Прыжковая проводимость Мотта и Эфроса—Шкловского в пленках из наночастц Si, легированных фосфором и бором

© С.Г. Дорофеев¹, Н.Н. Кононов^{2,¶}, С.С. Бубенов¹, В.М. Попеленский¹, А.А. Винокуров¹

¹ Московский государственный университет им. М.И. Ломоносова (химический факультет),

119991 Москва, Россия

² Институт общей физики им. А.М. Прохорова Российской академии наук,

119991 Москва, Россия

[¶] E-mail: nnk@kapella.gpi.ru

Поступила в Редакцию 23 августа 2021 г. В окончательной редакции 11 сентября 2021 г. Принята к публикации 20 сентября 2021 г.

> Исследованы электрические характеристики тонких пленок, сформированных из наночастиц Si (nc-Si) с различной степенью легирования. Для исключения влияния ионной проводимости токовые параметры пленок регистрировались в сверхвысоком вакууме ($P \sim 3-5 \cdot 10^{-9}$ Topp) с предварительным высокотемпературным (950°C) отжигом. Анализ температурных зависимостей проводимости пленок nc-Si показал, что в пленках, сформированных из сильно легированных наночастиц (концентрация свободных электронов n_e больше 10^{19} см⁻³), проводимость определяется прыжками с переменной длиной (variable range hopping conductionVRH). При температурах > 300 К в этих образцах преобладает VRH Мотта, а при меньших температурах — VRH Эфроса-Шкловского. В пленках со средним уровнем легирования наночастиц ($n_e < 10^{19} \,\mathrm{cm}^{-3}$) транспорт в пленках определяется совместным действием проводимостей Мотта, Эфроса-Шкловского и термически активированной проводимости. При этом термически активированная проводимость преобладает при температурах > 560°С. В пленках nc-Si из нелегированных наночастиц транспортные параметры определяются термически активированной проводимостью и VRH Мотта. VRH Эфроса-Шкловского в таких пленках не наблюдается. Из анализа параметров, соответствующих проводимостям Мотта и Эфроса-Шкловского, найдены длины локализации волновых функций, плотности состояний на уровне Ферми (G(E_F)) и средние длины прыжков. Средние длины прыжков в пленках nc-Si из наночастиц, подвергнутых предварительному травлению в HF, находятся в диапазоне 56-86 нм, что указывает на то, что прыжки в таких пленках происходят при посредстве промежуточных наночастиц.

Ключевые слова: легирование наночастиц Si, проводимость тонких пленок из наночастиц Si.

DOI: 10.21883/FTP.2022.02.51963.9727

1. Введение

Полупроводниковые нанокристаллы (nc) имеют хорошие перспективы при их использовании в высокоэффективной тонкопленочной электронике в качестве элементов: газовых сенсоров [1], термодетекторов [2] тонкопленочных полевых транзисторов [3], солнечных батарей [4] и в других электронных приборах.

Нанокристаллический кремний (nc-Si) является перспективным материалом для подобной тонкопленочной электроники, так как в настоящее время существуют относительно простые и дешевые технологии для его изготовления в достаточно больших количествах, высокого качества и с хорошо контролируемыми размерными параметрами [5,6].

Использование нанокристаллов в высокоэффективных приборах тонкопленочной электроники часто требует высокой проводимости *nc*-пленок. Поэтому весьма актуальной является задача легирования наночастиц, из которых эти пленки формируются. В качестве методов, которые в настоящее время успешно используются для легирования наночастиц, отметим электрохимическое легирование [7], стехиометрический контроль [8], контролируемое введение решеточных вакансий или примесных дефектов [9], а также легирование в продолжение газофазного синтеза наночастиц [10–12]. В этом сообщении мы анализируем электрические параметры nc-Si пленок, наночастицы которых после синтеза легировались фосфором и бором вследствие высокотемпературного диффузионного проникновения легирующих атомов в кристаллические решетки их ядер [13].

Тонкие пленки, содержащие *nc*-Si, необходимо рассматривать как многокомпонентную среду, в которой наночастицы Si отделены друг от друга как их поверхностью, так и средой, окружающей эти наночастицы. Поэтому электрическая проводимость *nc*-Si пленок определяется как электронными свойствами их кристаллических ядер, так и топологической структурой, которая включает свойства поверхности наночастиц.

Рассматривая влияние среды, разделяющей *nc*-Si, необходимо учитывать свойства атмосферы, окружающей *nc*-Si пленки. Так, в работах [14,15] показано, что если в окружающей *nc*-Si пленки атмосфере присутствуют пары воды, то ионная проводимость в них является конкурирующим процессом для электронного транспорта. Причем в работе [15] обнаружено, что остаточные молекулы воды, присутствующие в вакуумной камере, влияют на температурную динамику проводимости *nc*-Si

пленок даже при вакууме 10^{-5} Торр. В работе [15] также показано, что независимо от того покрыта ли поверхность наночастиц Si окислом или нет адсорбция молекул воды на их поверхность увеличивает проводимость nc-Si пленок. Эксперименты в [14,15] были проведены с нелегированными nc-Si, однако очевидно, что адсорбция молекул воды должна влиять и на проводимость nc-Si пленок, сформированных из легированных наночастиц. Также на проводимость nc-Si пленок влияет взаимодействие наночастиц с молекулами кислорода, которые могут присутствовать в окружающей атмосфере [16–18].

В представленной работе анализируются электрические характеристики nc-Si пленок, сформированных из наночастиц Si, которые были синтезированы в результате лазерно-индуцированного пиролиза силана (SiH₄). Для того чтобы максимально исключить влияние молекул воды и кислорода на транспортные параметры пленок, все измерения проводились в сверхвысоком вакууме ($P \sim 3 \cdot 10^{-9}$ Торр). Кроме того, для удаления первоначально существовавшего на поверхности наночастиц Si окисла все пленки перед началом измерений, также в сверхвысоком вакууме, подвергались высокотемпературному нагреву до 950°С. При этой температуре давление пара SiO над смесью $Si + SiO_2$ достаточно для быстрого (десятки секунд) испарения окисла с поверхности наночастиц, при этом давление пара Si над кремнием в 500 раз меньше, что позволяет избежать испарения самих наночастиц.

