МДП транзистор на основе пленки PbSnTe: In с подзатворным диэлектриком Al₂O₃*

© А.Э. Климов^{1,2}, В.А. Голяшов^{1,3}, Д.В. Горшков¹, Е.В. Матюшенко¹, И.Г. Неизвестный^{1,2}, Г.Ю. Сидоров¹, Н.С. Пащин¹, С.П. Супрун¹, О.Е. Терещенко^{1,3}

¹ Институт физики полупроводников им. А.В. Ржанова Сибирского отделения Российской академии наук, 630090 Новосибирск, Россия

² Новосибирский государственный технический университет,

630073 Новосибирск, Россия

³ Новосибирский государственный университет,

630090 Новосибирск, Россия

E-mail: klimov@isp.nsc.ru

Поступила в Редакцию 12 апреля 2021 г. В окончательной редакции 19 апреля 2021 г. Принята к публикации 19 апреля 2021 г.

Приведены результаты работы по созданию и исследованию свойств структур транзисторного типа металл–диэлектрик–полупроводник на основе пленок PbSnTe: In, полученных методом молекулярно-лучевой эпитаксии, с тонкопленочным подзатворным диэлектриком Al₂O₃. Исследованы исток–стоковые вольт-амперные характеристики и затворные характеристики структур при температуре T = 4.2 K. Показано, что в структурах металл–диэлектрик–полупроводник на основе пленок PbSnTe: In с концентрацией $n \sim 10^{17}$ см⁻³ при T = 4.2 K модуляция тока канала достигает 7–8% в области затворных напряжений $-10 < U_{gate} < +10$ В. Рассмотрены особенности вольт-амперных характеристик исток–сток и затворных характеристик при импульсном и пилообразном изменении напряжения на затворе U_{gate} .

Ключевые слова: твердый раствор PbSnTe: In, эффект поля, МДП структура, Al₂O₃.

DOI: 10.21883/FTP.2022.02.51969.30

1. Введение

Бинарные полупроводники РbTe и SnTe образуют непрерывный ряд твердых растворов Pb_{1-x}Sn_xTe (PbSnTe) в интервале 0 < x < 1. Ряд интересных свойств PbSnTe, зависящих от состава x, определяется сочетанием свойств каждого из этих бинарных соединений. Так, известно, что PbTe имеет нормальный, а SnTe инвертированный энергетический спектр, при котором дно зоны проводимости и потолок валентной зоны меняются местами. В точке инверсии ($x_{inv} \approx 0.35$ при $T = 4.2 \,\text{K}$) ширина запрещенной зоны E_g обращается в нуль (бесщелевое состояние), линейно увеличиваясь как с ростом, так и с уменьшением x по отношению к x_{inv} . Управляемая составом малая ширина запрещенной зоны Е_g явилась основой для разработки в 80-х годах прошлого века инфракрасных (ИК) фотодиодов (ФД) на основе PbSnTe. Сильное влияние на параметры ИК ФД токов поверхностных утечек, отмеченное, например, в [1-3], стимулировало исследование свойств поверхности и методов ее пассивации.

Известно, что SnTe является сегнетоэлектриком, а PbTe — виртуальным сегнетоэлектриком. Соответственно температура Кюри для разных x разная. Помимо этого, зависящая от температуры статическая диэлектрическая проницаемость ε также сильно меняется с изменением состава. Для PbTe при T = 80 K она со-

ставляет $\varepsilon \approx 400$ и сильно увеличивается с ростом *x*, достигая $\varepsilon \approx 2000-4000$ и даже > 10000 при большом содержании SnTe и гелиевых температурах. Повидимому, из-за большой величины статической диэлектрической проницаемости известно ограниченное число работ по исследованию свойств поверхности PbSnTe с использованием структур металл-диэлектрик-полупроводник (МДП) и вольт-фарадных (*C*-*V*) измерений. Так, в [4] наблюдалась модуляция емкости МДП структур в пределах до нескольких процентов и отмечался вклад поверхностных ловушек в наблюдаемые особенности *C*-*V*-характеристик. После 80-х годов основным материалом ИК техники стал CdHgTe, и интерес к изучению свойств поверхности PbSnTe состава с $x < x_{inv}$, на базе которого разрабатывались ИК ФД, практически угас.

