Влияние наличия достаточно высокой концентрации фосфора на концентрационное распределение галлия в кремнии

© М.К. Бахадирханов, Н.Ф. Зикриллаев, С.Б. Исамов, Х.С. Турекеев, С.А. Валиев

Ташкентский государственный технический университет,

100095 Ташкент, Узбекистан

E-mail: bahazeb@yandex.ru

Поступила в Редакцию 9 апреля 2021 г. В окончательной редакции 11 сентября 2021 г. Принята к публикации 20 сентября 2021 г.

Установлено, что в кремнии, предварительно легированном высокой концентрацией фосфора, при диффузии галлия происходит существенное увеличение растворимости галлия. Полученные результаты объясняются взаимодействием атомов галлия и фосфора, в результате которого формируются квазинейтральные молекулы $[P^+Ga^-]$. Предполагается, что образование таких квазинейтральных молекул $[P^+Ga^-]$ стимулирует формирование бинарных элементарных ячеек Si_2GaP в решетке кремния. Показано, что достаточно большая концентрация таких элементарных ячеек может привести к существенному изменению электрофизических параметров кремния и к возможности получения нового материала на основе кремния.

Ключевые слова: кремний, легирование, фосфор, галлий, диффузия.

DOI: 10.21883/FTP.2022.02.51962.9666

1. Введение

Взаимодействие примесных атомов между собой в кристаллической решетке представляет собой особый научный и практический интерес. Благодаря таким взаимодействиям стимулируется формирование различных видов моноатомных нано- и микрокластеров [1–3], на основе которых возможно создание объемно наноструктурированных полупроводниковых материалов, которые практически невозможно получить другими технологическими методами. Кластеры примесных атомов с различной природой (электронейтральные, магнитные, многозарядные и т.д.) позволяют получить материал с уникальными электрофизическими параметрами и функциональными возможностями [4–7].

Исследование взаимодействия элементов III и V групп в решетке кремния представляет большой интерес. Во-первых, в результате таких взаимодействий можно формировать бинарные нанокластеры с различным составом, структурой и природой; во-вторых, благодаря очень высокой растворимости элементов III и V групп $(N \ge 10^{20}-10^{21}~{\rm cm}^{-3})$ возможно создание бинарных кластеров с достаточно высокой концентрацией, которые могут существенно влиять на энергетическую структуру кремния. Наконец, в-третьих, из-за достаточно низкого коэффициента диффузии этих элементов в кремнии $(D \sim 10^{-12}-10^{-13}~{\rm cm}^2/{\rm c})$ удается формировать бинарные кластеры как в приповерхностной области, так и в объеме кристалла с необходимой толщиной [8–10].

Поэтому цель данной работы заключалась в изучении взаимодействия атомов фосфора (P) и галлия (Ga) в кремнии при последовательной диффузии этих примесей.

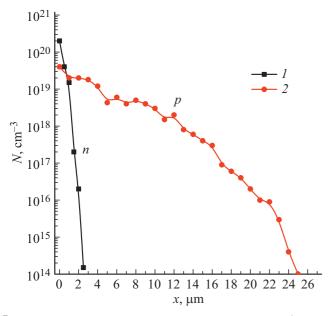
2. Технология изготовления образцов и методы их исследования

В качестве исходного материала был использован монокристаллический кремний КЭФ-100 ($N_P\sim 10^{13}\,{\rm cm^{-3}}$) с содержанием кислорода $N_{\rm O_2}\approx (5-6)\cdot 10^{17}\,{\rm cm^{-3}}$ и плотностью дислокаций $N_D\sim 10^3\,{\rm cm^{-2}}$. Размер образцов составлял $V\sim 1\times 4\times 8\,{\rm mm}$. После необходимых механических и химических обработок образцов проводилась диффузия фосфора из нанесенного слоя фосфорнокислого аммония на воздухе при $T=1000^{\circ}{\rm C}$ в течение $t=2\,{\rm y}$. После диффузии во всех образцах снималось с поверхности фосфоросиликатное стекло методом травления на HF и NH₄F. При этом концентрация фосфора на поверхности образцов составляла $N_P=2\cdot 10^{20}\,{\rm cm^{-3}}$.

