09,08

Люминофоры холодного голубого излучения на основе оксида алюминия, допированного диспрозием

© И.В. Бакланова, В.Н. Красильников, А.П. Тютюнник, Я.В. Бакланова

Институт химии твердого тела УрО РАН, Екатеринбург, Россия E-mail: baklanova i@ihim.uran.ru

Поступила в Редакцию 30 августа 2021 г. В окончательной редакции 30 августа 2021 г. Принята к публикации 3 сентября 2021 г.

По прекурсорной технологии были синтезированы оксиды $Al_2O_3:Dy^{3+}$ различных цветов свечения. Рентгеноструктурным анализом установлены фазовый состав и структура, полученных материалов. Исследованы спектры возбуждения и эмиссии, кривые затухания, термическое тушение люминесценции. При УФ-возбуждении люминофоры демонстрирует голубую, фиолетово-синюю и белую эмиссию в зависимости от концентрации диспрозия и температуры отжига прекурсора $Al_{1-x}Dy_x(OH)(HCOO)_2$ на воздухе.

Ключевые слова: оксид алюминия, диспрозий, прекурсорный метод синтеза, люминесценция, цветовые координаты.

DOI: 10.21883/FTT.2022.01.51837.196

1. Введение

Люминесцентные материалы окрашенного и белого свечения являются предметом интенсивных исследований в связи с реальной перспективой применения в производстве светодиодов, жидкокристаллических и плазменных дисплеев, осветительных приборов, радиационных дозиметров и т.д. [1]. Для развития современной оптической и цифровой технологии большое значение приобретает создание люминофоров, позволяющих регулировать цветовые характеристики излучения и обеспечивать требуемую цветовую гамму. Один из наиболее часто применяемых методов настройки цвета излучения основан на рациональном подборе люминесцентных матриц и примесных ионов, эмиссионные спектры которых будут перекрываться друг с другом. В последнее время материалы, излучающие синий или голубой свет, приобрели большое значение в контексте получения люминофоров с белой люминесценцией. Так, путем комбинации синей люминесценции InGaN и желтой YAG: Ce³⁺ был впервые получен коммерческий светодиод белого свечения (WLED) [2]. В качестве источников синего излучения кроме InGaN могут быть, например, использованы ZnS [3], AWO₄ (A = Ca, Sr, Ва) [4] и NaYF₄ [5], допированные ионами Tm³⁺, а также BaMgAl₁₀O₁₇, допированный ионами Eu²⁺ [6–7]. Однако в ходе эксплуатации описанных [2-7] люминесцентных материалов были выявлены их существенные недостатки. Например, для InGaN/YAG: Ce³⁺ характерно разделение синего и желтого спектральных диапазонов, а также неудовлетворительная цветопередача, вызванная отсутствием красного компонента спектра. Синие люминофоры ZnS: Tm³⁺ отличаются высокой светоотдачей, но химически нестабильны и подвержены термическому