Свойства такой многокомпонентной среды как *nc*-Si пленки зависят от многих параметров, таких, например, как собственная проводимость наночастицы, проводимость ее поверхности и проводимость среды между наночастицами. Общим для всех пленок, сформированных из полупроводниковых наночастиц, является то, что проводимость в них носит прыжковый характер. При прыжковом транспорте температурная зависимость проводимости G(T) может иметь вид: $\exp(-E/kT)$, $\exp(-T_{\rm M}/T)^{1/4}$ и $\exp(-T_{\rm ES}/T)^{1/2}$.

В дальнейшем изложении мы будем говорить об этих видах транспорта как о термически активированной проводимости и проводимости с переменной длиной прыжка Мотта и Эфроса–Шкловского [19–23]. В работе [15] отмечается сложная структура экспериментальных зависимостей проводимости пленок nc-Si от температуры G(T), которая не позволяет точно определить, какой вид проводимости реализуется в них. При этом предполагается, что сложность в идентификации механизмов проводимости может быть связана с адсорбцией и десорбцией молекул воды на поверхности наночастиц Si.

В нашей работе для аккуратности анализа мы использовали только экспериментальные кривые G(T), которые после высокотемпературного нагрева были зарегистрированы при равновесном охлаждении пленок. В этом случае использовались несколько моделей проводимости, чтобы аппроксимировать экспериментальную кривую G(T) во всем исследованном диапазоне температур.

2. Детали эксперимента

Исследовалась проводимость на постоянном токе тонких пленок из наночастиц Si (nc-Si), синтезированных методом лазерно-индуцированного пиролиза силана [6]. Наночастицы состояли из кристаллического ядра, покрытого слоем SiO_x ($0 \le x \le 2$). Максимум размерного распределения наночастиц находился вблизи значения 15 нм. Часть наночастиц кремния легировали бором или фосфором с помощью двухчасового отжига при 800°С порошка из наночастиц, запаянного в кварцевых ампулах, в атмосфере борана (B_2H_6) или фосфина (PH_3) соответственно [13]. Измерения знака термоэдс на таблетках, спрессованных из полученных nc-Si, показали, что нелегированные и легированные фосфором наночастицы имеют n-тип проводимости, а легированные бором — p-тип.

Относительную долю легирующей примеси $N_{\rm D}/(N_{\rm Si}+N_{\rm D})$ (табл. 1, колонка ICP-MS) в кристаллических ядрах наночастиц Si в порошках после их легирования определяли методом масс-спектрометрии с индуктивно-связанной плазмой (inductively coupled plasma mass spectrometry — ICP-MS). Здесь N_{Si} полное число атомов Si в анализируемом образце. Также в таблице (колонка синтез) приведены относительные концентрации легирующих атомов в атмосфере газов РН₃ и В₂Н₆ в ампулах при легировании наночастиц Si. В правой колонке таблицы даны величины концентрации свободных электронов, определенные из положения инфракрасной (ИК) полосы в области 2000 см⁻¹, характерной для поверхностного плазмонного резонанса (localized surface plasmon resonance — LSPR) в кремнии.

Для измерения электрических характеристик порошки наночастиц Si диспергировали в метаноле с помощью ультразвуковой ванны (Sono Swiss) в течение 20 мин. Пленки *nc*-Si получали накапыванием и высушиванием золя на корундовых подложках чипов с платиновыми контактами, висящих над цоколем на Pt-проволочках (рис. 1). На обратной стороне подложки нанесен Pt-нагреватель, одновременно являющийся термодатчиком. Нагреватель получал питание от потенциостата P-30 (Elins Electrochemical Instruments), который одновременно записывал ток и напряжение для вычисления температуры нагревателя.

В соответствии с обозначениями, приведенными в левой колонке таблицы, при дальнейшем рассмотрении будем различать образцы S_0 , S_1 , S_2 , S_3 , S_4 и S_5 . Здесь S_0 — пленка, нанесенная на подложку чипа из золя, состоящего из нелегированных наночастиц Si. S_1 , S_2 и S_3 — пленки нанесенные на чипы из одинаково легированных фосфором наночастиц Si. В образце S_1 наночастицы не подвергались травлению, а в образцах S_2 , S_3 и S_4 использовались наночастицы, травленые в HF. Отличие образца S_4 от образцов S_2 и S_3 заключается в том, что концентрация свободных электронов в нем была существенно меньше, чем в первых двух, вследствие чего в ИК спектре поглощения пленки *nc*-Si,

Образец	Обработка образца	$N_{\rm D}/(N_{ m Si}$	$+N_{\rm D}$), %	Тип	Концентрация носителей заряда, см ⁻³	
		Синтез	ICP-MS	проводимости		
S ₀	Нет травления	Нелегир	ованный	п	$< 1 \cdot 10^{19}$	
S_1	То же	9.1	1.1	п	$8.8\cdot10^{19}$	
S_2	Травление	9.1	1.1	п	$8.8\cdot10^{19}$	
S_3	То же	9.1	1.1	п	$9.5 \cdot 10^{19}$	
S_4	>	1.3	0.15	п	$< 1 \cdot 10^{19}$	
S_5	>	1.4	0.25	р	$< 1 \cdot 10^{19}$	

Таблица 1. Состав и свойства наночастиц Si

аналогичной пленке в S₄, не наблюдалась полоса, связанная с LSPR. Кроме того, отметим, что пленка *nc*-Si в образце S₃ формировалась в результате взаимодействия с подложкой сверхзвуковой струи, состоящей из капель этанола с наночастицами Si. Как следует из колонки "Тип проводимости" в табл. 1, образцы S₁, S₂, S₃ и S₄ формировались из наночастиц Si, легированных фосфором, а образец S₅ — из наночастиц, легированных бором. *nc*-Si в образце S₀ первоначально обладали слабой электронной проводимостью.