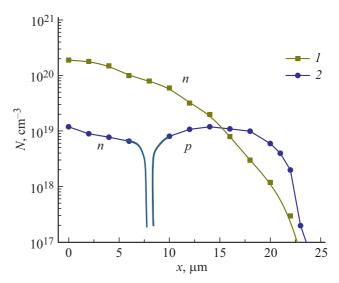
Диффузия галлия в кремнии (КЭФ-100) проводилась из газовой фазы при температуре $T=1250^{\circ}\mathrm{C}$ в течение 4 ч. Такой выбор условий диффузии галлия диктовался тем, чтобы получить максимальную концентрацию на поверхности и в объеме кремния.

Затем в образцах, легированным фосфором, проводилась диффузия галлия при $T=1250^{\circ}\mathrm{C}$ в течение 4 ч. При этом одновременно подвергались термоотжигу образцы кремния, легированного фосфором (без галлия), также при $T=1250^{\circ}\mathrm{C}$, t=4 ч, чтобы определить изменение концентрационного распределения фосфора при дополнительных отжигах.

Таким образом, получилось 4 партии образцов: I — образцы после диффузия фосфора при $T=1000^{\circ}\mathrm{C}$, t=2 ч; II — образцы, легированные галлием при $T=1250^{\circ}\mathrm{C}$, t=4 ч, которые предварительно легировались фосфором при $T=1000^{\circ}\mathrm{C}$, t=2 ч; III — контрольные образцы, легированные фосфором ($T=1000^{\circ}\mathrm{C}$, t=2 ч), отожженные при $T=1250^{\circ}\mathrm{C}$, t=4 ч; IV — контрольные


образцы, легированные только галлием при $T=1250^{\circ}\mathrm{C}$, $t=4\,\mathrm{ч}$, в которых не проводилась диффузия фосфора.

Концентрационное распределение снималось с помощью 4-зондового метода послойным снятием слоя по 1 мкм методом химического травления. При этом предполагалось, что все введенные примесные атомы фосфора и галлия находятся в электрически активном состоянии. При расчете концентрации фосфора и галлия (электронов и дырок) учитывалось изменение подвижности носителей заряда от концентрации примесных атомов [11]. Ошибка измерения не превышала 10%.


3. Результаты исследования

На рис. 1 представлено концентрационное распределение атомов фосфора в кремнии после диффузии $T=1000^{\circ}\mathrm{C},\ t=2\,\mathrm{ч}.$ Также на рисунке представлено концентрационное распределение галлия после диффузии при $T=1250^{\circ}\mathrm{C},\ t=4\,\mathrm{ч}$ в образцах КЭФ-100. Как видно из экспериментальных результатов, концентрация фосфора в приповерхностной области составляет $N_{\mathrm{P}}=2\cdot10^{20}\,\mathrm{cm}^{-3},\$ а на глубине $x=2.5\,\mathrm{мкм}$ его концентрация уменьшается до $\sim10^{14}\,\mathrm{cm}^{-3}$ (кривая I), при этом образцы все время остаются n-типа. Это полностью соответствует литературным данным [12-14].