Другим фактором, существенно затрудняющим использование МДП структур для исследований поверхности, является высокая концентрация свободных носителей заряда $n_0(p_0)$ в нелегированном PbSnTe. Она обусловлена большой концентрацией собственных электрически активных дефектов, создающих в PbSnTe "мелкие" уровни. Как следствие, в литературе отсутствуют данные о достижении в нелегированном PbSnTe даже при гелиевых температурах концентрации свободных носителей заряда $n_0(p_0)$ менее $\sim 10^{15}$ см⁻³ (в *n*-PbTe). Вблизи составов с $x \approx x_{inv}$ или $x > x_{inv}$ величина $n_0(p_0)$, как правило, выше на 2–3 порядка. Соответствующая высокая "объемная" проводимость даже тонких пленок PbSnTe, в частности, существенно осложняет исследования транс-

^{*} Доклад на XXV Международном симпозиуме "Нанофизика и наноэлектроника", Нижний Новгород, 9–12 марта 2021 г.

портных свойств поверхности. Однако известно [5,6], что добавлением индия в PbSnTe определенного состава в концентрациях до нескольких ат% можно снизить $n_0(p_0)$ на несколько порядков, а в узком диапазоне составов — практически до собственной концентрации n_i даже при гелиевых температурах ("изолирующее" состояние). Это в принципе открывает возможности для исследования транспортных свойств поверхности как непосредственно в пленках PbSnTe: In, так и в гетероструктурах на основе "изолирующего" PbSnTe: In с верхним тонким слоем с составом топологического кристаллического изолятора (ТКИ), который реализуется при $x > x_{inv}$ или вблизи $x \approx x_{inv}$.

Еще в 80-х годах прошлого века в работе [7] были рассмотрены свойства гетероперехода между PbSnTe с "нормальным" и "инвертированным" спектром. Было показано, что в этом случае на гетерогранице должны присутствовать состояния с линейным законом дисперсии. Значительно позже в ряде теоретических и экспериментальных работ (например, [8-11]) было показано, что в области $x > x_{inv}$ PbSnTe относится к ТКИ, в которых дираковские состояния формируются на поверхности и без гетероперехода. Особый интерес к ТКИ в целом и к PbSnTe в частности связан со спиновыми свойствами таких поверхностных состояний. Это открывает потенциальные возможности создания на основе PbSnTe устройств спинтроники, в которой управление потоками зарядов (электроника) заменяется на управление потоками спинов. В связи со сказанным ясно, что исследование и управление свойствами поверхности PbSnTe, включая ее стабилизацию, вновь приобретает особый интерес.

Данные по исследованию эффекта поля в МДП структурах транзисторного типа на основе PbSnTe с тонкопленочным подзатворным диэлектриком в литературе отсутствуют. Это также может быть обусловлено большими значениями ε и большой объемной проводимостью нелегированного PbSnTe. Результаты исследования эффекта поля в структурах на основе легированных индием "изолирующих" пленок PbSnTe: In с использованием в качестве подзатворного диэлектрика майларовой пленки толщиной 8 мкм изложены в [12]. Показано, что на качественном уровне ряд наблюдаемых особенностей связан со свойствами поверхности.

Цель настоящей работы — создание на основе пленок PbSnTe: In МДП структур транзисторного типа с тонкопленочным подзатворным диэлектриком, исследование и анализ их свойств при T = 4.2 K.

2. Образцы и методика эксперимента

Технология получения исходных пленок PbSnTe: In методом молекулярно-лучевой эпитаксии описана, например, в [13]. Пленки толщиной 1–2 мкм выращивались на подложках (111) BaF₂. Состав пленок после

роста определялся методом рентгеновского микроанализа, концентрация и подвижность свободных носителей заряда оценивалась из измерений эффекта Холла в магнитном поле B = 0.2 Тл. В работе описаны свойства транзисторных МДП структур, изготовленных на основе пленки с PbSnTe: In электронного типа проводимости толщиной *d* = 1.3 мкм. Содержание SnTe было относительно невелико и соответствовало x = 0.163 при концентрации In ~ 0.63 ат%. Для таких составов обычно реализуется электронный тип проводимости с довольно большой концентрацией n₀. Оценка концентрации электронов и их подвижности делалась из выражений $n_0(T) = -1/qR_{\rm H}(T)$ и $\mu(T) = -R_{\rm H}(T)\sigma(T)$. Коэффициент Холла $R_{\rm H}(T)$ и проводимость $\sigma(T)$ измерялись на стандартном холловском мостике, изготовленном методом фотолитографии. Рассчитанная таким образом концентрация n_0 слабо, не более чем в 2 раза, изменялась в интервале T = 4.2 - 100 К. При $T = 4.2 \,\mathrm{K}$ $n_0 = 1.7 \cdot 10^{17} \,\mathrm{cm}^{-3}$, а подвижность $\mu = 3.8 \cdot 10^4 \,\mathrm{cm}^2 \cdot \mathrm{B}^{-1} \cdot \mathrm{c}^{-1}$. Такие значения подвижности подтверждают довольно высокое кристаллическое качество пленки, контролируемое во время ее роста по дифракции быстрых электронов на отражение (ДБЭО).