Измерения электрических характеристик проводили в условиях сверхвысокого вакуума ($P \sim 3 \cdot 10^{-9}$ Topp) в камере оже-спектрометра JAMP-10 (JEOL) с помощью потенциостата P-8 Nano (Elins Electrochemical Instruments).

Отжиг пленок из легированных фосфором и бором *nc*-Si в сверхвысоком вакууме оказался самым эффективным и воспроизводимым методом получения высокой проводимости. В процессе первого нагрева до температуры 850–900°С начинался резкий рост проводимости (рис. 2), и проводимость после охлаждения получалась

Рис. 1. Ячейка для измерения температурной зависимости проводимости в высоком вакууме.

Рис. 2. Ток через пленку *nc*-Si, аналогичную пленке в образце S₁, измеренный при давлении $5 \cdot 10^{-9}$ Торр при напряжении на электродах 10 В. Каждые 60 с температуры пленки ступенчато изменялись, величины температур приведены в верхней части графика.

не менее чем на 4 порядка выше исходной (начальная проводимость не обнаруживалась).

3. Экспериментальные результаты, анализ и обсуждение

3.1. СЭМ-изображения пленок nc-Si

На рис. 3 приведены СЭМ-изображения пленок, соответствующих образцам S_0 , S_2 и S_5 после их высокотемпературного отжига в сверхвысоком вакууме. СЭМ-изображения образцов S_3 и S_4 очень похожи на изображение образца S_2 . Из приведенных изображений видно, что наиболее крупномасштабные структуры с характерным пространственным масштабом ~ 50 и ~ 100 нм появляются при отжиге пленки, сформированной из нелегированных наночастиц (образец S_0). В образцах же S_2 и S_5 основным масштабом является размер, определяемый диаметром наночастиц, т.е. ~ 15 нм. Вероятно, такое различие структур S_0 и S_2 , S_5 связано

Рис. 3. СЭМ-изображения образцов $S_0(a)$, $S_2(b)$ и $S_5(c)$.

с тем, что наночастицы в двух последних подвергались предварительному травлению в HF, а *nc*-Si образца S₀ такому травлению не подвергались. Однако в образцах S₄ и S₅ весьма заметны редкие, но крупногабаритные образования с линейными размерами ~ 500 нм.

3.2. Температурная зависимость проводимости пленок *nc*-Si

Температурные зависимости проводимости всех образцов регистрировались при приложенном напряжении 10 В.

На рис. 4 приведена температурная зависимость проводимости образца S₁ в координатах $\lg G(T) - (1/T)^{1/4}$. Подобный выбор координат определяется тем, что в этих координатах экспериментальная зависимость G(T)представлена прямой линией. Возможность подобной аппроксимации указывает на то, что природа проводимости на постоянном токе в образце S₁ определяется прыжками с переменной длиной вследствие туннелирования (variable-range-hopping conductivity — VRH) с законом Мотта: $G(T) = G_0 \exp(-T_{\rm M}/T)^{1/4}$ [24]. Заметим, что и в координатах $\lg G - (1/T)^{1/2}$ эта зависимость также может быть аппроксимирована прямой линией. Этот факт дает основание утверждать, что в исследованном образце также реализуется механизм проводимости Эфроса-Шкловского (Efros-Shklovskii VRH conductivity), при котором температурная зависимость проводимости имеет вид: $G(T) = G_0 \exp(-T_{\rm ES}/T)^{1/2}$ [25].

Мы полагаем, что в данном случае невозможность отличить температурную зависимость вида $\exp(T_{\rm M}/T)^{1/4}$ от зависимости вида $\exp(T_{\rm M}/T)^{1/2}$ в случае, когда в образце реализуются два вида проводимости, определяется недостаточно большим набором значений температур, применявшихся в эксперименте для измерения проводимости образца S₁. Для других образцов мы будем использовать квазинепрерывное изменение температуры (т.е. изменение температуры с достаточно малым шагом) при измерении проводимости. Применительно же к образцу S₁ сделаем допущение, что проводимости Мотта и Эфроса–Шкловского в образце S₁ реализуются

Рис. 4. Квадратами показаны значения проводимости образца S₁ в координатах $\lg G(T) - 1/T^{1/4}$. Сплошная линия показывает аналитическую аппроксимацию экспериментальных величин. На внутренней части рисунка приводится график проводимости этого же образца в координатах $\lg G(T) - (1/T)^{1/2}$.

приблизительно в одном и том же температурном диапазоне, и проведем анализ температурных зависимостей G(T) в этом предположении. Как будет видно далее для других образцов, где будет использоваться изменение температуры с малым шагом, мы сможем аппроксимировать экспериментальную кривую G(T) суммой двух указанных температурных зависимостей.

Для дальнейшего анализа отметим, что согласно Мотту вероятность туннелирования между состояниями, находящимися на расстоянии r друг от друга, определяется соотношением: $P \sim \exp(-2r/\xi - \Delta E/kT)$. Здесь ξ — длина локализации волновой функции электрона, совершающего прыжок, k — постоянная Больцмана, ΔE — разность энергий начального и конечного состояний. Мотт указал, что если на поверхности Ферми существует некоторая постоянная плотность состояний (density of states — DOS) $g(E_{\rm F})$, то для трехмерного неупорядоченного полу-

проводника верно: $\Delta E \sim 1/g(E_{\rm F}) \cdot r^3$. Тогда при максимизации вероятности *P* получается закон Мотта: $G \sim P \sim \exp(T_{\rm M}/T)^{1/(3+1)}$, где $T_{\rm M} = \beta_{\rm M}/(k \cdot g(E_{\rm F}) \cdot \xi^3)$. Здесь $\beta_{\rm M}$ — безразмерная константа, которая у разных авторов имеет различные значения: 7.6 [24], 18.1 [26–28], 21.1 [29].

