03,09,13

Диэлектрические и оптические свойства кубических монокристаллов SiC, GeC и SnC: модельные оценки

© С.Ю. Давыдов, А.А. Лебедев

Физико-технический институт им. А.Ф. Иоффе РАН, Санкт-Петербург, Россия Email: Sergei Davydov@mail.ru

Поступила в Редакцию 25 августа 2021 г. В окончательной редакции 25 августа 2021 г. Принята к публикации 26 сентября 2021 г.

В рамках модели связывающих орбиталей Харрисона для кубических карбидов элементов IV группы получены аналитические выражения для высоко- и низкочастотных диэлектрических восприимчивостей и проницаемостей, линейного электрооптического коэффициента, фотоупругих постоянных и зависимостей диэлектрических проницаемостей от давления.

Ключевые слова: диэлектрические восприимчивости и проницаемости, линейный электрооптический коэффициент, фотоупругие постоянные.

DOI: 10.21883/FTT.2022.01.51833.193

1. Введение

Интерес к свойствам монокристаллов карбида кремния, давно и интенсивно изучаемого [1], по-прежнему велик. Достаточно сказать, что каждые два года проводятся международная и европейская конференции по карбиду кремния и родственным материалам (ICSCRM и ECSCRM). В последнее время возросло внимание к кубическому политипу 3C–SiC, который обладает максимальной среди политипов SiC подвижностью электронов 1200 cm²/V · s [2], не зависящей от кристаллографического направления.

Вопрос о возможности существования монокристаллов GeC и SnC и их свойствах возник сравнительно недавно [3–8]. В соответствующих теоретических исследованиях (расчетах из первых принципов) основное внимание уделялось стабильности тех или иных кристаллических структур, зонному спектру и упругости. В настоящей работе мы с единой точки зрения рассмотрим диэлектрические и оптические свойства кубических карбидов XC, где X = Si, Ge, Sn. При этом мы воспользуемся моделью связывающих орбиталей Харрисона [9–11], хорошо зарекомендовавшей себя при описании тетраэдрических полупроводников.

Диэлектрические свойства карбидов

Определив линейную $\chi^{(1)}$ и квадратичную $\chi^{(2)}$ диэлектрические восприимчивости как коэффициенты разложения поляризации кристалла **Р** по напряженности электрического поля **E**, т.е. в виде

$$P_i = \sum_j \chi_{ij}^{(1)} E_j + \sum_{jk} \chi_{ijk}^{(2)} E_j E_k + \dots,$$

можно показать [12,13], что вклады электронной подсистемы в эти характеристики равны

$$\chi_1^{\rm el} = \frac{n_{\rm e}(e\gamma d)^2 \alpha_{\rm c}^3}{12V_2}, \quad \chi_{14}^{\rm el} = \frac{\sqrt{3}n_{\rm e}(e\gamma d)^3 \alpha_{\rm c}^4 \alpha_{\rm p}}{48V_2^2}, \quad (1)$$

тогда как ионные (решеточные) вклады имеют вид

$$\chi_{1}^{\text{ion}} = \frac{n_{\text{e}}(e\gamma d)^{2} \alpha_{\text{p}}^{2} (1 + 2\alpha_{\text{c}}^{2})}{24\alpha_{\text{c}} V_{2}},$$
$$\chi_{14}^{\text{ion}} = \frac{\sqrt{3}n_{\text{e}}(e\gamma d)^{3} \alpha_{\text{c}}^{2} \alpha_{\text{p}} (1 - 2\alpha_{\text{p}}^{2})}{48V_{2}^{2}}.$$
(2)

Для суммарных (низкочастотных) значений линейных и квадратичных восприимчивостей получаем следующие выражения:

$$\chi_{1} = \chi_{1}^{\text{el}}(1+\vartheta), \quad \vartheta = \frac{\alpha_{\text{p}}^{2}(1+2\alpha_{\text{c}}^{2})}{2\alpha_{\text{c}}^{4}},$$
$$\chi_{14} = \frac{\sqrt{3}n_{\text{e}}(e\gamma d)^{3}\alpha_{\text{c}}^{2}\alpha_{\text{p}}}{48V_{2}^{2}}.$$
(3)