гашению люминесценции при относительно низких рабочих температурах [3]. Допирование тулием (III) вольфраматов АWO₄ позволяет получить синее излучение при УФ-возбуждении (электронный переход ${}^{1}D_{2} \rightarrow {}^{3}F_{4}$ в ионе Tm³⁺), но из-за малого поглощения имеет очень слабое свечение в видимом диапазоне спектра [4]. Повышение эффективности люминесценции ионов Tm³⁺ в матрице NaYF4 возможно за счет передачи энергии от других ионов, например, Ce^{3+} , Eu^{2+} или Dy^{3+} [5]. Несмотря на высокую интенсивность синего свечения ВаМgAl₁₀O₁₇: Eu²⁺ подвержен окислительной деструкции при эксплуатации, связанной с окислением ионов Eu²⁺ до Eu³⁺, что постепенно приводит к понижению его люминесцентных характеристик [8]. Кроме того, спектр возбуждения BaMgAl₁₀O₁₇: Eu²⁺ обладает сильным поглощением в коротковолновом и средневолновом УФ-диапазоне и гораздо меньшим в длинноволновом, что совершенно не подходит для изготовления светодиодов. Известны матрицы с голубой люминесценцией, например, NaCaBO₃ и Gd₅Si₃O₁₂N, активированные ионами церия (III) [9-10]. Замена дорогого европия на относительно дешевый церий дает коммерческий эффект, однако наличие церия в люминесцентных объектах, как и в случае с Eu²⁺ [6-7], требует особых условий синтеза, препятствующих переходу Ce³⁺ в Ce⁴⁺. С учетом этого актуальной задачей являются поиск и разработка новых более дешевых люминофоров синеголубого спектра с хорошими эмиссионными характеристиками и стабильных в условиях эксплуатации, синтез которых основан на простых технологических решениях. В предыдущих работах [11-13] нами было показано, что для нанодисперсного оксида алюминия, полученного термообработкой основного формиата алюминия состава Al(OH)(HCOO)₂, характерна голубая эмиссия с максимум около 450 nm, происхождение которой связано с наличием собственных дефектов решетки и/или примесного углерода. Нанодисперсные оксиды $Al_2O_3:Ln$ (Ln = Eu³⁺/Tb³⁺) с содержанием допантов 2.5 mol% были синтезированы путем термолиза прекурсоров $Al_{1-x}Ln_x(OH)(HCOO)_2$ на воздухе при 700°C [14]. Рассчитанные цветовые координаты демонстрируют, что цвет их люминесценции близок к белому [15]. Ионный радиус иона Dy^{3+} меньше радиусов ионов Eu^{3+} и Tb^{3+} (Dy³⁺(VI) 0.912 Å) [16], а в диапазоне 400-760 nm может демонстрировать голубую, желтую и красную люминесценцию иона диспрозия, связанную с f-f-переходами ${}^4F_{9/2} \rightarrow {}^6H_{15/2}, \, {}^4F_{9/2} \rightarrow {}^6H_{13/2}, \, {}^4F_{9/2} \rightarrow {}^6H_{11/2}.$ Известно, что электрический дипольный переход ${}^4F_{9/2} \rightarrow {}^6H_{13/2}$ особенно чувствителен к окружению иона диспрозия в матрице в отличие от магнитного дипольного перехода ${}^{4}F_{9/2} \rightarrow {}^{6}H_{15/2}$ [17]. Когда ион Dy^{3+} занимает в матрице низкосимметричные позиции, желтое излучения люминофора является более доминирующим по сравнении с голубым. Напротив, голубое излучение будет преобладающим при расположении ионов Dy³⁺ в высокосимметричных позициях. Все эти структурные особенности в итоге сказываются на суммарном цветовом излучении. Сведения по люминесценции Al₂O₃: Dy³⁺ уже были представлены в ряде работ [18-22], но ни в одной из них не сообщается о вкладе матрицы оксида алюминия в люминесценцию в видимом диапазоне. Публикации в основном связаны с подбором оптимального содержания активатора в матрице α -Al₂O₃, не вызывающего концентрационного тушение люминесценции. В настоящей работе представлены структурные, морфологические, оптические и люминесцентные характеристики порошков Al₂O₃: Dy³⁺ полученных отжигом прекурсоров на воздухе, а также установлено влияние концентрации диспрозия и условий термообработки прекурсора $Al_{1-x}Dy_x(OH)(HCOO)_2$ на цвет излучения люминофора. Возможность дозированного замещения алюминия на лантаноид в структуре прекурсора, а соответственно и в синтезируемом оксиде алюминия является важным преимуществом используемой прекурсорной технологии.

2. Методика эксперимента

Для получения допированного диспрозием оксида алюминия номинального состава $Al_2O_3:Dy^{3+}$ была разработана методика прекурсорного синтеза, при которой оксид получали нагреванием на воздухе прекурсора $Al_{1-x}Dy_x(OH)(HCOO)_2$. Синтез $Al_{1-x}Dy_x(OH)(HCOO)_2$ с x = 0.005, 0.01, 0.02 и 0.025 был осуществлен по следующей реакции:

$$(2 - 2x)Al(NO_3)_3 + 2xDy(NO_3)_3 + 19HCOOH$$

= 2Al_{1-x}Dy_x(OH)(HCOO)₂+ 3N₂+ 15CO₂+ 16H₂O.
(1)