В 1975 году Эфрос и Шкловский показали, что если между локализованными состояниями существует кулоновское взаимодействие, то в невозмущенной DOS вблизи уровня Ферми возникает щель, наличие которой приводит к закону: $G \sim \exp(T_{\rm ES}/T)^{1/2}$. Здесь $T_{\rm ES} = \beta_{\rm ES} \cdot {\rm e}^2/(4\pi \cdot \varepsilon_0 \cdot \varepsilon_{\rm eff} \cdot k \cdot \xi)$, $\varepsilon_0 = 8.85 \cdot 10^{-12} \, \Phi/{\rm M}$ — электрическая постоянная, $\varepsilon_{\rm eff}$ — эффективная диэлектрическая проницаемость среды. Ширина кулоновской щели определяется следующей формулой: $\Delta E_{\rm C} = {\rm e}^3 \cdot g (E_{\rm F})^{1/2}/(4\pi \cdot \varepsilon_0 \cdot \varepsilon_{\rm eff})^{3/2}$. $\beta_{\rm ES}$ — безразмерная константа, величина которой в разных публикациях имеет следующие значения: 2.7 [25], 7.27 [30], 8.1 [28] и 9.6 [12].

Средняя длина прыжка при VRH Мотта определяется соотношением: $\langle R_{\rm M} \rangle = \left(\frac{3\xi}{2 \cdot \pi \cdot g \, (E_{\rm F}) kT}\right)^{1/4}$, воспользовавшись формулой для $T_{\rm M}$ и $\beta_{\rm M} = 18.1$, это соотношение можно записать в простой форме: $\langle R_{\rm M} \rangle = 0.4 \cdot \xi (T_{\rm M}/T)^{1/4}$. Аналогичная форма записи существует для средней длины прыжка при VRH Эфроса–Шкловского при $\beta_{\rm ES} = 8.1$: $\langle R_{\rm ES} \rangle \approx 0.25 \cdot \xi (T_{\rm ES}/T)^{1/2}$ [28]. Важным критерием, которому должны удовлетворять экспериментально измеренные величины $\xi_{\rm exp}$ и $\langle R_{\rm exp} \rangle$, является условие: $\langle R_{\rm exp} \rangle > \xi_{\rm exp}$.

Для дальнейшего анализа мы будем полагать, что величины T_M и T_{ES}, измеренные из экспериментальных зависимостей G(T), определены с хорошей точностью. В таком случае, поскольку длины локализации волновой функции ξ должны быть одинаковы при учете как VRH Мотта, так и VRH Эфроса-Шкловского, то для дальнейших анализов мы будем пользоваться величинами ξ , определенными из формулы для T_{ES}. В формуле для T_{ES} неопределенной величиной является эффективная диэлектрическая проницаемость ε_{eff} пленки *nc*-Si. Для ее определения мы пользуемся результатами работы [31], в которой методом эллипсометрической спектроскопии определены величины диэлектрической проницаемости пленок nc-Si, состоящих из наночастиц, аналогичных наночастицам данного эксперимента и предварительно протравленных в смеси кислот HF/HNO₃. Измеренная величина $\varepsilon_{\rm eff}$ таких пленок составляла ~ 2.5 . Аппроксимация экспериментальных эллипсометрических спектров с помощью теории эффективной среды Бруггемана показала, что относительная объемная доля среды nc-Si (пористость) f составляет 0.5. Величину $\varepsilon_{\rm eff}$ пленок nc-Si, изученных в описываемом эксперименте, можно также определить с помощью теории эффективной среды Максвелла-Гарнета для двухкомпонентной среды, в которой частицы с диэлектрической проницаемостью ε_{Si} погружены в среду ε_0 . Для такой среды справедлива сле-

Рис. 5. Квадратами показана температурная зависимость проводимости образца S₂. Штриховыми и штрихпунктирными линиями показаны аппроксимирующие зависимости $G_{\rm M} \sim \exp(-T_{\rm M}/T)^{1/4}$ и $G_{\rm ES} \sim \exp(-T_{\rm M}/T)^{1/2}$ соответственно. Сплошная линия определяется суммарной аппроксимацией: $G_{01} \cdot \exp(-T_{\rm M}/T)^{1/4} + G_{02} \cdot \exp(-T_{\rm ES}/T)^{1/2}$.

дующая формула: $\varepsilon_{\text{eff}} = \varepsilon_0 \frac{\varepsilon_{\text{Si}} + 2\varepsilon_0 + 2f(\varepsilon_{\text{Si}} - \varepsilon_0)}{\varepsilon_{\text{Si}} + 2\varepsilon_0 - f(\varepsilon_{\text{Si}} - \varepsilon_0)}$ [28,32]. Используя значения $\varepsilon_{\text{Si}} = 11.7$, $\varepsilon_0 = 1$ и f = 0.5, получаем величину $\varepsilon_{\text{eff}} \approx 2.9$, которая очень близка к величине ε_{eff} *nc*-Si, вычисленной в работе [12], в которой изучались транспортные характеристики пленок, сформированных из наночастиц Si, по размерам, близким к изучаемым в этой работе наночастицам. Таким образом, в дальнейших расчетах мы будем использовать значение $\varepsilon_{\text{eff}} = 3$.

Зная ξ , из формулы для $T_{\rm M}$ находим величины $g(E_{\rm F})$ и $\Delta E_{\rm C}$, а также $\langle R_{\rm M} \rangle$ и $\langle R_{\rm ES} \rangle$ при температуре 300 К. Результаты вычислений приведены в табл. 2.

Переходя к образцу S2, еще раз отметим, что наночастицы в нем были легированы в тех же условиях, что и nc-Si в образце S₁, но в пленке S₂ с поверхности наночастиц окисел был удален травлением наночастиц в HF.

