05.3;06.5 Теплопроводность композита на основе н-алкана и наноразмерных добавок

© В.М. Егоров, А.К. Борисов, В.А. Марихин

Физико-технический институт им. А.Ф. Иоффе РАН, Санкт-Петербург, Россия E-mail: victor_egorov1@inbox.ru

Поступило в Редакцию 10 июня 2021 г. В окончательной редакции 16 сентября 2021 г. Принято к публикации 27 сентября 2021 г.

Для выяснения эффективности теплопреобразования при фазовых переходах в PCM (phase change materials) исследовались композиты на основе н-алкана и наноразмерных добавок. Обосновано применение нового метода измерения теплопроводности посредством анализа формы пиков, регистрируемых на термограмме методом дифференциальной сканирующей калориметрии. Установлено, что теплопроводность композитных материалов в несколько раз превышает аддитивную теплопроводность исходных композита, отличной от надмолекулярной структуры композита, отличной от надмолекулярной структуры компонентов.

Ключевые слова: теплопроводность, фазовый переход, композит, н-алканы.

DOI: 10.21883/PJTF.2022.02.51911.18915

Одним из наиболее актуальных и перспективных направлений развития зеленой энергетики является разработка PCM (phase change materials), способных поглощать, хранить и преобразовывать потоки тепловой энергии за счет собственных тепловых эффектов, в том числе при фазовых переходах (ФП). В качестве наиболее перспективных в этом отношении РСМ рассматриваются гомологические ряды алифатических углеводородов и их производных, в первую очередь нормальные н-алканы [1-3]. Помимо наиболее важной характеристики РСМ — их энергоемкости — важное значение имеет теплопроводность этих материалов, определяющая мощность поглощаемой или выделяемой в виде тепла энергии. Широкое распространение метода дифференциальной сканирующей калориметрии (ДСК), обусловленное его экспрессностью и информативностью, позволило разработать метод определения коэффициента теплопроводности для различных материалов: полимеров, металлов, керамик [4]. Этот метод основан на анализе формы пиков теплоемкости $C_p(T)$, вызванных фазовыми переходами (твердотельными переходами, плавлением), и сравнении этих пиков с пиками теплоемкости в эталонных материалах.

В настоящей работе для выяснения эффективности теплопреобразования при фазовых переходах исследовались композиты на основе н-алкана (нонадекана) и наноразмерных добавок: исходный нонадекан (образец I), нонадекан с добавлением частиц Al_2O_3 размером 50–70 nm (образец II), нонадекан с добавлением частиц Al_2O_3 размером 90–110 nm (образец III), нонадекан с добавлением частиц Al_2O_3 размером 90–110 nm (образец III), нонадекан с добавлением частиц Al_2O_3 размером 90–100 nm (образец IV). Образцы композитов готовились в весовой пропорции нонадекан/порошок 95/5. Для равномерного распределения добавок по объему образцы в расплавленном

состоянии подвергались обработке на ультразвуковом диспергаторе УЗД1-0,1/22.

Термодинамические параметры композитов определялись на калориметре ДСК-500 фирмы "Спецприбор" в атмосфере азота при скорости сканирования 1 К/min. Температурная шкала калибровалась по точкам плавления льда (273.1 К) и индия (429.7 К), шкала теплового потока — по теплоемкости лейкосапфира. Измерения проводились в области температур 270-440 К. Вес образцов для испытаний составлял 5 mg.

Как было отмечено выше, в работе [4] был разработан метод определения коэффициента теплопроводности путем анализа формы эндотермического пика фазового перехода. Показано, что наклон пика на экспериментальной кривой ДСК испытываемого образца и смещение температуры максимума пика $T_{\rm max}$ к более высоким температурам (так называемое термическое запаздывание) обусловлены термическим сопротивления R. Величина R складывается из термосопротивления ячейки калориметра R_0 и термосопротивления испытываемого образца R_s ($R = R_0 + R_s$) и определяется по соотношению $R = \operatorname{ctg} \varphi$, где φ — угол наклона переднего фронта пика теплоемкости на кривой ДСК.

