05.6;13.3

Аморфизация кремниевых нанонитей при облучении ионами аргона

© А.В. Кононина¹, Ю.В. Балакшин^{1,2}, К.А. Гончар¹, И.В. Божьев^{1,3}, А.А. Шемухин^{1,2}, В.С. Черныш^{1,2}

¹ Московский государственный университет им. М.В. Ломоносова, Москва, Россия

² Научно-исследовательский институт ядерной физики им. Д.В. Скобельцына Московского государственного университета им. М.В. Ломоносова, Москва, Россия

³ Центр квантовых технологий Московского государственного университета им. М.В. Ломоносова, Москва, Россия E-mail: anastasiia.kozhemyako@mail.ru

Поступило в Редакцию 10 августа 2021 г. В окончательной редакции 27 сентября 2021 г. Принято к публикации 28 сентября 2021 г.

Проведено облучение кремниевых нанонитей ионами Ar⁺ с энергией 250 keV и флюенсами от 10¹³ до 10¹⁶ cm⁻². Методом комбинационного рассеяния света исследована зависимость степени разупорядоченности структуры под действием ионного облучения от флюенса. Показано, что аморфизация пористого кремния происходит при бо́льших значениях числа смещений на атом, чем в тонких пленках кремния.

Ключевые слова: кремниевые нанонити, комбинационное рассеяние света, дефектообразование.

DOI: 10.21883/PJTF.2022.02.51912.18989

Наноструктуры на основе кремния сегодня активно исследуются во многих областях наноэлектроники [1,2]. В последнее время среди кремниевых наноструктур большой интерес стали вызывать кремниевые нанонити. Чувствительные элементы, изготовленные на их основе, могут использоваться для обнаружения различных респираторных вирусов [3], на основе кремниевых нанонитей производятся высокочувствительные биосенсоры, фотоэлектрические устройства, устройства для хранения и преобразования энергии [4,5].

Влияние ионного облучения на свойства и структуру кремниевых нанонитей мало изучено. Однако эффективность данного метода модификации очевидна. В работе [6] показано, что облучение ионами бора при разных углах падения пучка позволяет управлять проводимостью подложки из кремниевых нанонитей. В [7] показана возможность управления смачиваемостью кремниевых нанонитей при воздействии на мишень протонным пучком. Методом ионной имплантации в массивах кремниевых нанонитей могут создаваться p-n-переходы для последующей реализации на их основе функциональных устройств [8].

При рассмотрении влияния ионного облучения на свойства структур необходимо кроме внедряемых примесей также учитывать радиационно-индуцированные дефекты. Их присутствие значительно влияет на характеристики полупроводников. От концентрации дефектов зависит тепловая проводимость [9], электроннодырочный ток и условия пробоев [10], концентрация парамагнитных центров [11], спектры оптического излучения и поглощения в полупроводниковых структурах [12].

В настоящей работе исследована динамика аморфизации кремниевых нанонитей под действием облучения ионами аргона. Полученные результаты сравниваются со случаем аморфизации пористого и массивного кремния. Массив кремниевых нанонитей (КНН) был облучен ионами Ar⁺ с энергией 250 keV и ионными флюенсами от 10^{13} до 10^{16} cm⁻². При помощи метода комбинационного рассеяния света (КРС) был исследован процесс дефектообразования.

КНН были получены методом металлстимулированного химического травления (MCXT) пластин *c*-Si *p*-типа проводимости с кристаллографической ориентацией (100) и удельным сопротивлением $10-20 \Omega \cdot \text{сm}$. В качестве металла катализатора использовалось золото, которое было удалено с помощью раствора "царской водки" (HCl:HNO₃).

Структурные свойства были изучены с использованием сканирующего электронного микроскопа (СЭМ) Carl Zeiss SUPRA 40 FE-SEM. СЭМ-изображение полученных КНН представлено на рис. 1. Как видно из рисунка, толщина слоя КНН составляла 4.5 µm, диаметр нанонитей был равен 10–50 nm, а расстояние между нанонитями — 100–200 nm. Наноструктуры, получаемые

Рис. 1. СЭМ-изображение бокового среза образцов КНН, полученных методом МСХТ.

11

Рис. 2. Интенсивность спектра комбинационного рассеяния света, полученного от массива кремниевых нанонитей до и после облучения ионами Ar^+ с энергией 250 keV.

в результате травления, состоят из кристаллического остова, покрытого оксидным слоем, что подтверждено в ряде исследований [13,14].