Здесь $V_2 = 3.22(\hbar^2/md^2)$ — ковалентная энергия σ -связи sp³-орбиталей атомов A и B, где \hbar — приведенная постоянная Планка, m — масса свободного электрона, $d = a\sqrt{3}/4$ — расстояние между ближайшими соседями в структуре сфалерита с постоянной решетки a. В отличие от [12,13], мы полагаем $V_2 > 0$; $\alpha_c = V_2/\sqrt{V_2^2 + V_3^2}$ и $\alpha_p = \sqrt{1 - \alpha_c^2}$ — ковалентность и полярность связи соответственно; $V_3 = |\varepsilon_h^A - \varepsilon_h^B|/2$ — полярная энергия связи, где $\varepsilon_h^{A(B)} = (\varepsilon_s^{A(B)} + 3\varepsilon_p^{A(B)})/4$ — энергии sp³-орбиталей и $\varepsilon_{s(p)}^{A(B)}$ — энергия s(p)-состояния атома A(B); $n_e = 32/a^3$ — плотность электронов, e —

Таблица 1. Исходные параметры: расстояние между ближайшими соседями d, ковалентная V_2 и полярная V_3 энергии, ковалентность α_c и полярность α_p связи X-C. Верхний ряд значений — расчет по таблицам Манна [11], нижний ряд расчет по таблицам Хермана–Скиллмана [9]

Кристалл	SiC	GeC	SnC
<i>d</i> , Å	1.89	1.99	2.21
V_2 , eV	6.87	6.20	5.02
<i>V</i> ₃ , eV	1.88	1.93	2.41
	1.42	1.37	1.77
$lpha_{ m c}$	0.96	0.95	0.90
	0.98	0.98	0.94
$lpha_{ m p}$	0.26	0.30	0.44
	0.20	0.22	0.33

Таблица 2. Значения линейных $\chi_1^{\rm el}$, χ_1 и квадратичных $\chi_{14}^{\rm el}$, χ_{14} восприимчивостей, ε_{∞} , ϑ , ε_0 . Верхний ряд значений — расчет по таблицам Манна [11], нижний ряд — расчет по таблицам Хермана–Скиллмана [9]

Кристалл	SiC	GeC	SnC
$\chi_1^{ m el}$	0.43	0.44	0.42
	0.46	0.49	0.48
χ1	0.48	0.51	0.58
	0.49	0.53	0.57
$arepsilon_\infty$	6.46	6.57	6.28
	6.81	7.11	7.00
θ	0.11	0.15	0.39
	0.06	0.08	0.19
\mathcal{E}_0	7.00	7.39	8.29
	7.13	7.63	8.18
χ_{14}^{el}	1.86	2.54	4.59
	1.60	2.12	4.08
X 14	0.14	0.25	1.10
	0.07	0.10	0.50

элементарный заряд, γ — масштабный множитель, учитывающий поправки на локальное поле и используемый как подгоночный параметр [9,12,13]. Для высокочастотной ε_{∞} и статической ε_0 диэлектрических проницаемостей имеем

$$\varepsilon_{\infty} = 1 + 4\pi \chi_1^{\text{el}}, \quad \varepsilon_0 = 1 + 4\pi \chi_1. \tag{4}$$

Положив a = 4.36, 4.59 и 5.11 Å соответственно для SiC, GeC и SnC [3], получим значения исходных параметров модели, представленные в табл. 1. Масштабный множитель γ можно оценить по экспериментальным данным $\varepsilon_{\infty} = 6.52$ и $\varepsilon_0 = 9.72$ для 3C–SiC [14]. Выбирая для подгонки ε_{∞} , получим значение $\gamma = 1.44$, которое и будем использовать для всех рассматриваемых карбидов.

3. Численные оценки диэлектрических восприимчивостей

Для дальнейшего анализа удобно переписать выражения для $\chi_1^{\rm el}$ и χ_{14} , в виде $\chi_1^{\rm el} \approx 0.26(d\alpha_c^3)$ и $\chi_{14} \approx 0.67(d^4\alpha_c^2\alpha_p^3) \cdot 10^{-12}$ m/V, где d измеряется в Å. Результаты расчета представлены в табл. 2. Из табл. 2 следует, что значения $\chi_1^{\rm el}$, χ_1 и ε_∞ для различных *X*С близки. Причина такой близости состоит в том, что уменьшение ковалентности α_c в ряду SiC — SnC компенсируется ростом d. Увеличение ε_0 в том же ряду связано с ростом множителя ϑ . Отметим, что полученные нами значения ε_0 являются, по-видимому, заниженными. Во всяком случае, так обстоит дело для 3C–SiC.