Экспериментальная кривая G(T) образца S₂, в отличие от образца S₁, с хорошей точностью аппроксимируется комбинацией функций $G_{01} \cdot \exp(-T_M/T)^{0.25} + G_{02} \cdot \exp(-T_{\rm ES}/T)^{0.5}$ (см. рис. 5). При этом в пределах границ, исследованных в эксперименте температур, наблюдается переход от проводимости VRH Эфроса–Шкловского к проводимости VRH Мотта ($T_{\rm cross} = 306$ K). Энергия $kT_{\rm cross}$, соответствующая такому переходу, составляет 0.026 эВ, что более чем на порядок величины превосходит ширину кулоновской щели в этом образце.

Пленка nc-Si в образце S₃, аналогично образцам S₁ и S₂, формировалась из наночастиц Si, легированных и травленных в одинаковых условиях. Основное отличие образца S₃ от первых двух состоит в том, что пленка nc-Si в этом образце наносилась на подложку в высоком вакууме сверхзвуковой струей, состоящей из микрокапель метанола с наночастицами Si. График зависимости G(T) приведен на рис. 6.

№	<i>Т</i> м,	T _{ES} ,	T _{cross} ,	ξ,	$g(E_{\rm F}),$	$\Delta E_{\rm C},$	⟨ <i>R</i> _M ⟩ при 300 К,	(<i>R</i> _{ES}) при 300 K,
образца	К	K	K	M	m m m m m m m m m m m m m	m >B	м	м
$\begin{array}{c} & S_1 \\ S_2 \\ S_3 \\ S_4 \\ S_5 \\ S \end{array}$	$\begin{array}{c} 2.7 \cdot 10^8 \\ 3.8 \cdot 10^8 \\ 4.4 \cdot 10^8 \\ 8.1 \cdot 10^7 \\ 1.6 \cdot 10^9 \\ 5 \cdot 10^8 \end{array}$	$10^{5} \\ 10^{4} \\ 10^{4} \\ 7.2 \cdot 10^{3} \\ 10^{4}$	- 312 360 235 300	$4.5 \cdot 10^{-10} 4.5 \cdot 10^{-9} 4.5 \cdot 10^{-9} 6.2 \cdot 10^{-9} 4.5 \cdot 10^{-9} 5.2 \cdot 10^{-$	$\begin{array}{c} 8.45 \cdot 10^{18} \\ 6.0 \cdot 10^{15} \\ 5.2 \cdot 10^{15} \\ 1.0 \cdot 10^{16} \\ 1.4 \cdot 10^{15} \\ 2.8 \cdot 10^{15} \end{array}$	0.03 0.0008 0.0008 0.001 0.0003	$5.5 \cdot 10^{-9} 5.7 \cdot 10^{-8} 6.3 \cdot 10^{-8} 5.6 \cdot 10^{-8} 8.6 \cdot 10^{-8} 7.6 \cdot 10^{-8} \\ 7.6 \cdot 10^{-8$	$\begin{array}{c} 2\cdot 10^{-9} \\ 6.5\cdot 10^{-9} \\ 6.5\cdot 10^{-9} \\ 7.6\cdot 10^{-9} \\ 1.0\cdot 10^{-8} \end{array}$

Таблица 2. Значения $g(E_{\rm F})$ и $\Delta E_{\rm C}$, а также $\langle R_{\rm M} \rangle$ и $\langle R_{\rm ES} \rangle$ при температуре 300 К

Рис. 6. Температурная зависимость в координатах $\lg G(T) - (1/T)^{0.25}$ проводимости образца S₃. Квадраты — экспериментальная кривая. Сплошная линия — суммарная аппроксимация, а штриховая и штрихпунктирная линии — компоненты аппроксимации ~ $\exp(-T_{\rm M}/T)^{0.25}$ и ~ $\exp(-T_{\rm ES}/T)^{0.5}$ соответственно.

Экспериментальную зависимость G(T) в образце S₄ не удается с хорошей точностью аппроксимировать суммой экспонент $\exp(-T_{\rm M}/T)^{0.25}$ и $\exp(-T_{\rm ES}/T)^{0.5}$, но если в области высоких температур добавить активационное слагаемое $\exp(-T_{\rm A}/T)$, т.е. если аппроксимировать $G_{\exp}(T)$ функцией: $G_{0\rm A} \cdot \exp(-T_{\rm A}/T)$ $+ G_{0\rm M} \cdot \exp(-T_{\rm M}/T)^{1/4} + G_{0\rm ES} \cdot \exp(-T_{\rm ES}/T)^{1/2}$, то такая функция аппроксимирует экспериментальную зависимость с высокой точностью. Такая аппроксимация показана на рис. 7.

Энергия активации высокотемпературной проводимости $E_A = kT_A$ составляет 0.46 эВ и, так как $E_A = E_C - E_F$, где E_C — положение дна зоны проводимости Si, это означает, что в образце S₄ уровень Ферми находится на расстоянии 0.46 эВ под дном зоны проводимости. О близких значениях энергии активации (~ 0.5 эВ) в легко допированных фосфором кремниевых наноструктурах сообщается в [17,22,33]. Подобный результат означает, что уровень Ферми в образце S₄ закреплен поверхностными локализованными состояниями. Из зависимости на рис. 7 следует, что температура, при которой активационная проводимость преобладает над туннельной, составляет 560 К для VRH Мотта. Из рис. 7 также видно, что температура, при которой проводимости VRH Мотта и VRH Эфроса–Шкловского одинаковы, равна 235 К. Плотность состояний $g(E_{\rm F})$ в образце S₄ составляет 10¹⁶ эВ⁻¹ · см⁻³ (см. табл. 2), эта величина близка к значениям $g(E_{\rm F})$, определенным в работе [22] из анализа температурной зависимости вида $\exp(-T_{\rm ES}/T)^{1/2}$.