Облучение проводилось на ускорительном комплексе HVEE-500 [15]. Экспериментальная линия содержит системы фокусировки ионного пучка и сканирования мишени, а также ловушку нейтральных частиц, систему подавления вторичных электронов для контроля флюенса облучения. Облучение проводилось при комнатной температуре, рабочее давление в камере не превышало 10^{-5} Ра, плотность тока пучка составляла $0.5 \,\mu$ A/cm² и исключала нагрев образца в процессе облучения.

Спектры КРС были получены при комнатной температуре на установке "Зондовая нанолаборатория ИНТЕГРА Спектра" с использованием лазера с длиной волны излучения 472.9 nm, мощность лазера при измерении составляла 4.2 mW/cm².

На рис. 2 приведены спектры КРС, полученные от массива КНН до и после облучения ионами Ar⁺ с энергией 250 keV. В спектре КРС от необлученного образца и образцов, облученных при малых флюенсах, присутствует интенсивный пик при 520 cm⁻¹, который соответствует кристаллической фазе кремния [16]. Спектры КРС от образцов, облученных при больших ионных флюенсах, содержат широкий пик с максимумом около $460-480 \,\mathrm{cm}^{-1}$, а также менее интенсивные пики при 300 и $380\,\mathrm{cm}^{-1}$. Последние два пика относятся к аморфному кремнию [17]. Широкий пик около 460-480 cm⁻¹ может являться суперпозицией нескольких пиков, относящихся к аморфному кремнию (470-480 cm⁻¹) [17,18] и аморфному диоксиду кремния (446 и $492 \,\mathrm{cm}^{-1}$) [19]. С ростом ионного флюенса интенсивность пика, относящегося к кристаллической фазе, снижается. Пик, соответствующий фазам аморфных кремния и диоксида

Значения флюенса в единицах ion/cm² и dpa

Флюенс	
ion/cm ²	dpa
$10^{16} \\ 10^{15} \\ 5 \cdot 10^{14} \\ 10^{14} \\ 10^{13}$	18 1.8 0.9 0.18 0.02

кремния, сначала появляется как плечо интенсивного пика при 520 cm⁻¹, с ростом флюенса суммарная интенсивность этой группы пиков возрастает. Это указывает на разупорядочение кристаллической структуры под действием ионного пучка. В спектре, полученном от образца, облученного с наибольшим флюенсом, пик при 520 cm⁻¹ полностью отсутствует, и спектр состоит из широкого пика с максимумом около 460–480 cm⁻¹, что свидетельствует о полной аморфизации структуры.

Для сравнения полученных для КНН результатов с данными для других кремниевых структур параметры имплантации были переведены в универсальные единицы dpa [20] (см. таблицу). С учетом структурных особенностей массива нанонитей и геометрии эксперимента расчет параметра dpa (числа смещений на атом) был проведен по алгоритму, соответствующему объемному кремнию [21].

Отметим, что при двух наименьших флюенсах облучения (0.02 и 0.18 dpa) максимум пика, относящегося к кристаллической фазе кремния, сохраняет свое положение и остается при 520 cm⁻¹. При флюенсе $5 \cdot 10^{14}$ cm⁻² (0.9 dpa) данный пик сдвигается в область меньших волновых чисел на $\Delta \omega = 8$ cm⁻¹, и его максимум находится при 512 cm⁻¹. С дальнейшим ростом флюенса величина сдвига $\Delta \omega$ продолжает увеличиваться, при флюенсе 10^{15} cm⁻² максимум данного пика находится при 509 cm⁻¹, что соответствует сдвигу $\Delta \omega = 11$ cm⁻¹ (рис. 3).

Рис. 3. Зависимость величины сдвига пика КРС, соответствующего кристаллической фазе кремния, от величины ионного флюенса.

Смещение пика, соответствующего сигналу от кристаллической фазы кремния, может указывать на проявление квантово-размерного эффекта, в частности на появление пространственного ограничения фононов в наноструктурированных материалах из-за присутствия в структуре наночастиц с размерами менее 10 nm, а увеличение сдвига с ростом флюенса облучения может свидетельствовать об уменьшении размера этих наночастиц [22,23]. Полученные результаты согласуются с результатами работы [21], где рассматривается модель, в которой при флюенсах, соответствующих величине менее 0.5 dpa, происходит накопление простейших дефектов в кристалле кремния, а далее идет объединение разрушенных областей. С ростом флюенса это приводит к формированию кристаллических неразрушенных кластеров, окруженных аморфной фазой кремния.