Малость квадратичных восприимчивостей χ_{14}^{el} и χ_{14} соединений $X_{\rm C}$ по сравнению с полупроводниками A_3B_5 и A_2B_6 (см. например, табл. 5.1 в [9]) объясняется низкой полярностью связей $\alpha_{\rm p}$. Рост χ_{14}^{el} и χ_{14} при переходе от SiC к SnC связан с увеличением как $\alpha_{\rm p}$, так и *d*. Наибольшие значения χ_{14}^{el} и χ_{14} соответствуют 3C–SnC. Легко показать, что максимальное значение χ_{14}^{el} имеет место при $\alpha_c^* = \sqrt{4/5}$ и $\alpha_p^* = \sqrt{1/5}$, практически совпадающих с ковалентностью и полярностью связи Sn–C.

Необходимо отметить, что в настоящей работе мы игнорировали металличность межатомных связей [9,10], учет которой, вообще говоря, может заметно сказаться на результатах расчета [11,12].

4. Оптические свойства

Линейные электрооптические коэффициенты r_{41} и $r_{41}^{\rm el}$, описывающие соответственно изменение показателя преломления $n = \sqrt{\varepsilon_{\infty}}$ нецентросимметричных кристаллов в низкочастотном электрическом поле и электронный вклад в r_{41} , определяются, согласно [11,12], как

$$r_{41} = -4\pi \chi_{14}/n^4, \quad r_{41}^{\rm el} = -4\pi \chi_{41}^{\rm el}/n^4.$$
 (5)

Результаты расчета представлены в табл. 3. Легко понять, что характер изменения коэффициентов $r_{41}^{\rm el}$ и r_{41} в ряду карбидов определяется квадратичными восприимчивостями $\chi_{14}^{\rm el}$ и χ_{14} . Полученные нами значения $|r_{41}^{\rm el}|$ и $|r_{41}|$ малы по сравнению с другими материалами (см., например, табл. 77.2 в [15]), что связано с малой полярностью связей X-C.

Согласно [16], фотоупругие постоянные p_{ij} (i = 1, 4; j = 1, 2, 4) кубических тетраэдрических кристаллов имеют вид

$$p_{11} = \xi \left(1 + \frac{8\lambda}{8+\lambda} \right), \quad p_{12} = \xi \left(1 - \frac{4\lambda}{8+\lambda} \right),$$
$$p_{44} = \frac{99\xi\lambda}{(8+\lambda)(8+3\lambda)}, \tag{6}$$

где $\xi = -2\eta(\varepsilon_{\infty} - 1)/3\varepsilon_{\infty}^2$, $\eta = 2(1 - 3\alpha_{\rm p}^2)$, $\lambda = 0.85$. Результаты расчета p_{ij} , приведенные в табл. 3, близ-

ки к фотоупругим постоянным алмаза $p_{11} = -0.31$, $p_{12} = -0.09$ и $p_{44} = -0.12$ (см. табл. 77.1 в [15]). Незначительный спад значений $|p_{ij}|$ в рядах SiC \rightarrow SnC объясняется ростом полярности связей.

5. Зависимость диэлектрических проницаемостей ε_{∞} и ε_{0} от давления *Р*

В работе [17] показано, что

$$\frac{\partial \varepsilon_{\infty}}{\partial P} = -\eta \frac{\varepsilon_{\infty} - 1}{3B}, \quad \frac{\partial \varepsilon_{0}}{\partial P} = (\varepsilon_{\infty} - 1) \frac{\partial \vartheta}{\partial P} + (1 + \vartheta) \frac{\partial \varepsilon_{\infty}}{\partial P},$$
$$\frac{\partial \vartheta}{\partial P} = -\frac{2\alpha_{p}^{2}}{\alpha_{c}^{2}B} \left(1 - \frac{2\alpha_{p}^{2}}{3\alpha_{c}^{2}}\right), \tag{7}$$