В то же время поверхностная концентрация галлия после диффузии при $T=1250^{\circ}\mathrm{C}$, t=4 ч достигает $4\cdot 10^{19}~\mathrm{cm^{-3}}$, она монотонно уменьшается на глубине образца и при x=25 мкм составляет $\sim 10^{14}~\mathrm{cm^{-3}}$. Установлено, что при этом в области распределения галлия

Рис. 1. Концентрационное распределение электронов (атомов фосфора) и дырок (галлия) в решетке кремния, диффундированных независимо друг от друга: I — распределение электронов (фосфора) при $T=1000^{\circ}\mathrm{C},\ t=2\,\mathrm{y};\ 2$ — распределение дырок (галлия) при $T=1250^{\circ}\mathrm{C},\ t=4\,\mathrm{y}.$

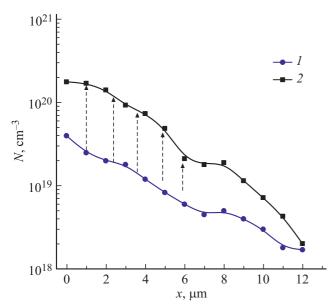


Рис. 2. Концентрационное распределение электронов (фосфора) в образцах, дополнительно отожженных при $T=1250^{\circ}\mathrm{C}$, t=4 ч (кривая I); концентрационное распределение носителей заряда в образцах, легированных галлием, предварительно легированных фосфором (кривая 2). n- и p-тип проводимости образцов при данной глубине.

образцы остаются p-типа. Эти данные также подтверждают работы [15,16]. Таким образом, концентрационное распределение фосфора и галлия при их диффузии существенно отличаются друг от друга.

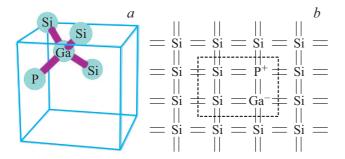
На рис. 2 представлены концентрационное распределение фосфора в контрольных образцах, которые подвергались дополнительному термоотжигу при $T=1250^{\circ}\mathrm{C}$, $t=4\,\mathrm{u}$ (кривая I), а также концентрационное распределение носителей заряда в образцах кремния, легированных галлием при $T=1250^{\circ}\mathrm{C}$, $t=4\,\mathrm{u}$, которые были предварительно легированы фосфором при $1000^{\circ}\mathrm{C}$, $t=2\,\mathrm{u}$ (кривая 2). Как видно из рисунка, в результате дополнительного отжига при $T=1250^{\circ}\mathrm{C}$, $t=4\,\mathrm{u}$ поверхностная концентрация фосфора незначительно уменьшается, а глубина проникновения достигает $x=25\,\mathrm{mkm}$ (кривая I), в области $x=0-25\,\mathrm{mkm}$ образцы приобретают I0-тип проводимости.

Концентрационное распределение в образцах, легированных галлием при $t=1250^{\circ}\mathrm{C}$, $t=4\,\mathrm{ч}$, после легирования фосфором при $1000^{\circ}\mathrm{C}$, $t=2F\,\mathrm{ч}$ (кривая 2) показывает, что в исследуемых образцах до глубины $x=7.5-8\,\mathrm{mkm}$ имеется n-тип проводимости. При этом концентрация электронов (фосфора) уменьшается, а при $x>7.5-8\,\mathrm{mkm}$ образцы приобретают p-тип проводимости. В области $x=7.5-10\,\mathrm{mkm}$ концентрация дырок незначительно увеличивается, в области $x=8-15\,\mathrm{mkm}$ концентрация дырок (галлия) практически остается постоянной, а при $x>17\,\mathrm{mkm}$ достаточно резко уменьшается. Практически во всех образцах получается аналогичный результат. Эти результаты показывают, что при диффузии галлия (при наличии высокой концентрации фосфора) концентрация фосфора в области

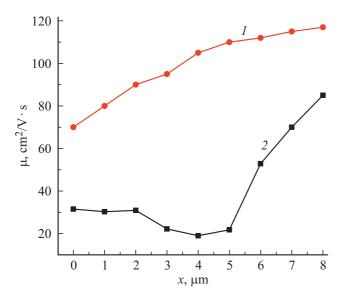
Рис. 3. Концентрационное распределение дырок (галлия) при отсутствии (кривая 1) и при наличии (кривая 2) фосфора.