При значении 1.8 dpa в спектре наряду с пиком, относящимся к аморфной фазе, присутствует явный пик, относящийся к кристаллической фазе. Однако в пленках монокристаллического кремния при близком значении 1.7 dpa данный пик практически отсутствует [22]. При этом в спектре КРС, полученном от пористого кремния с пористостью 50%, подвергнутого облучению при значении 2 dpa, также наблюдается пик при 520 cm⁻¹ [11]. Согласно данным рис. 2, при значении 18 dpa с помощью методов КРС наблюдается полное разрушение кристаллической структуры.

В заключение отметим, что, согласно КРС, разрушение структуры нанонитей происходит при бо́лыших значениях параметра dpa, чем в случае тонких пленок кремния. При этом нанонити и пористый кремний (пористость 50%) аморфизуются при близких значениях dpa.

Благодарности

При проведении исследования использовалось оборудование Учебно-методического центра литографии и микроскопии МГУ им. М.В. Ломоносова.

Финансирование работы

Исследование выполнено при финансовой поддержке Российского фонда фундаментальных исследований в рамках научного проекта № 19-32-90174.

Конфликт интересов

Авторы заявляют, что у них нет конфликта интересов.

Список литературы

- R. Smerdov, Yu. Spivak, I. Bizyaev, P. Somov, V. Gerasimov, A. Mustafaev, V. Moshnikov, Electronics, 10 (1), 42 (2021). DOI: 10.3390/electronics10010042
- [2] R. Castro, Y. Spivak, S. Shevchenko, V. Moshnikov, Materials, 14 (10), 2471 (2021). DOI: 10.3390/ma14102471

- [3] M.B. Gongalsky, U.A. Tsurikova, J.V. Samsonova, G.Z. Gvindzhiliiia, K.A. Gonchar, N.Yu. Saushkin, A.A. Kudryavtsev, E.A. Kropotkina, A.S. Gambaryan, L.A. Osminkina, Results Mater. 6, 100084 (2020). DOI: 10.1016/j.rinma.2020.100084
- [4] N. Chartuprayoon, M. Zhang, W. Bosze, Y.-H. Choa, N.V. Myung, Biosens. Bioelectron., 63, 432 (2015).
 DOI: 10.1016/j.bios.2014.07.043
- [5] А.В. Павликов, О.В. Рахимова, П.К. Кашкаров, Вестн. Моск. ун-та. Сер. 3. Физика. Астрономия, № 2, 77 (2018).
 [A.V. Pavlikov, O.V. Rakhimova, P.K. Kashkarov, Moscow Univ. Phys. Bull., 73 (2), 199 (2018).
 DOI: 10.3103/S0027134918020121].
- [6] S. Aziza, A. Ripp, D. Horvitz, Y. Rosenwaks, Mater. Sci. Semicond. Process., 75, 43 (2018).
 DOI: 10.1016/j.mssp.2017.11.001
- [7] V.S. Vendamani, D. Kanjilal, S. Venugopal Rao, Chem. Phys., 548, 111242 (2021). DOI: 10.1016/j.chemphys.2021.111242
- [8] S. Hoffmann, J. Bauer, C. Ronning, Th. Stelzner, J. Michler, C. Ballif, V. Sivakov, S.H. Christiansen, Nano Lett, 9 (4), 1341 (2009). DOI: 10.1021/nl802977m
- [9] M.G. Shahraki, Z. Zeinali, J. Phys. Chem. Solids, 85, 233 (2015). DOI: 10.1016/j.jpcs.2015.06.001
- [10] A.A. Шемухин, Ю.В. Балакшин, B.C. Черныш, A.C. Патракеев, C.A. Голубков, H.H. Егоров, А.И. Сидоров, Б.А. Малюков, В.Н. Стаценко, В.Д. Чумак, Письма в ЖТФ, 38 (19), 83 (2012). [А.А. Shemukhin, Yu.V. Balakshin, V.S. Chernysh, A.S. Patrakeev, S.A. Golubkov, N.N. Egorov, A.I. Sidorov, B.A. Malyukov, V.N. Statsenko, V.D. Chumak, Tech. Phys. Lett., 38 (10), 907 (2012). DOI: 10.1134/S1063785012100112].
- [11] A.P. Evseev, A.V. Kozhemiako, Yu.V. Kargina, Yu.V. Balakshin, E.A. Zvereva, V.S. Chernysh, M.B. Gongalsky, A.A. Shemukhin, Rad. Phys. Chem., 176, 109061 (2020). DOI: 10.1016/j.radphyschem.2020.109061
- [12] S.D. Trofimov, S.A. Tarelkin, S.V. Bolshedvorskii, V.S. Bormashov, S.Yu. Troshchiev, A.V. Golovanov, N.V. Luparev, D.D. Prikhodko, K.N. Boldyrev, S.A. Terentiev, A.V. Akimov, N.I. Kargin, N.S. Kukin, A.S. Gusev, A.A. Shemukhin, Yu.V. Balakshin, S.G. Buga, V.D. Blank, Opt. Mater. Express, **10** (1), 198 (2020). DOI: 10.1364/OME.10.000198
- Y.M. Spivak, A.Y. Gagarina, M.O. Portnova, A.V. Zaikina,
 V.A. Moshnikov, J. Phys.: Conf. Ser., 1697, 012126 (2020).
 DOI: 10.1088/1742-6596/1697/1/012126
- [14] Yu.M. Spivak, S.V. Myakin, V.A. Moshnikov, M.F. Panov,
 A.O. Belorus, A.A. Bobkov, J. Nanomater., 2016, 2629582
 (2016). DOI: 10.1155/2016/2629582
- [15] Ю.В. Балакшин, А.А. Шемухин, А.В. Назаров, A.В. Кожемяко, В.С. Черныш, ЖТФ, 88 (12), 1900 (2018).
 DOI: 10.21883/JTF.2018.12.46796.41-18 [Yu.V. Balakshin, A.A. Shemukhin, A.V. Nazarov, A.V. Kozhemiako, V.S. Chernysh, Tech. Phys., 63 (12), 1861 (2018).
 DOI: 10.1134/S106378421812023X].
- [16] Z. Sui, P.P. Leong, I.P. Herman, G.S. Higashi, H. Temkin, Appl. Phys. Lett., 60 (17), 2086 (1992).
 DOI: 10.1063/1.107097
- [17] D. Bermejo, M. Cardona, J. Non-Cryst. Solids, 32 (1-3), 405 (1979). DOI: 10.1016/0022-3093(79)90085-1

