sci. 11, 836 (2009).
- [15] Е.В. Богданов, Е.И. Погорельцев, А.В. Карташев, М.В. Горев, М.С. Молокеев, С.В. Мельникова, И.Н. Флеров, Н.М. Лапташ. ФТТ В 62, 7, 1123 (2020).
- [16] Yu.V. Gerasimova, A.S. Oreshonkov, N.M. Laptash, A.N. Vtyurin, A.S. Krylov, N.P. Shestakov, A.A. Ershov, A.G. Kocharova. Spectrochim. Acta A 176, 106 (2017).
- [17] Е.В. Богданов, А.Д. Васильев, И.Н. Флёров, Н.М. Лапташ. ФТТ 53, 2, 284 (2011).
- [18] E.V. Bogdanov, E.I. Pogoreltsev, M.V. Gorev, I.N. Flerov. Inorg. Chem. 56, 11, 6706 (2017).
- [19] Е.В. Богданов, Е.И. Погорельцев, М.В. Горев, М.С. Молокеев, И.Н. Флеров. ФТТ 61, 2, 330 (2019).
- [20] E.V. Bogdanov, S.V. Mel'nikova, E.I. Pogoreltsev, M.S. Molokeev, I.N. Flerov. Solid State Sci. 61, 155 (2016).
- [21] Bruker AXS TOPAS V4: General profile and structure analysis software for powder diffraction data. User's Manual. Bruker AXS, Karlsruhe, Germany. (2008).
- [22] М.В. Горев, Е.В. Богданов, И.Н. Флёров, А.Г. Кочарова, Н.М. Лапташ. ФТТ 52, 1, 156 (2010)
- [23] И.Н. Флёров, В.Д. Фокина, М.В. Горев, Е.В. Богданов, М.С. Молокеев, А.Ф. Бовина, А.Г. Кочарова. ФТТ 49, 6, 1093 (2007).
- [24] К.С. Александров, И.Н. Флёров. ФТТ 21, 327 (1979)
- [25] Н. Парсонидж, Л. Стейвли. Беспорядок в кристаллах. Мир, М. (1982) 436 с.

Редактор Ю.Э. Китаев