На рис. 1 приведено схематическое изображение и фотография экспериментальной транзисторной МДП структуры вблизи канала. На рисунке n_{ch}-PbSnTe:In область канала со свойствами, определяемыми свойствами исходной пленки PbSnTe: In. Области истока и стока (ОИС) *n*⁺-PbSnTe: In были созданы диффузионным отжигом слоя индия толщиной ~ 0.15 мкм, что составляет ~ 0.1 от толщины пленки PbSnTe: In. Усредненная по толщине концентрация дополнительно введенного в ОИС индия составляла ~ 10 ат%. Слой индия напыляли в вакууме при температуре $\sim 120^{\circ}$ С на поверхность, закрытую фоторезистом со вскрытыми в нем окнами для ОИС. После удаления фоторезиста и диффузионного отжига индия в течение ~ 40 мин при $T \approx 180^{\circ}$ C с использованием фотолитографии проводилось травление пленки PbSnTe: In до подложки BaF2 вне областей канала и ОИС. После этого для удаления оксидов поверхность PbSnTe обрабатывали в растворе HCl в изопропиловом спирте [14] и после минимальной экспозиции на воздухе (5-10 мин) образец вакуумировали в камере установки атомно-слоевого осаждения Al₂O₃. Слой Al₂O₃ толщиной 72 нм осаждался на всю поверхность структуры. После этого, аналогично процедуре получения слоя In в ОИС, с использованием вакуумного осаждения и "взрывной" фотолитографии над областью канала формировали металлический затвор из титана толщиной ~ 50 нм. Окна в Al₂O₃ под контакты к ОИС не вскрывались. Такие контакты создавались пайкой индием микропаяльником тонких серебряных проволок в областях размером ~ (0.1-0.2) мм². Эти области выбирали вдали от расположения канала, а тонкий слой Al₂O₃ в этих областях специально разрушали механически микропаяльником. Качество полученных таким образом контактов к ОИС контролировалось измерением сопро-

Channel, n_{ch} -PbSnTe : In

Рис. 1. Схематичное изображение МДП структуры транзисторного типа в разрезе (a) и фотография готовой экспериментальной структуры в окрестностях канала (b).

тивления между истоком и стоком. Кроме этого, специально выбранный большой размер ОИС ($\sim 1 \times 1 \text{ мм}^2$) на МДП структурах позволял использовать метод Ван-дер-Пау для контроля параметров ОИС. В этом случае по краям ОИС в соответствующих местах создавали четыре контакта.

При использованной процедуре создания МДП структур в области канала возникает "ступенька" высотой, близкой к толщине исходной пленки PbSnTe:In, т. е. ~ 1.3 мкм. На этой ступеньке в принципе возможен разрыв слоя Ti и, соответственно, затворной цепи. Для контроля отсутствия разрыва было создано две контактных площадки к Ti-затвору (справа и слева от канала на рис. 1). Это позволило нам контролировать отсутствие разрывов по сопротивлению между двумя Ti-площадками. Тестирование при комнатной температуре показало, что цепь затвора не имела разрывов ни на одной из 6 проверенных МДП структур. При этом ток утечки через подзатворный Al_2O_3 во всех 6 структурах не превышал 10^{-11} A (нижний предел изме-

рений использованного для тестирования амперметра) при затворном напряжении до ± 10 В. Отметим, что токи утечки через затворный диэлектрик в исследованных при T = 4.2 К образцах транзисторных МДП структур не превышали точность измерений, которая была лучше 10^{-12} А.

При измерениях вольт-амперных характеристик (ВАХ) и затворных характеристик структур при гелиевых температурах использовались стандартные приборы и методики. Образцы размещались непосредственно в жидком гелии в металлической камере, экранирующей образцы от фонового излучения.