Аналитически чистые нитрат алюминия Al(NO₃)₃ · 9H₂O, нитрат диспрозия $Dy(NO_3)_3 \cdot 6H_2O$ и муравьиная кислота (99.7% НСООН) были применены как реактивы, дистиллированная вода как растворитель. Взятые в стехиометрических количествах согласно химической формуле $Al_{1-x}Dy_x(OH)(HCOO)_2$ нитраты алюминия и диспрозия растворяли в разбавленной муравьиной кислоте (20%) при комнатной температуре. Упаривание раствора проводили при 60°C до сухого остатка в виде белого порошка, который перетирали в фарфоровой ступке. Для получения оксидов прекурсоры $Al_{1-x}Dy_x(OH)(HCOO)_2$ нагревали при 700, 900 и 1100°C на воздухе в течение двух часов. Рентгенофазовый анализ синтезированных образцов осуществляли с помощью дифрактометра STADI-P (STOE), оснащенного линейным позиционно-чувствительным детектором. Съемка проводилась в СиК_{а1} излучении в интервале углов 2θ от 5 до 120° с шагом 0.02° . В качестве внешнего стандарта использовали поликристаллический кремний (a = 5.43075(5) Å). Идентификация фаз проведена с использованием картотеки PDF2 (ICDD, 2016). Уточнение кристаллических структур соединений проведено методом полнопрофильного анализа Ритвельда с использованием программного пакета GSAS [23-24]. КР-спектр был зарегистрирован при комнатной температуре с использованием конфокального Рамановского микроскопа Renishaw InVia Reflex ($\lambda = 532 \text{ nm}, P = 5 \text{ mW}$). Термический анализ осуществляли на термоанализаторе Netzsch STA 449 F3 Jupiter при нагревании на воздухе со скоростью 10°/min. Регистрация спектров возбуждения и люминесценции, кривых затухания была осуществлена с помощью флуориметра Varian Cary Eclipse (Хе лампа). Спектры люминесценции в диапазоне температур от 25 до 150°C записаны с использованием температурноконтролируемой ячейки GS-21525 (Specac Ltd).

Экспериментальные результаты и их обсуждение

На примере $Al_{1-x}Dy_x(OH)(HCOO)_2$ с содержанием диспрозия $2 \mod \frac{1}{2} \mod (x = 0.02)$ было показано, что синтезированные согласно реакции (1)прекурсоры структурно идентичны гидроксоформиату Al(OH)(HCOO)₂ [25]. алюминия Дифрактограмма Al_{0.98}Dy_{0.02}(OH)(HCOO)₂ (рис. 1) была индицирована в моноклинной сингонии (пространственная группа С2) с параметрами элементарной ячейки: a = 8.900(2) Å, b = 9.955(3) Å, c = 10.262(2) Å, $\beta = 106.41(1)^{\circ}$, V = $= 872.2(4) \text{ Å}^3.$

Формирование диспрозий-замещенного гидроксоформиата $Al_{1-x}Dy_x(OH)(HCOO)_2$ со структурой $Al(OH)(HCOO)_2$ подтверждается данными КР-спектроскопии (рис. 2) [13,14,25]. Частота 1068 сm⁻¹ отвечает за внеплоскостные деформационные колебания связи С–Н. Валентные колебания связей С–Н фиксируются при 2922, 2937, 2978 и 3015 сm⁻¹. Линия 784 сm⁻¹

Рис. 1. Рентгенограмма Al_{0.98}Dy_{0.02}(OH)(HCOO)₂.

Рис. 2. КР спектр Al_{0.98}Dy_{0.02}(OH)(HCOO)₂.

соответствует деформационным ножничным колебаниям COO–. Асимметричным и симметричным валентным колебаниям карбоксилат-иона принадлежат частоты 1653 и 1552 сm⁻¹ (ν_{as} (COO–)), 1412 и 1392 сm⁻¹ (ν_{s} (COO–)), соответственно. Слабоинтенсивная линия 3489 сm⁻¹ связана с валентными колебаниями О–Н связей металл-координированных гидроксид-ионов. Линии ниже 500 сm⁻¹ относятся к валентным колебаниям связей Al(Dy)–O.