Термосопротивление ячейки калориметра R_0 зависит от конструктивных особенностей и определяется для каждого калориметра экспериментальным путем с помощью калибровки эталонами. На рис. 1 (кривая 5) показана эндотерма плавления эталонного индия, помещенного непосредственно в капсулу (в качестве эталона могут использоваться также сплав Вуда и галлий). Из рисунка видно, что линейность переднего фронта эндотермы при увеличении температуры сохраняется и, следовательно, термосопротивление в процессе плавления остается постоянным. Это позволяет определить значение R_0 ,

Образец	$R, K \cdot W^{-1}$	$R_s, \mathbf{K} \cdot \mathbf{W}^{-1}$	$\overset{\lambda,}{W\cdot m^{-1}\cdot K^{-1}}$	<i>T</i> ₀₁ , <i>T</i> ₀₂ , K	$\Delta C_{\max}, \ \mathbf{J} \cdot \mathbf{g}^{-1} \cdot \mathbf{K}^{-1}$	$q_1, q_2, \ \mathbf{J} \cdot \mathbf{g}^{-1}$	$q_n/(q_1+q_2),$	В	ω , nm ³
Ι	979	888	0.1264 [5]	291.60	18.0	35.1	77	580	84
				292.40	11.0	10.8	23	1200	570
II	299	208	0.5376	292.50	15.0	17.5	44	1000	290
				293.15	43.0	21.9	56	2300	540
III	317	226	0.4928	292.50	16.0	18.7	40	1000	280
				293.1	43.0	27.6	60	2200	500
IV	364	273	0.4032	291.75	10.0	11.7	38	1000	430
				292.30	38.0	19.3	62	2300	600

Коэффициент теплопроводности в нонадекане с добавками и параметры расчета пиков теплоемкости при твердотельном фазовом переходе

Рис. 1. Эндотермические пики, отвечающие твердофазным переходам в образцах I–IV (кривые *1–4* соответственно) и эталоне In (кривая 5). Жирные линии — экспериментальные данные, тонкие — линейная экстраполяция переднего фронта пика, штриховые линии — базовые.

величина которого для данного калориметра составила 91 К · W⁻¹. Таким образом, используя при испытании образцы материала, имеющего ярко выраженную аномалию на зависимости теплоемкости от температуры (например, в виде твердотельного фазового перехода), можно по разнице $R - R_0$ определить величину термосопротивления образца R_s . При этом следует сохранять такие же условия испытания, как при испытании эталона, а именно скорость нагревания, стандартные капсулы и режим газовой продувки калориметрической камеры прибора ДСК.

Значение R_s с точностью до множителя d, учитывающего геометрические размеры образца, определяет коэффициент теплопроводности материала образца λ по соотношению $\lambda = d/R_s$. При испытании образцов одинаковой геометрической формы множитель d остается постоянным. Это позволяет находить сравнительные характеристики теплопроводности испытываемых образцов. В том случае, если известен коэффициент теплопроводности одного из образцов, по определенному для него значению R_s можно установить значение d, которое в дальнейшем можно использовать для определения коэффициента λ других образцов.

На рис. 1 изображены кривые ДСК, полученные при нагревании исследуемых образцов в температурном интервале, содержащем диапазон структурного ФП первого рода (~ 290-294 К). Из рисунка видно, что форма эндотермических пиков на кривых, соответствующих нонадекану (кривая 1) и композитам (кривые 2-4), существенно различается: у последних значительно возросли амплитуды пиков ($\Delta C_{p \max}$) и уменьшились температурные диапазоны фазового превращения. Из рисунка также видно, что линейность переднего фронта эндотерм при увеличении температуры для всех образцов в значительной степени сохраняется и, следовательно, термосопротивление в процессе фазового перехода остается постоянным. По углу наклона переднего фронта φ для всех исследуемых образцов были определены значения *R*, которые приведены в таблице.

Как отмечалось выше, для определения коэффициентов λ всех образцов достаточно найти значение d одного из испытываемых образцов. Действительно, поскольку коэффициент теплопроводности для парафинов хорошо известен ($\lambda = 0.1264 \text{ W} \cdot \text{m}^{-1} \cdot \text{K}^{-1}$ [5]), нетрудно определить значение множителя, учитывающего геометрические размеры образца, которое для нонадекана оказалось равным $d = 112 \text{ m}^{-1}$. Используя это значение, можно определить величину коэффициента теплопроводности для исследуемых композитов. Рассчитанные таким образом значения λ представлены в таблице.