3. Экспериментальные результаты

3.1. Вольт-амперные характеристики канала транзисторных МДП структур

Методом Ван-дер-Пау была измерена температурная зависимость сопротивления "на квадрат" $R_{\Box}(T)$ и концентрации электронов в ОИС структуры. Величина $R_{\Box}(T)$ монотонно уменьшалась от комнатной темпертуры до T = 4.2 К и имела характерный излом вблизи температуры $T \approx 7$ К, выше которой $R_{\Box}(T) \approx 9$ Ом, а ниже $R_{\Box}(T)$ уменьшалось значительно быстрее, достигая при T = 4.2 К значения $R_{\Box}(T) \approx 2.3$ Ом. Такая величина на порядок и более уступает сопротивлению канала МДП структуры и слабо влияет на форму ВАХ канала. При T = 4.2 К концентрация составляет $n_0 \approx 6 \cdot 10^{17}$ см⁻³, а подвижность электронов $\mu \approx 4.5 \cdot 10^4$ см² · B⁻¹ · c⁻¹. При этом на рис. 1, *b* хорошо видны макроскопические неоднородности в ОИС, характерный размер которых составляет $\sim (10-100)$ нм.

Измеренная ВАХ исток-сток незначительно отличается от линейной и симметрична по отношению к знаку напряжения исток-сток U_{sd} . Это хорошо видно из рис. 2, на котором приведена зависимость дифференциального сопротивления $R = dU_{sd}/dI_{sd}$ от напряжения истоксток. Максимальная величина Usd ограничивалась изза возможного разогрева канала транзисторной МДП структуры джоулевым теплом мощностью $P = U_{sd}I_{sd}$. Площадь канала составляла $S_{\rm ch} \approx 1.8 \cdot 10^{-6} \, {\rm cm}^2$, при $U_{sd} = 0.05 \,\mathrm{B}$ tok $I_{sd} = 4 \cdot 10^{-4} \,\mathrm{A}$ m $P/S_{ch} \approx 1 \,\mathrm{Bt} \cdot \mathrm{cm}^{-2}$. Отсутствие значительных отклонений от линейности для ВАХ при максимальном $U_{sd} = 0.05 \, \text{B}$ позволяет считать несущественным разогрев структур при такой мощности. Это обеспечивается достаточно высокой теплопроводностью подложки BaF2 миллиметровых размеров, охлаждаемой жидким гелием и выполняющей роль "радиатора" для канала транзисторной МДП структуры микрометровых размеров (рис. 1, b). На рис. 2 хорошо видна высокая симметричность ВАХ по отношении к полярности U_{sd}. В верхней части рисунка дополнительно показана зависимость $(R_+ - R_-) = f(U_{sd})$, где R_+ и *R*₋ — дифференциальные сопротивления при положительном и отрицательном Usd с одинаковой абсолютной величиной. Среднее значение $(R_+ - R_-)$ по всему

Рис. 2. Рассчитанная численно из ВАХ зависимость дифференциального сопротивления транзисторной МДП структуры $R = dU_{sd}/dI_{sd}$. Вверху — разность $(R_+ - R_-)$ между дифференциальным сопротивлением при $U_{sd} > 0$ и при $U_{sd} < 0$ при одинаковых абсолютных значениях U_{sd} .

интервалу U_{sd} составило 0.0083 Ом при стандартном отклонении всего 0.28 Ом.

В принципе полную дифференциальную проводимость канала $\Sigma_{ch} = 1/R$ можно представить в виде $\Sigma_{ch} = \Sigma_1 + \Sigma_2$, где Σ_1 — омическая проводимость "объема" канала, а Σ_2 — монотонно и сублинейно убывающая с ростом U_{sd} и стремящаяся к насыщению проводимость некоего дополнительного канала, возможно, связанного с поверхностью.