Термогравиметрический анализ был проведен для прекурсора состава $Al_{0.99}Dy_{0.01}(OH)(HCOO)_2$ (рис. 3). Разложение прекурсора при нагревании до 700°С происходит в два основных этапа с общей потерей массы 61.44%, что соответствует потере массы (61.33%) при образовании оксида ($Al_{0.99}Dy_{0.01})_2O_3$. Наблюдаемая на первом этапе (до 291°С) небольшая потеря массы (~6%) обусловлена удалением воды за счет термостимулированного распада ОН-групп и образованием гипотетической фазы состава ($Al_{0.99}Dy_{0.01})_2O(HCOO)_4$, подобной $Al_2O(HCOO)_4$ [26]. Второй этап разложения характеризуется узким интервалом температур (~ 300–350°С) и более значительной потерей массы (~ 55.5%), связанной с распадом органической составляющей ($Al_{0.99}Dy_{0.01})_2O(HCOO)_4$ и выделением газообразных продуктов. Наблюдаемая на кривой ТГ небольшая потеря массы ($\sim 0.5\%$) в интервале температур $\sim 350-500^{\circ}$ С, вероятно, связана с удалением элементарного углерода, образующегося при термолизе прекурсора [11].

Нагреванием прекурсоров $Al_{1-x}Dy_x(OH)(HCOO)_2$ с x = 0.005, 0.01, 0.02 и 0.025 при 700, 900 и 1100°C на воздухе с выдержкой в течение 2 h при каждой температуре были синтезированы образцы номинального состава $(Al_{1-x}Dy_x)_2O_3$. По данным РФА образцы оксидов, полученных путем нагревания прекурсоров при 700°C, рентгеноаморфны. Рис. 4 демонстрирует дифрактограммы образцов $(Al_{1-x}Dy_x)_2O_3$ (x = 0.005, 0.01 и 0.02), полученных нагреванием при 900°C, которые были отнесены к структуре γ -Al₂O₃ (пр. гр. $I4_1/amd$, #141) (табл. 1). Для образца с x = 0.025 в дополнении к γ -(Al_{1-x}Dy_x)₂O₃ (98.5 mass%) обнаруживаются в малых

Рис. 3. Кривые ТГ и ДСК $Al_{0.99}Dy_{0.01}(OH)(HCOO)_2$.

Рис. 4. Рентгенограммы γ -(Al_{1-x}Dy_x)₂O₃: x = 0.005 (1), 0.01 (2) и 0.02 (3).

Таблица 1. Параметры решетки для $(Al_{1-x}Dy_x)_2O_3$, полученных нагреванием прекурсоров $Al_{1-x}Dy_x(OH)(HCOO)_2$ при температуре 900°C на воздухе

x	0.005	0.01	0.02
a, Å	5.594(2)	5.636(2)	5.642(2)
c, Å	7.912(3)	7.962(3)	7.978(3)
V, Å ³	247.6(1)	252.9(1)	253.9(1)

содержаниях примесные фазы DyAlO₃ (0.6 mass%) и Dy₃Al₅O₁₂ (0.9 mass%). Образцы, полученные отжигом прекурсоров при температуре 1100°С, также неоднофазны. Например, в образце с x = 0.005 помимо фазы со структурой γ -Al₂O₃ присутствует α -модификация Al₂O₃ (10.1 mass%), а в образце с x = 0.02 помимо того обнаружены небольшие количества DyAlO₃ (1.1 mass%). Таким образом, можно заключить, что в результате нагревания прекурсоров $Al_{1-x}Dy_x(OH)(HCOO)_2$, где 0.005 < x < 0.02, при температуре 900°C имеет место формирование твердых растворов $(Al_{1-x}Dy_x)_2O_3$ со структурой у-Al₂O₃. После нагревания до 1100°C наблюдается частичное превращение оксида со структурой γ -Al₂O₃ в оксид со структурой α -Al₂O₃. Ранее нами было показано, что в результате нагревания $Al(OH)(HCOO)_2$ на воздухе образование у-Al₂O₃ происходит уже при 750°С, а его превращение в α -Al₂O₃ начинается при 950°С [11]. Следовательно, допирование ионами Dy³⁺ оказывает существенное влияние на структуру матрицы оксида алюминия, приводя к росту температуры фазового перехода $\gamma \rightarrow \alpha$ [14]. Атомы алюминия в оксиде γ -Al₂O₃ со структурой шпинели $\Box_{2(2/3)}$ Al_{21(1/3)}O₃₂ $(\Box = A1$ вакансии) находятся в октаэдрическом и тетраэдрическом окружении [26]. В октаэдрических позициях в структуре дефектной шпинели у-Al₂O₃ располагаются катионные вакансии [27–29]. Ионы Dy³⁺ не имеют координационного числа ниже шести, поэтому могут замещать алюминий (Al³⁺(VI) 0.535 Å [16]) только в октаэдрических позициях в у-Al₂O₃ [14].