Сейчас же мы отметим, что у образцов S₂, S₃ и S₄, т. е. у всех образцов, пленки в которых сформированы из травленых в НF наночастиц Si, плотность состояний группируется вблизи величины 10^{16} эB⁻¹ · см⁻³ и почти на 3 порядка величины меньше, чем в образце S₁, наночастицы в котором травлению не подвергались. Подобный факт указывает на то, что большинство локализованных состояний связано с поверхностью наночастиц и эффективно удаляется в результате травления.

Рис. 7. Температурная зависимость в координатах $\lg G(T) - (1/T)^{0.25}$ проводимости образца S₄. Квадраты — экспериментальная кривая. Сплошная линия — суммарная аппроксимация: $G_{0A} \cdot \exp(-T_A/T) + G_{0M} \cdot \exp(-T_M/T)^{1/4} + G_{0ES} \cdot \exp(-T_{ES}/T)^{1/2}$. Линии *1*, 2 и 3 — компоненты аппроксимации ~ $\exp(-T_A/T)$, ~ $\exp(-T_M/T)^{1/4}$ и ~ $\exp(-T_{ES}/T)^{1/2}$ соответственно.

Величины температур $T_{\rm ES}$ для всех образцов, кроме S₁, находятся в диапазоне $7 \cdot 10^3 - 1.0 \cdot 10^4$ К. Эти значения очень близки к величине $T_{\rm ES} = 1.2 \cdot 10^4$ К, измеренной в работе [34], в которой изучались транспортные характеристики пленок из наночастиц Si диаметром ~ 10 нм.

Ширины кулоновской щели в образцах $S_2,\ S_3$ и S_4 также примерно одинаковы и составляют $\sim 1\,{\rm M}{\rm yB}$ и также на порядок величины меньше, чем в образце $S_1.$

Из приведенных в табл. 2 величин видно, что вычисленные ξ , $\langle R_{\rm M} \rangle$ и $\langle R_{\rm ES} \rangle$ удовлетворяют условию $\langle R_{\rm exp} \rangle > \xi_{\rm exp}$. Кроме того, так как $\langle R_{\rm M} \rangle > \langle R_{\rm ES} \rangle$, это означает, что пространственный диапазон туннелирования в режиме VRH Мотта является более протяженным, чем в режиме VRH Эфроса–Шкловского. Величины $\langle R_{\rm M} \rangle$ в образцах S₂, S₃ и S₄ группируются вблизи величины ~ 60 нм: это означает, что прыжки электронов в этих пленках происходят не только между ближайшими наночастицами, но и могут захватывать несколько соседних. В то же время величина $\langle R_{\rm M} \rangle$ в образце S₁ составляет только ~ 5 нм, т.е. прыжки электронов, определяющих транспорт в этой пленке, могут происходить только между ближайшими наночастицами.

Для образца S₅, в котором наночастицы Si легированы бором, соотношение вкладов функций $\exp(-T_{\rm M}/T)^{0.25}$ и $\exp(-T_{\rm ES}/T)^{0.5}$ в суммарную проводимость существенно отличается от образцов S₂, S₃ и S₄. Как видно из рис. 8, $T_{\rm cross} = 300$ K и является самой низкой для образцов S₂ и S₃. Самой низкой из всех исследованных образцов является и величина $g(E_{\rm F})$, которая составляет $\sim 10^{15}$ эВ⁻¹ · см⁻³. В связи с этим можно предположить верность утверждения, изложенного в работах [18,33], согласно которому концентрация дырок, введенных при

Рис. 8. Температурная зависимость в координатах $\lg G(T) - (1/T)^{0.25}$ проводимости образца S₅. Квадраты — экспериментальная кривая. Сплошная линия — полная аппроксимация, а штриховая и штрихпунктирная линии — компоненты аппроксимации $\sim \exp(-T_{\rm M}/T)^{0.25}$ и $\sim \exp(-T_{\rm ES}/T)^{0.5}$ соответственно.

Рис. 9. Температурная зависимость в координатах $\lg G(T) - (1/T)^{0.25}$ проводимости образца S₀. Заполненные квадраты — экспериментальная кривая. Сплошная линия — полная аппроксимация, а штриховая и штрихпунктирная линии — компоненты аппроксимации ~ $\exp(-T_A/T)$ и ~ $\exp(-T_M/T)^{0.25}$ соответственно.

акцепторном легировании, уменьшается вследствие их взаимодействия с поверхностными состояниями.

Также для образца S₅ характерны очень малое значение ширины кулоновской цели (0.3 мэВ) и наибольшие средние длины прыжков $\langle R_{\rm M} \rangle$ и $\langle R_{\rm ES} \rangle$, вследствие чего туннелирование может происходить через посредство нескольких промежуточных наночастиц.

Температурная зависимость, приведенная на рис. 9 для нелегированного образца S₀, количественно и качественно отличается от аналогичных зависимостей для легированных образцов S₁, S₂, S₃ и S₄. Во-первых, величина проводимости у образца S₀ на несколько порядков меньше, чем у указанных выше образцов, во-вторых, в зависимости G(T) образца S₀ отсутствует область температур, в которой проводимость могла бы быть аппроксимирована законом Эфроса—Шкловского.

Как видно из рис. 9, экспериментальная кривая образца S₀ с хорошей точностью может быть аппроксимирована комбинацией функций $\exp(-T_{\rm A}/T)$ и $\exp(-T_{\rm M}/T)^{0.25}$, т.е. активационным законом и законом Мотта. Подобная аппроксимация экспериментальной кривой дает значения $E_A = kT_A = 1.6$ эВ и $T_M = 5 \cdot 10^8$ К. Так как $E_{\rm A} = E_{\rm C} - E_{\rm F}$, то найденное значение $E_{\rm A}$ означает, что уровень Ферми в образце S₀ расположен глубоко в запрещенной зоне. Найдем плотность состояний на уровне Ферми из формулы для T_M. Поскольку для образца S₀ неизвестна величина длины локализации волновой функции ξ , воспользуемся тем фактом, что для образцов S₂, S_3 и S_4 значение ξ находится в узком числовом интервале 4.5-6.2 нм. Поэтому если для вычисления $g(E_{\rm F})$ мы возьмем среднее значение $\xi = 5.3 \cdot 10^{-9}$ м, то не допустим значительной погрешности. В результате вычис-

211

лений получаем величину $g(E_{\rm F}) = 2.8 \cdot 10^{15} \, {\rm s}{\rm B}^{-1} \cdot {\rm cm}^{-3}$, которая близка к значениям $g(E_{\rm F})$ образцов S₂, S₃ и S₅.