3.2. Затворные характеристики

На рис. З представлена временная зависимость тока исток-сток I_{sd}(t) в канале транзисторной МДП структуры при $U_{sd} = 0.01 \,\mathrm{B}$ и соответствующая зависимость $U_{\text{gate}}(t)$. Из рисунка видно, что модуляция I_{sd} затворным напряжением U_{gate} составляет \sim 7 мкА, или (7-8)%. После "ступенчатого" переключения Ugate с быстрым изменением величины I_{sd} наблюдается его медленная релаксация в течение десятков секунд и более, которая носит не экспоненциальный характер. При этом в области "ступеньки" на Ugate характерные времена переключения не превышают нескольких миллисекунд. Видно, что после переключения с $U_{\text{gate}} = -10$ на $+10\,\text{B}$ вблизи *t* = 18.8 с релаксация тока заметно отличается от его релаксации вблизи t = 128.5 с, где затворное напряжение было переключено с $U_{\text{gate}}=0$ на -10 В. Эти релаксационные зависимости совмещены на рис. 4. Кривая 1 соответствует моменту времени

 $t_0 = 18.8$ с, кривая $2 - t_0 = 128$ с; для кривой I функция $F(t) = (I_{sd} - I_0)/(I_{sd} - I_0)_{max}$, $I_0 = 9.339 \cdot 10^{-5}$ А, для кривой 2 функция $F(t) = (I_0 - I_{sd})/(I_0 - I_{sd})_{max}$, $I_0 = 8.758 \cdot 10^{-5}$ А. Значения I_0 представляют собой ток I_{sd} при $t \to \infty$. При этом для 2 величина $(I_0 - I_{sd})_{max} = 9.584 \cdot 10^{-7}$ А более чем вдвое превышает $(I_{sd} - I_0)_{max} = 4.343 \cdot 10^{-7}$ А для зависимости I. Из рисунка видно, что в начальный момент кривая 2 спадает

Рис. 3. Временна́я зависимость тока через канал МДП транзистора $I_{sd}(t)$ и соответствующая ей зависимость $U_{gate}(t)$ при $U_{sd} = 0.01$ В.

Рис. 4. Совмещенные релаксационные зависимости в полулогарифмическом масштабе. I — переключение U_{gate} в момент $t_0 = 18.8 \text{ c}$, 2 — в момент $t_0 = 128 \text{ c}$. Штриховые линии — экспоненциальные зависимости с постоянной времени 31 (I) и 36 с (2). Пояснение см. в тексте.

Физика и техника полупроводников, 2022, том 56, вып. 2

Рис. 5. Затворная характеристика при пилообразном изменении U_{gate} с периодом развертки 200 с. $U_{sd} = 0.01$ В.

заметно быстрее кривой I, а через 10–20 с после этого, напротив, быстрее уменьшается кривая I. Также видно заметное различие постоянного тока при $U_{gate} = 0$ в интервале $\sim (73-128)$ с и в области t > 188 с.

На рис. 5 показана затворная характеристика транзисторной МДП структуры при $U_{sd} = 0.01$ В, измеренная при пилообразном изменении U_{gate} в диапазоне ± 10 В с периодом 200 с. Отображено два периода. Видно, что зависимость $I_{sd} = f(U_{gate})$, имеющая выраженный гистерезис, хорошо воспроизводится. Величина гистерезиса составляет $\sim 7\%$ при $U_{gate} = 0$ по отношению к разнице между максимальным и минимальным токами на рисунке. Характерная форма зависимости и величина гистерезиса слабо зависят от U_{sd} .

4. Обсуждение результатов

Важнейшим экспериментальным результатом, на наш взгляд, является сам факт наблюдения довольно сильной модуляции тока в канале транзисторной МДП структуры на основе не "изолирующей" а "проводящей" пленки PbSnTe: In. Мы остановимся на качественном анализе полученных результатов в рамках упрощенной модели. Основные ее положения можно сформулировать следующим образом. Во-первых, будем считать, что электрическое поле затвора, ослабленное на границе PbSnTe:In/Al₂O₃ в $k_{\varepsilon} = \varepsilon$ (PbSnTe)/ ε (Al₂O₃) раз, полностью экранируется на толщине пленки PbSnTe:In наведенным свободным (отвечающим за изменение проводимости канала) и локализованным зарядом, включая заряд на границе PbSnTe: In/Al₂O₃. Для простоты будем полагать, что наведенный заряд однороден по площади канала. Также будем считать, что сформированные при изготовлении структуры *n*⁺-ОИС обеспечивают омическое сопротивление на границе с каналом.