В прелылуших работах нами было уже установлено, что способ термообработки прекурсора оказывает существенное влияние $Al(OH)(HCOO)_2$ эмиссионные характеристики конечного продукна [11-14].Полученный термолизом та прекурсора $Al(OH)(HCOO)_2$ на воздухе оксид алюминия демонстрирует голубую люминесценцию с максимумом $\sim 450\,\mathrm{nm}$, появление которой обусловлено собственными дефектами матрицы оксида алюминия и/или остаточным углеродом прекурсора. На рис. 5 приведен спектр возбуждения у-(Al_{0.995}Dy_{0.005})₂O₃ при длине волны 572 nm. Узкие линии относятся к электронным переходам с основного уровня ⁶Н_{15/2} на более высокие нерететические уровни иона Dy^{3+} : ${}^{4}F_{3/2}$ (295 nm), ${}^{6}P_{3/2}$ $(325 \text{ nm}), {}^{6}P_{7/2} (350 \text{ nm}), {}^{6}P_{5/2} (365 \text{ nm}), {}^{4}I_{13/2} (386 \text{ nm}),$ ${}^{4}F_{7/2}$ (426 nm) и ${}^{4}I_{15/2}$ (457 nm), соответственно. Самая интенсивная линия наблюдается при 350 nm

Рис. 5. Спектр возбуждения ($\lambda = 573$ nm (оранжевый) и спектры эмиссии ($\lambda = 350$ nm) продуктов термолиза прекурсоров Al_{1-x}Dy_x(OH)(HCOO)₂ при различных температурах отжига на воздухе: x = 0.005 при 700°C (черный), x = 0.005 при 900°C (красный), x = 0.005 при 1100°C (синий), x = 0.02 при 700°C (розовый) и x = 0.02 при 1100°C (серый).

и соответствует переходу ${}^{6}H_{15/2} \rightarrow {}^{6}P_{7/2}$. Спектры эмиссии всех полученных образцов при УФ-возбуждении $(\lambda = 350 \, \text{nm})$ состоят из широких полос с максимумом в синей области спектра, представляющих собой наложение линий. эмиссионных связанных с собственными дефектами матрицы и f-f переходами в ионах Dy³⁺ (рис. 5). На спектре представлены следующие линии люминесценции принадлежащие f-f-переходам иона Dy³⁺: ${}^{4}G_{11/2} \rightarrow {}^{6}H_{15/2}$ (445 nm), ${}^{4}I_{15/2} \rightarrow {}^{6}H_{15/2}$ (458 nm), ${}^{4}F_{9/2} \rightarrow {}^{6}H_{15/2}$ (477 nm), ${}^{4}F_{9/2} \rightarrow {}^{6}H_{13/2}$ (572 nm), ${}^{4}F_{9/2} \rightarrow {}^{6}H_{11/2}$ (681 nm), ${}^{4}F_{9/2} \rightarrow {}^{6}H_{9/2} + {}^{6}F_{11/2}$ (699 nm), ${}^{4}F_{9/2} \rightarrow {}^{6}H_{7/2} + {}^{6}F_{9/2}$ (764 nm). Можно отметить существенное изменение интенсивности люминесценции в зависимости от концентрации диспрозия и температуры отжига прекурсора (рис. 5). С увеличением температуры отжига прекурсора уменьшение происходит интенсивности эмиссии, наблюдается тушение люминесценции матрицы оксида алюминия. Аналогичная зависимость интенсивности люминесценции от температуры отжига прекурсоров наблюдалась для продуктов термолиза Al(OH)(HCOO)₂, полученных на воздухе и в гелии и связана со структурными изменениями матрицы оксида алюминия [11]. Допирование диспрозием оксида алюминия также приводит к подавлению голубой люминесценции. Однако, если проследить за изменением интенсивности линий, относящихся к переходам иона диспрозия, то можно заметить, что тушение люминесценции наблюдается лишь для образца, полученного термолизом прекурсора