4. Заключение

В представленной работе описаны результаты исследования электрических характеристик тонких пленок из наночастиц Si, легированных фосфором и бором.

Для исключения влияния ионной проводимости измерения проводились в условиях сверхвысокого вакуума $(2 \cdot 10^{-9} - 3 \cdot 10^{-9}$ Topp). Для того чтобы убрать первоначально присутствующий окисел с поверхности наночастиц Si, пленки *nc*-Si, нанесенные на поликоровую подложку с платиновыми контактами, перед регистрацией токовых характеристик подвергались нагреванию в сверхвысоком вакууме $(2 \cdot 10^{-9} - 3 \cdot 10^{-9}$ Topp) до температур 950°С. После охлаждения до комнатной температуры проводимость пленок *nc*-Si увеличивалась более чем на 4 порядка.

Из анализа температурных зависимостей темновой проводимости пленок из легированных nc-Si установлено, что для наночастиц с концентрацией свободных электронов $\sim 10^{20}\,{
m cm^{-3}}$ существуют два температурных диапазона, в которых проводимость определяется прыжками с переменной длиной. В более высокотемпературном диапазоне кулоновское взаимодействие между заряженными ионизированными примесями и локализованными электронами не влияет на электронный транспорт (VRH Мотта), но при меньших температурах такое взаимодействие оказывается существенным (VRH Эфроса-Шкловского). Из анализа зависимостей $G(T) \sim G_{01} \cdot \exp(-T_{\rm M}/T)^{0.25}$ и $G(T) \sim G_{02} \cdot \exp(-T_{\rm ES}/T)^{0.5}$ определены плотность электронных состояний на уровне Ферми, ширины кулоновской щели, длины локализации волновых функций локализованных электронов и средние длины прыжков. Для пленок nc-Si, сформированных из наночастиц с уровнем легирования, при котором концентрация свободных электронов меньше $\sim 10^{19}\,{
m cm^{-3}},$ наблюдаются три температурных диапазона, в которых реализуются различные процессы проводимости. При температурах > 560 К доминирующим процессом является процесс активации электронов из локализованных состояний на транспортный уровень, посредством которого осуществляется электрический ток. В диапазоне температур 230-560 К доминирующим транспортным процессом является VRH Мотта, а при меньших температурах основной транспорт зарядов осуществляется за счет VRН Эфроса-Шкловского.

Измерения проводимости пленок *nc*-Si из нелегированных наночастиц показали, что VRH Эфроса–Шкловского в них не реализуется ни при каком значении температуры. Основными транспортными процессами в таких пленках являются термически активированная проводимость и, при более низких температурах, VRH Мотта. Длины локализации волновых функций для всех образцов находятся в диапазоне 4.5—6.2 нм, а средние длины прыжков (кроме пленок из наночастиц, легированных бором) равны 57—86 нм. Эти данные позволяют сделать вывод о том, что диапазон прыжков носителей заряда захватывает несколько промежуточных наночастиц.

Установлено, что травление наночастиц в НГ приводит к заметному уменьшению плотности локализованных состояний и значительному увеличению средней длины прыжка при туннелировании. Следовательно, большинство локализованных состояний в изученных пленках *nc*-Si связано с поверхностью наночастиц Si.

Благодарности

Авторы благодарны проф. Б.И. Шкловскому за критические замечания относительно текста статьи.

Конфликт интересов

Авторы заявляют, что у них нет конфликта интересов.

Список литературы

- M. Yao, F. Ding, Y. Cao, P. Hu, J. Fan, C. Lu, F. Yuan, C. Shi, Y. Chen. Sensors Actuators B, 201, 255 (2014).
- [2] C. Shin, D.P. Pham, J. Park, Y-J. Lee, S. Kim, J. Yi. Thin Sol. Films, 690, 137515 (2019).
- [3] X. Zhou, K. Uchida, H. Mizuta, S. Oda. J. Appl. Phys., 106, 044511 (2009).
- [4] S. Niesar, R. Dietmueller, H. Nesswetter, H. Wiggers, M. Stutzmann. Phys. Status Solidi A, 206, 2775 (2009).
- [5] L. Mangolini, E. Thimsen, U. Kortshagen. Nano Lett., 5, 655 (2005).
- [6] E.M. Khokhlov, D.V. Kolmykov, N.N. Kononov, G.P. Kuz'min, S.N. Polyakov, A.M. Prokhorov, N.A. Sulimov, O.V. Tikhonevitch. Laser Phys., 8 (5), 1070 (1998).
- [7] D. Yu, C. Wang, P. Guyot-Sionnest. Science, 300, 1277 (2003).
- [8] S.J. Oh, N.E. Berry, J-H Choi, E.A. Gaulding, T. Paik, S.-H. Hong, C.B. Murray, C.R. Kagan. ACS Nano, 7, 2413 (2013).
- [9] A. Sahu, M.S. Kang, A. Kompch, C. Notthoff, A.W. Wills, D. Deng, M. Winterer, C.D. Frisbie, D.J. Norris. Nano Lett., 12, 2587 (2012).
- [10] A.R. Stegner, R.N. Pereira, R. Lechner, K. Klein, H. Wiggers, M. Stutzmann, M.S. Brandt. Phys. Rev. B, 80, 165326 (2009).
- [11] R. Gresback, N.J. Kramer, Yi Ding, T. Chen, U.R. Kortshagen, T. Nozaki. ACS Nano, 8 (6), 5650 (2014).
- [12] T. Chen, K.V. Reich, N.J. Kramer, H. Fu, U.R. Kortshagen, B.I. Shklovskii. Nature Materials, 15, 299 (2016).
- [13] S.S. Bubenov, S.G. Dorofeev, A.A. Eliseev, N.N. Kononov, A.V. Garshev, N.E. Mordvinova, O.I. Lebedev. RSC Adv., 8, 18896 (2018).
- [14] N.N. Kononov, S.G. Dorofeev. Smart Nanoparticles Technology, ed. by A.A. Hashim (InTech, Rijeka, 2012) chap. 19, p. 407. ISBN 978-953-51-0500-8