где B — объемный модуль сжатия. В модели связывающих орбиталей Харрисона $B = 2\alpha_c^3 V_2/\sqrt{3}d^3$ [9]. Результаты расчета представлены в табл. 3. Следует подчеркнуть, что приведенные в табл. 3 значения $|\partial \varepsilon_{\infty}/\partial P|$ и $|\partial \varepsilon_0/\partial P|$ являются оценками по максимуму, так как использованный вариант расчета (без учета корот-кодействующего отталкивания [18]) занижает величину

Таблица 3. Значения линейных электрооптических коэффициентов r_{14}^{el} , r_{41} , упругооптических постоянных p_{ij} , i = 1, 4; j = 1, 2, 4, объемных модулей сжатия *B* и производных диэлектрических проницаемостей по давлению $\partial \varepsilon_{\infty}/\partial P$ и $\partial \varepsilon_{0}/\partial P$. Верхний ряд значений — расчет по таблицам Манна [11], нижний ряд — расчет по таблицам Хермана–Скиллмана [9]

Кристалл	SiC	GeC	SnC
$-r_{14}^{\rm el}, 10^{-12} \mathrm{m/V}$	0.55	0.74	1.46
	0.40	0.53	1.05
$-r_{41}$, 10^{-12} m/V	0.04	0.07	0.35
	0.02	0.02	0.13
$-p_{11}$	0.25	0.22	0.14
	0.26	0.24	0.19
$-p_{12}$	0.08	0.07	0.04
	0.08	0.08	0.06
$-p_{44}$	0.13	0.11	0.07
	0.13	0.12	0.10
B, GPa	166	124	64
	177	137	72
$-\partial \varepsilon_{\infty}/\partial P$, 10^{-2} GPa ⁻¹	1.74	2.19	2.13
	1.93	2.55	3.75
$-\partial \varepsilon_0/\partial P$, 10^{-2} GPa ⁻¹	2.43	3.46	7.13
	2.49	3.19	6.71
$-(\partial arepsilon_{\infty}/\partial P)/B$	2.89	2.71	1.36
	3.41	3.48	2.70
$-(\partial arepsilon_0/\partial P)/B$	4.03	4.29	4.56
	4.41	4.37	4.83

объемного модуля сжатия. Действительно, для 3C–SiC по данным табл. 4.6 из [19] имеем B = 246 GPa, что в ~ 1.5 раза превышает полученный нами результат. Поэтому мы добавили в табл. 3 результаты расчета безразмерных производных ($\partial \varepsilon_{\infty}/\partial P$)B и ($\partial \varepsilon_{0}/\partial P$)B, позволяющие по известным (из эксперимента или расчетов из первых принципов) значениям объемного модуля сжатия определить величины $\partial \varepsilon_{\infty}/\partial P$ и $\partial \varepsilon_{0}/\partial P$.

В заключение данного раздела отметим, что в рамках модели Харрисона имеет место соотношение

$$\frac{\varepsilon_{\infty} - 1}{\varepsilon_0 + 1} = 1 + \vartheta. \tag{8}$$

Воспользовавшись формулой Лидейна–Сакса–Теллера $\omega_{\text{TO}}^2(0)/\omega_{\text{LO}}^2(0) = \varepsilon_{\infty}/\varepsilon_0$ [19], где $\omega_{\text{TO}}^2(0)$ и $\omega_{\text{LO}}^2(0)$ — частоты поперечных и продольных оптических фононов в центре зоны Бриллюэна, получим [16]:

$$\frac{\partial \omega_{\rm TO}(0)}{\partial P} = \frac{\omega_{\rm TO}(0)}{3B} (2 + 3\alpha_{\rm p}^2),$$
$$\frac{\partial \omega_{\rm LO}(0)}{\partial P} = \frac{\omega_{\rm LO}(0)}{2\sqrt{\varepsilon_{\infty}\varepsilon_{\infty}}} \left(\frac{\partial\varepsilon_0}{\partial P} - \frac{\varepsilon_0}{\varepsilon_{\infty}}\frac{\partial\varepsilon_{\infty}}{\partial P}\right)$$
$$+ \sqrt{\frac{\varepsilon_0}{\varepsilon_{\infty}}}\frac{\partial\omega_{\rm TO}(0)}{\partial P}.$$
(9)

Таким образом, используя соотношения (7) и (9), можно по зависимостям диэлектрических проницаемостей (оптических частот) от давления определять соответствующие зависимости для оптических частот (диэлектрических проницаемостей).