Al_{0.98}Dy_{0.02}(OH)(HCOO)₂ при 1100°С. При увеличении концентрации диспрозия расстояние между ионами активатора становится меньше, что приводит к более высокой вероятности безызлучательного переноса энергии. В образце оксида алюминия полученного при 1100°С присутствуют примесные фазы (α-Al₂O₃ и DyAlO₃), которые также могут оказывать влияние на тушении люминесценции. Для остальных образцов интенсивности линии, отнесенные к переходам (764 nm) не сильно зависят от концентрации диспрозия. Также не наблюдается никакого сдвига максимумов интенсивностей в сторону большей или меньшей длины волны при изменении концентрации ионов Dy³⁺.

Кривые затухания (рис. 6) для γ -(Al_{1-x}Dy_x)₂O₃ с x = 0.005, 0.01 и 0.02 были зарегистрированы при длине волны возбуждения 350 nm и длине волны излучения 479 nm и могут быть аппроксимированы двойной экспоненциальной функцией. Рассчитанные средние времена жизни для γ -(Al_{1-x}Dy_x)₂O₃ равны 0.6 ms (x = 0.005), $0.52 \,\mathrm{ms}$ (x = 0.01) и $0.51 \,\mathrm{ms}$ (x = 0.02), и близки к значениям, полученным для различных соединений, допированных диспрозием [30-32]. Двойной экспоненциальный профиль кривых затухания, а также уменьшение времени жизни с концентрацией диспрозия могут быть объяснены как передачей энергии от алюминиевой матрицы к ионам Dy³⁺, процессами кросс-релаксации между соседними ионами Dy^{3+} , так и неоднородным распределением люминесцентных центров в алюминиевой матрице [30,31].

Параметры, характеризующие цвет излучения исследуемых соединений, были рассчитаны из спектров люминесценции при длине волны возбуждения 350 nm и представлены в табл. 2. Координаты цвет-

Рис. 6. Кривые затухания люминесценции продуктов термолиза прекурсоров $Al_{1-x}Dy_x(OH)(HCOO)_2$ при x = 0.005 (*a*), x = 0.01 (*b*) и x = 0.02 (*c*), измеренные при $\lambda_{ex} = 350$ nm и $\lambda_{em} = 479$ nm.

Таблица 2. Цветовые координаты (x, y) продуктов термолиза прекурсоров $Al_{1-x}Dy_x(OH)(HCOO)_2$ при различных температурах на воздухе

x	<i>T</i> , °C	x	у	Цвет излучения	Чистота цвета, %
0.005	700	0.19	0.17	голубой	59.31
	900	0.19	0.17	голубой	59.31
	1100	0.20	0.18	голубой	55.37
0.02	700	0.20	0.17	фиолетово-синий	57.51
	900	0.23	0.18	фиолетово-синий	50.29
	1100	0.24	0.22	белый	39.65

ности (x, y) люминофора, полученного нагреванием прекурсора Al_{0.98}Dy_{0.02}(OH)(HCOO)₂ при 1100°C составляют (0.24, 0.22) и располагаются на диаграмме, предложенной К.L. Kelly в области белого цвета [15]. Чистота цвета образцов, рассчитанная по координатам цветности белого источника света и доминирующей длины волны, $\lambda = 443$ nm [33], варьирует от ~ 60 до ~ 40% (табл. 2).