- [18] Н.Е. Маслова, А.А. Антоновский, Д.М. Жигунов, В.Ю. Тимошенко, В.Н. Глебов, В.Н. Семиногов, ФТП, 44 (8), 1074 (2010). [N.E. Maslova, А.А. Antonovsky, D.M. Zhigunov, V.Y. Timoshenko, V.N. Glebov, V.N. Seminogov, Semiconductors, 44 (8), 1040 (2010). DOI: 10.1134/S1063782610080154].
- [19] R.K. Biswas, P. Khan, S. Mukherjee, A.K. Mukhopadhyay, J. Ghosh, K. Muraleedharan, J. Non-Cryst. Solids, 488, 1 (2018). DOI: 10.1016/j.jnoncrysol.2018.02.037
- [20] К.В. Карабешкин, П.А. Карасёв, А.И. Титов, ФТП, 47 (2), 206 (2013). [К.V. Karabeshkin, Р.А. Karaseov, А.I. Titov, Semiconductors, 47 (2), 242 (2013). DOI: 10.1134/S1063782613020115].
- [21] Ю.В. Балакшин, А.В. Кожемяко, А.П. Евсеев, Д.К. Миннебаев, Е.М. Elsehly, Вестн. Моск. ун-та. Сер. 3. Физика. Астрономия, № 3, 23 (2020). [Yu.V. Balakshin, A.V. Kozhemiako, A.P. Evseev, D.K. Minnebaev, E.M. Elsehly, Moscow Univ. Phys. Bull., 75 (3), 218 (2020). DOI: 10.3103/S0027134920030030].
- [22] A.B. Ю.В. Балакшин, Кожемяко, А.П. Евсеев, A.A. Шемухин, ΦΤΠ, 53 (6), 810 (2019). DOI: 10.21883/FTP.2019.06.47734.9050 [A.V. Kozhemiako, A.P. Evseev, Yu.V. Balakshin, A.A. Shemukhin, Semiconductors, 53 (6), 800 (2019). DOI: 10.1134/S1063782619060095].
- [23] A. Colli, A. Fasoli, C. Ronning, S. Pisana, S. Piscanec, A.C. Ferrari, Nano Lett., 8 (8), 2188 (2008).
 DOI: 10.1021/nl080610d