В эксперименте при толщине подзатворного Al₂O₃ $d(Al_2O_3) = 72$ нм максимальное значение поля в диэлектрике (положительного и отрицательного) составило $E_{\text{gate}} = 1.4 \cdot 10^6$ В/см. Для оксида алюминия низкочастотная $\varepsilon(Al_2O_3)$ зависит от способа его получения, толщины и не слишком сильно от температуры (см., например, [15]). В нашем эксперименте она не измерялась, поэтому для оценок возьмем величину $\varepsilon(Al_2O_3) = 10$, близкую к данным [15]. В работах [16,17] была оценена величина ε (PbSnTe) для наших пленок с x = 0.26, составившая $\sim (2000-3300)$. Для оценок возьмем ε (PbSnTe) = 2000. Тогда k_{ε} = 200, а максимальное значение электрического поля в пленке PbSnTe: In на границе с Al2O3 в этом случае составит $E_{\text{gate}} = 7 \cdot 10^3 \,\text{В/см}$. Из соотношения $\varepsilon \varepsilon_0 E = \sigma_s$, где σ_s — поверхностная плотность заряда, следует, что электрическое поле такой величины будет экранироваться зарядом электронов (дырок) с поверхностной плотностью $N_{sg} = 3.87 \cdot 10^9 \, \mathrm{cm}^{-2}$. При смене знака U_{gate} с максимальной величиной $U_{\text{gate}} = 10 \,\mathrm{B}$ изменение плотности составит $N_{sg} = 7.74 \cdot 10^9$ см⁻². В предельном случае, например в отсутствие локализованного заряда или сразу после быстрого изменения Ugate, весь этот заряд приходится на свободные носители. На рис. 3,5 изменение тока канала при изменении Ugate на 20 В достигает ~ (7-8)%. С учетом толщины исходной пленки и концентрации электронов в ней (разд. 2), при $U_{\text{gate}} = 0$ поверхностная плотность электронов в пленке составляет $N_s \approx 2 \cdot 10^{13} \, {\rm сm}^{-2}$. Если предположить, что экранирующие поле носители заряда имеют такую же подвижность, как и электроны в исходной пленке, то величина $\delta N_{sg}/N_s = 3.87 \cdot 10^{-4}$, или 0.0387%. Эта величина в ~180 меньше наблюдаемой в эксперименте. В принципе такое расхождение можно объяснить существенным отличием свойств приповерхностной области PbSnTe: In, в которой и происходит экранировка поля, от свойств "объема" пленки, а именно большой подвижностью μ_s носителей заряда (электронов) в ней и (или) значительно меньшей ε (PbSnTe) в этом слое, например, вследствие отличия состава приповерхностной области от "объема" пленки. Это может быть следствием особенностей технологических режимов роста пленки. Полагая є (PbSnTe) одинаковой по толщине, получим значение "поверхностной" подвижности $\mu_s = 5.4 \cdot 10^6 \,\mathrm{cm}^2 \cdot \mathrm{B}^{-1} \cdot \mathrm{c}^{-1}$, что выглядит маловероятным. Можно предположить, что все же имеет место одновременно и существенно большая по сравнению с "объемной" подвижность μ_s , и меньшее значение ε в приповерхностном слое по сравнению с "объемом". В любом случае полученное значение модуляции тока затворным напряжением находит объяснение только в предположении существенного отличия свойств приповерхностного слоя от свойств "объема" пленки. На качественном уровне это предположение согласуется с довольно необычными ВАХ исток-сток (рис. 2), которые можно объяснить наличием проводимости, включенной параллельно объемной и зависящей от напряжения исток-сток. С учетом сказанного эта часть проводимости может быть связана с приповерхностной областью.