Существенное изменение эмиссии люминофора с ростом температуры ставит под сомнение его технологические перспективы, поэтому оценка термической стабильности является одной из обязательных характеристик при исследовании новых излучающих материалов. Для соединений, рассматриваемых для применения в видимом спектральном диапазоне, считается допустимым сохранение достаточной эффективности эмиссии при температурах выше 150°С [34]. Соответственно температура (температура термического тушения — T_{50%}), при которой соединение демонстрирует половину своей интенсивности излучения, зарегистрированной при комнатной температуре, является пороговым значением, которое определяет будущие перспективы соединения. Спектры люминесценции ($\lambda_{ex} = 350 \text{ nm}$) соединения у-(Al_{0.995}Dy_{0.005})₂O₃, измеренные в широком температурном интервале, приведены на рис. 7. Постепенный нагрев образца до 150°С сопровождается уменьшением интенсивности эмиссионных линий в голубом спектральном диапазоне, связанных с собственными дефектами матрицы оксида алюминия, тогда как интенсивность линии излучения в длинноволновом диапазоне, соответствующих f-f переходам в ионах диспрозия, остается почти неизменной. При нагреве порошка до 150°С, интенсивность люминесценции составляет 68% от первоначального значения. Рассчитанная зависимость $I/I_{RT} = f(T)$, представленная на вставке к рис. 7, описывается модифицированным уравнением Аррениуса [35], и позволяет достаточно точно определить температуру термического тушения. Соединение демонстрируют высокую термическую стабильность эмиссии: рассчитанное значение $T_{50\%}$ составляет 245°С, а координаты цветно-

Рис. 7. Спектры люминесценции ($\lambda_{ex} = 350 \text{ nm}$) Al_{0.995}Dy_{0.005}(OH)(HCOO)₂, измеренные при различной температуре нагрева (*a*); температурные зависимости интегральной интенсивности люминесценции (вставка) и значений цветовых координат (*x*, *y*) (*b*, *c*).

сти остаются неизменными во всем зарегистрированном температурном интервале (рис. 7).

привлекательными соединениями для использования в качестве люминофоров холодного свечения.

4. Заключение

Люминофоры на основе оксида алюминия допированного диспрозием Al₂O₃: Dy³⁺ были получены термическим разложением на воздухе прекурсоров $Al_{1-x}Dy_{x}(OH)(HCOO)_{2}$. Из анализа структурных данных следует, что при термолизе прекурсоров оксиды γ -(Al_{1-x}Dy_x)₂O₃ (x = 0.005, 0.01, 0.02) образуются только при температуре 900°С. Широкая и интенсивная люминесценция синтезируемых образцов в видимом диапазоне с максимумами в синей области обусловлена перекрытием эмиссионных линий матрицы Al_2O_3 и спектра иона Dy^{3+} , вызванного f-f переходами. Согласно цветовым координатам, синтезируемые оксиды обладают разным по цвету излучением в зависимости от концентрации диспрозия и температуры термолиза прекурсора. Учитывая высокую термическую стабильность излучения, оксиды Al₂O₃: Dy³⁺ становятся очень

Финансирование работы

Работа выполнена в соответствии с госзаданием Института химии твердого тела УрО РАН и планами НИР в сфере фундаментальных научных исследований (№ АААА-А19-119031890025-9).

Конфликт интересов

Авторы заявляют, что у них нет конфликта интересов.

Список литературы

- G.B. Nair, H.C. Swart, S.J. Dhoble. Prog. Mater. Sci. 109, 100622 (2020).
- [2] S. Nakamura. J. Vac. Sci. Technol. A 13, 705 (1995).
- [3] D. Adachi, H. Haze, H. Shirahase, T. Toyama, H. Okamoto. J. Non-Cryst. Solids 352, 1628 (2006).
- [4] J. Liao, B. Qiu, H. Wen, J. Chen, W. You, L. Liu. J. Alloys Compd. 487, 758 (2009).