x = 0 - 7.5 мкм уменьшается на 1 - 1.5 порядка, затем концентрация галлия становится больше, чем концентрация фосфора, и материал обладает р-типом проводимости. Хотя, как видно из рис. 2 (кривая 1), концентрация фосфора до области 15 мкм больше, чем концентрация галлия. Эти результаты дают возможность предполагать, что наличие фосфора в кремнии приводит к повышению концентрации галлия. На основе полученных результатов (см. рис. 2, кривые 1 и 2) вычислялось значение концентрации галлия по глубине образца при наличии фосфора. Расчет проводился исходя из уравнения нейтральности $N_{\rm Ga}=n_0-n_1$ в области $x=0-7.5\,{\rm MKM}$, где n_0 — концентрация электронов в образцах, легированных фосфором, отожженных дополнительно при T = 1250°C, t = 4ч, n_1 — концентрация электронов в образцах, легированных галлием при наличии фосфора, а в области x > 7.5 мкм. $N_{\rm Ga} = n_2 + p$, где n_2 — концентрация электронов в образцах кремния, легированных фосфором и отожженных при $T=1250^{\circ}\mathrm{C}$, $t=4\,\mathrm{y}$, в данной области x, p — концентрация дырок в этой области.

На рис. З представлены концентрационное распределение атомов галлия при диффузии $T=1250^{\circ}\mathrm{C}$, $t=4\,\mathrm{u}$ в отсутствие диффузии фосфора, а также расчетное концентрационное распределение атомов галлия при таких же условиях диффузии в образцах, которые были предварительно легированы фосфором при $1000^{\circ}\mathrm{C}$, $t=2\,\mathrm{u}$. Из этих результатов следует, что независимо от одинаковых условий диффузионного легирования во всех материалах концентрационное распределение атомов галлия в 4-6 раз больше в образцах, дополнительно легированных фосфором, чем в образцах без фосфора. Это означает, что наличие достаточно высокой концентрации фосфора существенно увеличивает


растворимость атомов галлия. Также следует отметить, что глубина залегания галлия в образцах, легированных фосфором, меньше (2-3 мкм), чем в образцах без фосфора. Полученные экспериментальные данные частично подтверждают результаты работ [17,18], несмотря на то что там исследовалось взаимодействие фосфора с бором.

4. Обсуждение результатов


Полученные экспериментальные результаты невозможно объяснить взаимной компенсацией донорных (фосфор) и акцепторных (галлий) примесных атомов. При этом атомы фосфора и галлия в решетке кремния распределены хаотически, и эти атомы пространственно разделены. Это не должно приводить к повышению концентрации атомов галлия при наличии атомов фосфора. Поэтому можно предполагать, что это явление связано с взаимодействием атомов фосфора и галлия. Так как атомы фосфора в решетке кремния находятся в узлах кристаллической решетки в виде положительно заряженного иона Р+, создавая дополнительные электроны в зоне проводимости, значение которого равно NP⁺. Наличие достаточно большой концентрации положительно заряженных атомов фосфора (Р+) практически создает электрические потенциалы, распределенные от поверхности кристалла по глубине образца в кремнии, что стимулирует повышение атомов галлия в процессе диффузии, которые в кремнии действуют как акцепторная примесь в виде отрицательного иона Ga-. Поэтому можно предполагать, что в результате таких взаимодействий в решетке кремния появляются донорно-акцепторные комплексы, т.е. квазимолекулы в виде $[P^+Ga^-]$.

Такие комплексы могут существовать только в случаях, когда атомы фосфора и галлия находятся рядом, т. е. они занимают соседние два узла в решетке кремния (рис. 4, a). Другое положение атомов галлия и фосфора в решетке кремния не обеспечивает стабильного образования комплексов между этими примесными атомами. Образование таких электрически нейтральных комплексов [Р+Gа-] приводит систему к более выгодному термодинамическому состоянию, чем в случае, когда атомы этих примесей удалены друг от друга. При образовании комплексов, во-первых, существенно уменьшается концентрация носителей заряда как в зоне проводимости, так и в валентной зоне, т.е. степень дефектности кристалла уменьшается; во-вторых, электрические потенциалы, которые создаются вокруг каждого иона, экранируются между собой, что опять приводит к понижению степени дефектности кристалла.