6. Заключение

В настоящей работе в рамках единого подхода получены значения целого ряда диэлектрических и оптических характеристик кубических карбидов IV группы. Насколько известно авторам, для GeC и SnC такие оценки до сих пор отсутствовали. Простота модели связывающих орбиталей Харрисона позволила нам получить для этих характеристик аналитические выражения. При этом параметры модели d и $\varepsilon_s(p)$, представляющей собой упрощенный вариант метода ЛКАО, не являются подгоночными параметрами. Отметим, что не только кристаллы 3C–SiC представляют прикладной интерес. Так, на базе этих материалов создаются сверхрешетки, например, GeC/SiC, SnC/SiC, SnC/GeC [21] и GeC/GaN [22].

Финансирование работы

А.А. Лебедев благодарен РФФИ за финансовую поддержку (грант РФФИ № 20-0200117).

Конфликт интересов

Авторы заявляют, что у них нет конфликта интересов.

Список литературы

- А.А. Лебедев, П.А. Иванов, М.Е. Левинштейн, Е.Н. Мохов, С.С. Нагалюк, А.Н. Анисимов, П.Г. Баранов. УФН 189, 8, 803 (2019).
- [2] M.E. Levinshtein, S.L. Rumyantsev, M.S. Shur. Properties of Advanced Semiconductor Materials: GaN, AIN, InN, BN, SiC, SiGe. Wiley, N.Y. (2001).
- [3] R. Pandey, M. Rérat, M.C. Darrigan, M. Causá. J. Appl. Phys. 88, 11, 6462 (2000).
- [4] A. Benzair, H. Aourag. Phys. Status Solidi B 231, 2, 411 (2002).
- [5] W. Sekkal, A. Zaoui. New J. Phys. 4, 1, 9 (2002).
- [6] A. Mahmood, L.E. Sansores. J. Mater. Res. 20, 5, 1101 (2005).
- [7] A. Hao, X. Yang, X. Wang, Y. Zhu, X. Liu, R. Liu, J. Appl. Phys. 108, 6, 063531 (2010).
- [8] R. Muthaiah, J. Garg. arXiv: 2107.04596
- [9] У. Харрисон. Электронная структура и свойства твердых тел. Мир, М. (1983). Т. 1.
- [10] W.A. Harrison. Phys. Rev. B 27, 6, 3592 (1983).
- [11] W.A. Harrison. Phys. Rev. B 31, 4, 2121 (1985).
- [12] С.Ю. Давыдов, Е.И. Леонов. ФТТ 30, 5, 1326 (1988).
- [13] С.Ю. Давыдов, С.К. Тихонов. ФТТ 37, 10, 3044 (1995).
- [14] В.И. Гавриленко, А.М. Грехов, Д.В. Корбутяк, В.Г. Литовченко. Оптические свойства полупроводников. Справочник. Наук. думка, Киев (1987).
- [15] Ю.И. Сиротин, М.П. Шаскольская. Основы кристаллофизики. Наука, М. (1975).
- [16] С.Ю. Давыдов, С.К. Тихонов. ФТП 31, 7, 823 (1997).
- [17] С.Ю. Давыдов, С.К. Тихонов. ФТП 32, 9, 1057 (1998).
- [18] F. Bechstedt, W.A. Harrison. Phys. Rev. B 39, 8, 5041 (1989).
- [19] С.П. Никаноров, Б.К. Кардашов. Упругость и дислокационная неупругость кристаллов. Наука, М. (1985).
- [20] Ч. Киттель. Введение в физику твердого тела. Наука, М. (1978).
- [21] Ю.М. Басалаев, Е.Н. Малышева. ФТП 51, 647 (2017).
- [22] P. Lou, J.Y. Lee. ACS Appl. Mater. Interfaces 12, 12, 14289 (2020).

Редактор Е.В. Толстякова