- [5] V.N.K.B. Adusumalli, S. Sarkar, V. Mahalingam. Chem. Phys. Chem. 16, 2312 (2015).
- [6] K.B. Kim, Y.I. Kim, H.G. Chun, T.Y. Cho, J.S. Jung, J.G. Kang. Chem. Mater. 14, 5045 (2002).
- [7] L. Ye, X. Peng, S. Zhang, Y. Wang, W. Chang. J. Rare Earths 32, 1109 (2014).
- [8] P. Boolchand, K.C. Mishra, M. Raukas, A. Ellens, P.C. Schmidt. Phys. Rev. B 66, 134429 (2002).
- [9] X. Zhang, J. Song, C. Zhou, L. Zhou, M. Gong. J. Lumin. 149, 69 (2014).
- [10] F. Lu, L. Bai, Z. Yang, X. Han. Mater. Lett. 151, 9 (2015).
- [11] V.N. Krasil'nikov, I.V. Baklanova, V.P. Zhukov, N.I. Medvedeva, A.P. Tyutyunnik, R.F. Samigullina, O.I. Gyrdasova, M.A. Melkozerova. J. Alloys Compd. 698, 1102 (2017).
- [12] M.A. Melkozerova, O.I. Gyrdasova, I.V. Baklanova, E.V. Vladimirova, E.V. Zabolotskaya, V.N. Krasil'nikov. Mendeleev Commun. 28, 668 (2018).
- [13] I.V. Baklanova, V.N. Krasil'nikov, A.P. Tyutyunnik, A.N. Enyashin, Ya.V. Baklanova, O.I. Gyrdasova, R.F. Samigullina, E.G. Vovkotrub. Spectrochim. Acta A 227, 117658 (2020).
- [14] I.V. Baklanova, V.N. Krasil'nikov, A.P. Tyutyunnik, Ya.V. Baklanova. J. Solid State Chem. 292, 121699 (2020).
- [15] K.L. Kelly. J. Opt. Soc. Am. 33, 627 (1943).
- [16] R.D. Shannon. Acta Cryst. A, **32**, 751 (1976).
- [17] G.B. Nair, S.J. Dhoble. RSC Adv. 5, 49235 (2015).
- [18] T. Ishizaka, Y. Kurokawa. J. Lumin. 92, 57 (2001).
- [19] S. Kumar, R. Prakash, V. Kumar. Funct. Mater. Lett. 8, 1550061 (2015).
- [20] N. Ishiwada, E. Fujii, T. Yokomori. J. Lumin. 196, 492 (2018).
- [21] R. Martínez-Martínez, S. Rivera, E. Yescas-Mendoza, E. Álvarez, C. Falcony, U. Caldiño. Opt. Mater. 33, 1320 (2011).
- [22] S. Stojadinović, A. Cirić. J. Lumin. 226, 117403 (2020).
- [23] B.H. Toby. J. Appl. Crystallogr. 34, 210 (2001).
- [24] A.C. Larson, R.B. Von Dreele. General Structure Analysis System (GSAS). Los Alamos, NM (2004). Los Alamos National Laboratory Report LAUR 86–748.
- [25] V.N. Krasil'nikov, A.P. Tyutyunnik, I.V. Baklanova, A.N. Enyashin, I.F. Berger, V.G. Zubkov. CrystEngComm. 20, 2741 (2018).
- [26] K. Sohlberg, S.J. Pennycook, S.T. Pantelides. J. Am. Chem. Soc. 121, 7493 (1999).
- [27] J.M.A. Caiut, L. Bazin, R. Mauricot, H. Dexpert, S.J.L. Ribeiro, J. Dexpert-Ghys. J. Non-Cryst. Solids 354, 4860 (2008).
- [28] A. Rastorguev, M. Baronskiy, A. Zhuzhgov, A. Kostyukov, O. Krivoruchko, V. Snytnikov. RSC Adv. 5, 5686 (2015).
- [29] G. Gutierrez, A. Taga, B. Johansson. Phys. Rev. B 65, 012101 (2001).
- [30] J. Zhang, Q.Guo, L. Liao, Y. Wang, M. He, H. Ye, L. Mei, H. Liu, T. Zhou, B. Ma. RSC Adv. 8, 38883 (2018).
- [31] Z. An, X. Xiao, J. Yu, D. Mao, G. Lu. RSC Adv. 5, 52533 (2015).
- [32] U. Fawad, H.J. Kim, S. Khan, M. Khan, L. Ali. Solid State Sci. 62, 1 (2016).
- [33] J.S. Kumar, K. Pavani, A.M. Babu, N.K. Giri, S.B. Rai, L.R. Moorthy. J. Lumin., 130, 1916 (2010).
- [34] J. Li, J. Yan, D. Wen, W. Ullah Khan, J. Shi, M. Wu, Q. Su, P.A. Tanner. J. Mater. Chem. C 4, 8611, (2016).
- [35] V. Bachmann, C. Ronda, O. Oeckler, W. Schnick, A. Meijerink. Chem. Mater. 21, 316 (2009).

Редактор Т.Н. Василевская