Все эти факторы стимулируют образование комплексов $[P^+Ga^-]$, так как наличие достаточно высокой концентрации фосфора в кремнии создает более благоприятные условия для повышения концентрации вновь диффундирующих атомов галлия. Доказательством этого предположения служат следующие результаты иссле-

Рис. 4. Квазимолекулы $Ga-P^+$ (*a*), бинарные электронейтральные решетки типа $Si_2P^+Ga^-$ в кремнии (*b*).

Рис. 5. Изменение подвижности электронов в кремнии, легированном фосфором (1), и в кремнии (предварительно легированном фосфором), легированном галлием (2).

дования. Была проведена диффузия галлия в кремнии при $T=1250^{\circ}\mathrm{C}$ в течение $t=4\,\mathrm{ч}$, но с поверхностной концентрацией фосфора $N_{\mathrm{P}}\sim 10^{17}\,\mathrm{cm}^{-3}$, т. е. значительно меньше, чем растворимость галлия при данной темпертуре. Такие образцы были получены шлифовкой поверхности кремния, легированного фосфором при $1000^{\circ}\mathrm{C}$, $t=2\,\mathrm{ч}$, а затем отожженые при температуре $T=1250^{\circ}\mathrm{C}$, $t=4\,\mathrm{ч}$. Как показали результаты экспериментов, в этом случае никакого повышения растворимости атомов галлия не было обнаружено. В результате исследования было установлено, что заметное повышение растворимости галлия происходит только тогда, когда концентрация атомов фосфора $N_{\mathrm{P}} \geq N_{\mathrm{Ga}}$.

Таким образом, можно утверждать, что повышение растворимости атомов галлия в кремнии с повышенной концентрацией фосфора связано с образованием комплексов в виде электрически нейтральных молекул в решетке кремния. Подтверждением этого могут служить результаты исследования подвижности носителей заряда по толщине образца методом Ван-дер-Пау (рис. 5). Как

видно из рисунка, несмотря на то что до $8\,\mathrm{mkm}$ образцы кремния (предварительно легированного фосфором), легированного галлием и кремния, легированного фосфором без галлия, имеют n-тип проводимости, но подвижность электронов в кремнии с комплексами [GaP] в 2-3 раза меньше, чем подвижность электронов в образцах, легированных только фосфором. Также следует отметить, что концентрация электронов в образцах, легированных только фосфором, почти на порядок больше, чем концентрация электронов в образцах, легированных фосфором и галлием.

При этом также следует отметь следующий интересный факт, связанный с образованием комплексов $[P^+Ga^-]$, которые находятся в соседних узлах решетки кремния. При образовании таких комплексов в решетке формируются новые бинарные электрически нейтральные решетки типа $Si_2P^+Ga^-$ (рис. 4, b).

5. Заключение

В работе показано, что в кремнии, предварительно легированном высокой концентрацией фосфора, при диффузии галлия происходит существенное увеличение растворимости галлия. Полученные результаты объясняются взаимодействием атомов галлия и фосфора, в результате которого, формируются квазинейтральные молекулы $[P^+Ga^-]$. Предположено, что образование таких квазинейтральных молекул $[P^+Ga^-]$ стимулирует формирование бинарных элементарных ячеек Si_2GaP в решетке кремния. Формирование этих бинарных элементарных ячеек с достаточно высокой концентрацией, и изучение их влияния на фундаментальные параметры кремния представляют большой практический и научный интерес.

Конфликт интересов

Авторы заявляют об отсутствии конфликта интересов.