В рамках упрощенной модели релаксации I_{sd} на рис. 3 и гистерезис на рис. 5 объясняются следующим образом. Сразу после переключения с $U_{\text{gate}} = -10 \,\mathrm{B}$ на $+10 \,\mathrm{B}$ вблизи t = 18.8 с электрическое поле экранируется только неравновесными подвижными электронами и Isd максимален. После этого начинается захват электронов на ловушки при постоянной величине полного "наведенного" приповерхностного заряда с уменьшением плотности свободных электронов. Как следствие, ток уменьшается вплоть до $t \approx 73$ с. Далее, при переключении затворного напряжения на $U_{\text{gate}} = 0$ наблюдается небольшой "провал" по величине Isd. Он объясняется тем, что захваченные на медленные ловушки электроны создают отрицательное электрическое поле. По мере их опустошения в области $t \approx 73 - 128 \,\mathrm{c}$ указанное поле уменьшается с медленным увеличением Isd. После подачи на затвор $U_{\text{gate}} = -10 \,\mathrm{B}$ при $t \approx 128 \,\mathrm{c}$ в первый момент поле экранируется только за счет изменения (уменьшения) плотности подвижного заряда электронов и наблюдается минимум ("провал") І_{sd}. После последующей медленной ионизации медленных ловушек плотность подвижных электронов увеличивается и наблюдается рост I_{sd} вплоть до $t \approx 188$ с. После переключения на $U_{\text{gate}} = 0$ в момент $t \approx 188 \,\text{c}$ глубокие ловушки частично остаются ионизованными по сравнению с равновесным состоянием, создавая положительное электрическое поле. Этим и объясняется "всплеск" Isd и последующее медленное уменьшение тока вследствие заполнения ловушек электронами. С этими процессами связано и отличие тока в интервалах $t \approx 73 - 128 \,\mathrm{c}$ и $t > 188 \,\mathrm{c}$, в которых $U_{\text{gate}} = 0$. В первом идет "разрядка" глубоких ловушек, захвативших электроны и создающих отрицательное поле, во втором — захват электронов на ионизованные ловушки, создающие положительное поле. На наш взгляд, из приведенных результатов трудно сделать заключение, происходит ли формирование "медленного" отрицательного и положительного заряда вследствие перезарядки одних и тех же ловушек или разных. С одной стороны, различие кривых на рис. 4 (1 — захват, 2 — выброс электронов с ловушек согласно модели) говорит в пользу разного типа ловушек для электронов и дырок. Вместе с тем различие кривых на рис. 4 не слишком сильное, а характерные времена захвата и выброса электронов могут различаться и для одного типа ловушек. Вместе с тем выраженно не экспоненциальный характер процессов релаксации позволяет предполагать, что, как и в изолирующих пленках PbSnTe: In, имеется распределение ловушек по энергии, на что указывалось в [18-20]. Гистерезис на рис. 5 на качественном уровне также описывается формированием "медленного" отрицательного поверхностного заряда ловушек при увеличении $U_{\text{gate}} > 0$, который остается существенным и после уменьшения и даже смены знака U_{gate} . Напротив, $U_{\text{gate}} < 0$ формирует медленно меняющийся положительный заряд, связанный

со снижением заполнения ловушек электронами по сравнению с равновесным случаем.

5. Заключение

В результате проведенных исследований на основе пленок PbSnTe: In, полученных методом молекулярнолучевой эпитаксии, впервые в мире разработаны и изготовлены экспериментальные образцы МДП структур транзисторного типа с тонкопленочным подзатворным диэлектриком. В качестве такого диэлектрика использован слой Al₂O₃ толщиной 72 нм с электрической прочностью не менее 1.5 · 10⁶ В/см и токами утечки не более 10^{-12} А при напряжении затвора $U_{\text{gate}} = 10$ В. При $T = 4.2 \, \text{K}$ исследованы ВАХ исток-сток и модуляция тока в канале транзисторной МДП структуры на основе пленки PbSnTe: In с концентрацией электронов $\sim 10^{17} \, {\rm cm}^{-3}$, которая при изменении затворного напряжения в пределах до $U_{\mathrm{gate}}=\pm 10\,\mathrm{B}$ достигала 7-8%. Совместный анализ ВАХ и затворных характеристик показывает, что полученные результаты могут быть объяснены отличием параметров приповерхностного слоя пленки PbSnTe: In от "объема" с повышенной подвижностью электронов и, возможно, с пониженной статической диэлектрической проницаемостью. Наблюдаемые медленные релаксации тока канала объясняются наличием вблизи поверхности PbSnTe: In медленных ловушек, которые, возможно, распределены по энергии в запрещенной зоне. Для уточнения модели реального МДП транзистора требуется проведение дополнительных исследований.

Финансирование работы

Работа выполнена при поддержке РФФИ (грант № 20-02-00324).

Конфликт интересов

Авторы заявляют, что у них нет конфликта интересов.