- [15] N. Rastgar, D.J. Rowe, R.J. Anthony, B.A. Merritt, U.R. Kortshagen, E.S. Aydil. J. Phys. Chem. C, 117, 4211 (2013).
- [16] R.N. Pereira, S. Niesar, W.B. You, A.F. da Cunha, N. Erhard, A.R. Stegner, H. Wiggers, M.G. Willinger, M. Stutzmann, M.S. Brandt. J. Phys. Chem. C, **115**, 20120 (2011).
- [17] A.R. Stegner, R.N. Pereira, K. Klein, R. Lechner, R. Dietmueller, M.S. Brandt, M. Stutzmann, H. Wiggers. Phys. Rev. Lett., 100, 026803 (2008).
- [18] J. Nelson, K.V. Reich, M. Sammon, B.I. Shklovskii, A.M. Goldman. Phys. Rev. B, 92, 085424 (2015).
- [19] H. Liu, A. Pourret, P. Guyot-Sionnest. ACS Nano, 4 (9), 5211 (2010).
- [20] S.M. Wasim, L. Essaleh, G. Marín, C. Rincón, S. Amhil, J. Galibert. Superlat. Microstr., 107, 285 (2017).
- [21] Y-C. Lee, C-I. Liu, Y. Yang, R.E. Elmquist, C.-Te. Liang. Chinese J. Phys., 55, 1235 (2017).
- [22] Md.N. Islam, S.K. Ram, S. Kumar. Physica E, 41, 1025 (2009).
- [23] T. Chen, B. Skinner, W. Xie, B.I. Shklovskii, U.R. Kortshagen. J. Phys. Chem. C, 118, 19580 (2014).
- [24] N.F. Mott, E.A. Davis. *Electron processes in non-crystalline materials* (Second edn, Clarendon Press, Oxford, 1979).
- [25] A.L. Efros, B.I. Shklovskii. J. Phys. C: Solid State Phys., 8 L49, (1975).
- [26] D.K. Paul, S.S. Mitra. Phys. Rev. Lett., **31** (16), 1000 (1973).
- [27] T.G. Castner. *Hopping Transport in Solids*, ed. by M. Pollak and B.I. Shklovskii (Amsterdam, Elsevier/North-Holland) p. 1.
- [28] B. Skinner, T. Chen, B.I. Shklovskii. Phys. Rev. B, 85, 205316 (2012).
- [29] A.S. Skal, B.I. Shklovskii. Sov. Phys. Solid State, 16, 1190 (1974).
- [30] R. Rosenbaum, N.V. Lien, M.R. Graham, M. Witcomb. J. Phys.: Condens. Matter, 9, 6247 (1997).
- [31] N.N. Kononov, S.G. Dorofeev, A.A. Ishchenko, R.A. Mironov, V.G. Plotnichenko, E.M. Dianov. Sov. Semiconductors, 45 (8), 1038 (2011).
- [32] J.E. Spanier, I.P. Herman. Phys. Rev. B, 61 (15), 10437 (2000).
- [33] M. Ben-Chorin, F. Moiler, F. Koch. Phys. Rev. B, 49 (4), 2981 (1994).
- [34] Z.A.K. Durrani, M.A. Rafiq. Microelectronic Engin., 86, 456 (2009).

Редактор Г.А. Оганесян

Variable-range-hopping conductivity of Mott and Efros—Shklovskii in the films formed by silicon nanoparticles, doped by the phosphorus and boron

S.G. Dorofeev¹, N.N. Kononov¹, S.S. Bubenov², V.M. Popelensky¹, A.A. Vinokurov¹

- ¹ Department of Chemistry,
- Lomonosov Moscow State University, 119991 Moscow, Russia ² Prokhorov General Physics Institute of the Russian Academy of Sciences,
- 119991 Moscow, Russia

Abstract The electrical characteristics of thin films formed from Si nanoparticles (nc-Si) with various degrees of doping are studied. To exclude the influence of ionic conductivity, the current parameters of the films were recorded in an ultrahigh vacuum ($P \sim 3-5 \cdot 10^{-9}$ Torr) with preliminary high-temperature (950°C) annealing. An analysis of the temperature dependences of the conductivity showed that in nc-Si films formed from heavily doped nanoparticles (the concentration of free electrons $n_{\rm e}$ is greater than $10^{19} \,{\rm cm}^{-3}$), the transport is determined by variable-length hopping (VRH). In these samples, the Mott conductivity prevails at temperatures above 300°C and at lower temperatures, the Efros-Shklovskii type variable range hopping conduction is dominate. In films with a medium level of doping of nanoparticles $(n_e < 10^{19} \text{ cm}^{-3})$, transport is realized by the Mott, Efros-Shklovskii and thermally activated conductivities. At the same time, thermally activated conductivity is dominated at temperatures above 560°C. In nc-Si films formed from undoped nanoparticles, the transport parameters are determined by thermally activated conductivity and Mott's conductivity. Conductivity of Efros-Shklovskii is not observed in such films. From the analysis of the parameters corresponding to the Mott and Efros-Shklovsky conductivities, the localization lengths of wave functions, the density of states at the Fermi level $(g(E_F))$, and average hopping lengths are found. The average hopping lengths in nc-Si films from nanoparticles pre-etched in HF are in the range 56-86 nm, which indicates that hopping in such films occurs via intermediate nanoparticles.