Из данных, приведенных в таблице, следует, что теплопроводность (коэффициент теплопроводности λ) исследуемых композитов существенно (в 3–4 раза) превышает теплопроводность большинства аморфнокристаллических полимеров. Следует отметить, что данные, полученные для двух композитов с одинаковыми добавками частиц Al₂O₃ размером 50–70 и 90–110 nm, существенно различаются. В первом случае теплопроводность оказалась несколько выше, чем во втором.

Рис. 2. Эндотермические пики, отвечающие твердофазным переходам первого рода в образцах I–IV (кривые *1–4* соответственно). Жирные линии — экспериментальные данные, тонкие — результат расчета по зависимости (2).

Наибольший эффект от введения наноразмерных частиц наблюдался в исследовании, в котором в парафин было внедрено ~ 10% графена [6]. Коэффициент теплопроводности по результатам этой работы составил $\lambda = 0.9362 \,\mathrm{W} \cdot \mathrm{m}^{-1} \cdot \mathrm{K}^{-1}$. Поскольку теплопроводность твердых тел имеет разную природу в зависимости от типа вещества, можно предположить, что, добавляя в парафин частицы оксида алюминия и серебра, имеющих значительно большую проводимость (для Al_2O_3 $\lambda \approx 25{-}30\,W\cdot m^{-1}\cdot K^{-1}$, для Ag $\lambda \sim 400 \, \mathrm{W} \cdot \mathrm{m}^{-1} \cdot \mathrm{K}^{-1}$), можно также ожидать увеличения теплопроводности в композите. Термосопротивление как аддитивная величина складывается из термосопротивления парафина и добавки. Принимая последнюю как величину, близкую к нулю, можно ожидать незначительного уменьшения термосопротивления композита и соответственно увеличения теплопроводности. Наши оценки показывают, что эффект от такого повышения не может превосходить 5-10%. Поэтому наблюдаемый нами эффект многократного увеличения коэффициента теплопроводности в композите связан, по-видимому, с изменением структуры парафина при внедрении в него частиц малого размера. Этот факт находит отражение в изменении термодинамических параметров твердотельного фазового перехода.

Из рис. 1 видна несимметричность формы пиков, что может быть обусловлено наличием по крайней мере двух составляющих. Для выявления этих составляющих проводился анализ пиков в рамках термодинамической теории самосогласованного поля [7] применительно к Λ-образным размытым ФП первого рода. Основная идея теории состоит в том, что в объеме старой фазы происходит локализация многочисленных флуктуаций в ограниченном объеме в виде стабильных зародышей новой фазы — так называемых элементарных объемов фазового превращения ω . В дальнейшем по мере развития перехода движение межфазной границы осуществляется путем последовательных добавлений зародышей с объемом ω на возникшую межфазную границу. Размеры устойчивых зародышей ω можно определить исходя из формы пиков $C_p(T)$. В работе [8] получено соотношение для температурной зависимости теплоемкости при размытом фазовом переходе в виде

$$\Delta C_p(T) = 4\Delta C_{\max} \exp[B(T - T_0)/T_0] \\ \times \left[1 + \exp[B(T - T_0)/T_0]\right]^{-2},$$
(1)

где T_0 — температура $\Phi\Pi$ первого рода, ΔC_{\max} — максимальное значение теплоемкости при $T = T_0, B$ — атермический параметр.

В несимметричных пиках производилось разделение [3] на два пика симметричной Л-образной формы при условии равенства энтальпии экспериментально полученного пика (q_n) сумме энтальпий двух симметричных пиков $(q_1 + q_2)$, т.е. $q_n = q_1 + q_2$. При варьировании параметров T_0 , ΔC_{max} и *В* для каждого из симметричных пиков можно было получить совпадение либо с правым (высокотемпературным с $T_0 = T_{02}$), либо с левым (низкотемпературным с $T_0 = T_{01}$) плечом пика. Наилучшее совпадение расчетных и экспериментальных зависимостей наблюдалось при значениях параметров, указанных в таблице. На рис. 2 показаны результаты расчета Л-образных пиков по соотношению (2) и экспериментальные зависимости теплоемкости $\Delta C_p(T)$. Параметр B в приведенном выше соотношении (1) содержит наиболее интересную информацию о физической природе ФП, поскольку он связан с величиной пика теплоемкости ΔC_{max}

$$\Delta C_{\rm max} = q_0 B / 4T_0 \tag{2}$$

(где q_0 — теплота превращения) и элементарным объемом превращения ω

$$B = \omega \rho q_0 / kT_0 \tag{3}$$

(где *k* — постоянная Больцмана, *р* — плотность).