Список литературы

- C.C. Wang, M.H. Kalisher, J.M. Tracy, J.E. Clarke, J.T. Longo. Solid-State Electron., 21, 625 (1978).
- [2] V.V. Teterkin, V.B. Alenberg, F.F. Sizov, E.V. Susov, Iu.G. Troian. Infr. Phys., 30, 499 (1990).
- [3] R. Behrendt, R. Wendlandt. Phys. Status Solidi A, **61**, 373 (1980).
- [4] D.A. Lilly, D.E. Joslin, H.K. Kan. Infr. Phys., 18, 51 (1978).
- [5] B.M. Vul, I.D. Voronova, G.A. Kalyuzhnaya, T.S. Mamedov, T.S. Ragimova. Phys. Rev. Lett., 26, 1193 (1966).
- [6] Б.А. Волков, Л.И. Рябова, Д.Р. Хохлов. УФН, 172, 875 (2002).
- [7] B.A. Volkov, O.A. Pankratov. JETP Letters, 42, 145 (1985).
- [8] M.Z. Hasan, C.L. Kane. Rev. Mod. Phys., 82, 3045 (2010).
- [9] T.H. Hsieh, H. Lin, J. Liu, W. Duan, A. Bansil, L. Fu. Nature Commun., 3, 982 (2012).

- [10] S.-Y. Xu, C. Liu, N. Alidoust, M. Neupane, D. Qian, I. Belopolski, J.D. Denlinger, Y.J. Wang, H. Lin, L.A. Wray et al. Nature Commun., 3, 1192 (2012).
- [11] C. Yan, J. Liu, Y. Zang, J. Wang, Z. Wang, P. Wang, Z. Zhang, L. Wang, X. Ma, S. Ji et al. Phys. Rev. Lett., **112**, 186801 (2014).
- [12] А.Э. Климов, А.Н. Акимов, И.О. Ахундов, В. А. Голяшов, Д.В. Горшков, Д.В. Ищенко, Е.В. Матюшенко, И.Г. Неизвестный, Г.Ю. Сидоров, С.П. Супрун, А.С. Тарасов, О.Е. Терещенко, В.С. Эпов. ФТП, **54**, 1122 (2020).
- [13] E.V. Fedosenko, A.E. Klimov, D.V. Krivopalov, I.G. Neizvestny, N.I. Petikov, M.A. Torlin, V.N. Shumsky. Appl. Surf. Sci., 78, 413 (1994).
- [14] O.E. Tereshchenko, S.I. Chikichev, A.S. Terekhov. J. Vac. Sci. Technol. A, 17, 2655 (1999).
- [15] A.H. Seltzman, S. Wukitch. Fusion Engin. and Design, 147, 111226 (2019).
- [16] A.E. Klimov, V.N. Shumsky, V.V. Kubarev. Ferroelectrics, 347, 111 (2007).
- [17] A.E. Klimov, V.N. Sherstyakova, V.N. Shumsky. Ferroelectrics, 378, 101 (2009).
- [18] A.E. Klimov, V.N. Shumsky. Physica B, 404, 5028 (2009).
- [19] A.E. Klimov, V.S. Epov. JETP Letters, 106, 446 (2017).
- [20] A.N. Akimov, V.S. Epov, A.E. Klimov, V.V. Kubarev, N.S. Paschin. J. Phys.: Conf. Ser., 946, 012016 (2018).

Редактор Л.В. Шаронова

MIS transistor based on PbSnTe: In film with an Al_2O_3 gate dielectric

A.E. Klimov^{1,2}, V.A. Golyashov^{1,3}, D.V. Gorshkov¹, E.V. Matyushenko¹, I.G. Neizvestny^{1,2}, G.Yu. Sidorov¹, N.S. Paschin¹, S.P. Suprun¹, O.E. Tereshchenko^{1,3}

 ¹ Rzhanov Institute of Semiconductor Physics, Russian Academy of Sciences,
630090 Novosibirsk, Russia
² Novosibirsk State Technical University,
630073 Novosibirsk, Russia
³ Novosibirsk State University,
630090 Novosibirsk, Russia

Abstract Results on the creation and properties of transistortype MIS structures (MIST) with an Al₂O₃ thin-film gate dielectric based on PbSnTe: In films obtained by molecular beam epitaxy are presented. The source-drain current-voltage characteristics (CVC) and gate characteristics of the MIS transistor at T = 4.2 K have been investigated. It is shown that in MIS structures based on PbSnTe: In films with $n \sim 10^{17}$ cm⁻³ the modulation of the channel current reaches 7-8% in the range of gate voltages $-10 < U_{gate} < +10$ V. The features of the source-drain CVC and the gate characteristics for a pulsed and sawtooth variation of U_{gate} are considered.