Список литературы

- G.W. Ludwig, H.H. Woodbury, R.O. Carlson. J. Phys. Chem. Sol., 8, 490 (1959).
- [2] J. Kreissl, W. Gehlhoff. Phys. Status Solidi B, 145, 609 (1988).
- [3] М.Г. Мильвидский, В.В. Чалдышев. ФТП, **32** (5), 513 (1998).
- [4] M.K. Bahadirkhanov, B.K. Ismaylov, K.A. Ismailov, N.F. Zikrillaev, S.B. Isamov. Int. J. Adv. Sci. Techn., 29 (9), 6308 (2020).
- [5] M.K. Bakhadyrkhanov, K.S. Ayupov, G.Kh. Mavlyanov, S.B. Isamov. Semiconductors, 44 (9), 1145 (2010).
- [6] М.К. Бахадирханов, Б.А. Абдурахманов, Х.Ф. Зикриллаев. Приборы, **5** (215), 39 (2018).
- [7] M.K. Bakhadyrkhanov, Kh.M. Iliev, G.Kh. Mavlonov, K.S. Ayupov, S.B. Isamov, S.A. Tachilin. Techn. Phys., 64 (3) 385 (2019).
- [8] M.K. Bakhadyrhanov, U.X. Sodikov, Kh.M. Iliev, S.A. Tachilin, Tuerdi Wumaier. Mater. Phys. Chem., 1, 89 (2019).

- [9] Л.И. Гречихин, С.Д. Латушкина, В.М. Комаровская, Ю. Шмермбекк. Упрочняющие технологии и покрытия, 9, 5 (2015).
- [10] M.K. Bakhadirkhanov, Sh.I. Askarov, N. Norkulov. Phys. Status Solidi A, 142, 339 (1994).
- [11] E.M. Conwell. Proc. IRE, 46 (6), 1281 (1958).
- [12] A. Florakis, T. Janssens, N. Posthuma, J. Delmotte, B. Douhard, J. Poortmans, W. Vandervorst. Energy Procedia, 38, 263 (2013).
- [13] E. García-Tabarés, D. Martín, I. García, I. Rey-Stolle. Sol. Energy Mater. Sol. Cells, 116, 61 (2013).
- [14] Л.Н. Александров, Т.В. Бондарева, Г.А. Качурин, И.Е. Тысченко. ФТП, **25** (2), 227 (1991).
- [15] Д.С. Королев, А.Н. Михайлов, А.И. Белов, В.К. Васильев, Д.В. Гусейнов, Е.В. Окулич. ФТП, 50 (2), 274 (2016).
- [16] T. Ahlgren, J. Likonen, J. Slotte, J. Raisanen, M. Rajatora, J. Keinonen. Phys. Rev. B, 56 (8), 4597 (1997).
- [17] Е.Г. Тишковский, В.И. Ободников, А.А. Таскин, К.В. Феклистов, В.Г. Серяпин. ФТП, 34 (6), 655 (2000).
- [18] Г.В. Гадияк. ФТП, 31 (4), 385 (1997).

Редактор А.Н. Смирнов

Effect of the presence of a sufficiently high phosphorus concentration on the concentration distribution of gallum in silicon

M.K. Bakhadirkhanov, N.F. Zikrillaev, S.B. Isamov, Kh.S. Turekeev, S.A. Valiev

Tashkent State Technical University, 100095 Tashkent, Uzbekistan

Abstract It was found that the silicon preliminarily doped with a high concentration of phosphorus during the diffusion of gallium, there is a significant increase in the solubility of the gallium. The results obtained are explained by the interaction of gallium and phosphorus atoms, as a result of which quasi-neutral molecules $[P^+Ga^-]$ are formed. It is assumed that the formation of such quasineutral molecules $[P^+Ga^-]$ stimulates the formation of Si_2GaP binary unit cells in the silicon lattice. It is shown that a sufficiently high concentration of such unit cells can lead to a significant change in the electrophysical parameters of silicon, i.e. the possibility of obtaining a new material based on silicon.