Параметр *B* оказывается структурно-чувствительным параметром, поскольку определяет в материалах с размытыми ФП объемы зародышей новой фазы. Из соотношения (2) можно найти значения удельной теплоты (энтальпии) превращения, из соотношения (3) — элементарный объем превращения ω (полагая в первом приближении, что плотность кристаллов парафинов $\rho \sim 0.8 \,\mathrm{g\cdot cm^{-3}}$ [9]). Результаты расчета по этим соотношениям приведены в таблице.

Действительно, твердофазный переход в нонадекане происходит в два этапа. Как видно из рис. 2, в исходном нонадекане фазовое превращение в большей части кристалла происходит на первой стадии. При этом инициируется зарождение доменов новой фазы размером $\omega = 84 \text{ nm}^3$ (это следует из соотношения теплот превращения на первой и второй стадиях; см. таблицу). Фазовое превращение приводит к исчерпанию бездефектных областей кристалла и повышению поверхностной энергии вследствие накопления или появления препятствий

гии вследствие накопления или появления препятствии в оставшейся, т.е. не претерпевшей фазового превращения, части кристалла. На второй стадии фазового перехода в исходном нонадекане фазовое превращение происходит в меньшей (оставшейся) части кристалла с увеличением объема зародышей до $\omega = 570 \text{ nm}^3$.

Как видно из таблицы, в отличие от исходного нонадекана фазовое превращение в композитах происходит в большей части кристалла в бездефектных областях с большими объемами ($\omega = 500-600 \text{ nm}^3$), что приводит к снижению рассеяния фононов [5] и способствует увеличению теплопроводности кристаллов композитов по сравнению с теплопроводностью исходного нонадекана. В бездефектных областях с большими объемами формируется ламеллярная структура, которая более упорядочена в сравнении с исходной матрицей за счет увеличения ширины ламелей.

Таким образом, установлено, что значительное увеличение теплопроводности обусловлено не "аддитивной" добавкой более теплопроводящего материала, а перестройкой надмолекулярной структуры нонадекана вследствие наличия добавочных центров кристаллизации и формирования специфической надмолекулярной структуры н-алкана в композите.

Конфликт интересов

Авторы заявляют, что у них нет конфликта интересов.

Список литературы

- B.M. Егоров, А.К. Борисов, В.А. Марихин, Письма в ЖТФ, 45 (23), 38 (2019). DOI: 10.21883/PJTF.2019.23.48718.17744
 [V.M. Egorov, A.K. Borisov, V.A. Marikhin, Tech. Phys. Lett., 45 (12), 1204 (2019). DOI: 10.1134/S1063785019120058].
- [2] A.K. Borisov, V.M. Egorov, V.A. Marikhin, J. Phys.: Conf. Ser., 1236, 012010 (2019). DOI: 10.1088/1742-6596/1236/1/012010
- [3] В.М. Егоров, А.К. Борисов, В.А. Марихин, ФТТ, 63 (3), 406 (2021). DOI: 10.21883/FTT.2021.03.50595.225 [V.M. Egorov, A.K. Borisov, V.A. Marikhin, Phys. Solid State, 63 (3), 498 (2021). DOI: 10.1134/S1063783421030069].
- [4] V.A. Bershtein, V.M. Egorov, *Differential scanning calorimetry* of polymers: physics, chemistry, analysis, technology (Ellis Horwood, N.Y., 1994).
- [5] Ю.К. Годовский, *Теплофизика полимеров* (Химия, М., 1982).
- [6] M. Li, Appl. Energy, **106**, 25 (2013).DOI: 10.1016/j.apenergy.2013.01.031
- [7] М. Фишер, Природа критического состояния (Мир, М., 1968).

- В.М. Егоров, А.К. Борисов, В.А. Марихин
- [8] Г.А. Малыгин, ФТТ, 43 (10), 1911 (2001). [G.A. Malygin, Phys. Solid State, 43 (10), 1989 (2001).
 DOI: 10.1134/1.1410644].
- [9] D.M. Small, *Physical chemistry of lipids* (Plenum Press, N.Y.-London, 1986).