01,11

Размещение водорода в оксигидриде титана

© А.А. Валеева^{1,2}, А.И. Гусев¹

¹ Институт химии твердого тела УрО РАН, Екатеринбург, Россия ² Уральский федеральный университет им. Б.Н. Ельцина, Екатеринбург, Россия E-mail: gusev@ihim.uran.ru

Поступила в Редакцию 13 сентября 2021 г. В окончательной редакции 13 сентября 2021 г. Принята к публикации 26 сентября 2021 г.

Рассмотрены возможные модели размещения атомов водорода на узлах кубической решетки оксигидрида титана TiO_yH_p с вакансиями в металлической и неметаллической подрешетках. Установлено, что оксигидриды сохраняют кристаллическую решетку типа *B*1 исходных кубических монооксидов и содержат структурные вакансии в металлической и кислородной подрешетках. Сопоставление полученных аналитических выражений для интенсивности дифракционных отражений с экспериментальными рентгеновскими и нейтронографическими данными показало, что в оксигидридах внедренные атомы H занимают вакантные октаэдрические позиции 4(b) кислородной подрешетки, размещения H в тетраэдрических позициях 8(c) не наблюдается. Найден канал перехода беспорядок–порядок, связанный с образованием упорядоченного моноклинного оксигидрида титана типа Ti_5O_5 . Впервые рассчитаны функции распределения атомов Ti, O и H в частично упорядоченном моноклинном оксигидриде $TiO_{0.96}H_{0.14}$ ($Ti_{0.89}O_{0.85}H_{0.12}$) со структурой типа Ti_5O_5 и найдены концентрации указанных атомов на позициях его решетки.

Ключевые слова: монооксид титана, водород, нестехиометрия, вакансии, октаэдрические и тетраэдрические позиции, функция распределения.

DOI: 10.21883/FTT.2022.01.51828.202

1. Введение

Нестехиометрический кубический монооксид титана $TiO_y \equiv Ti_xO_z$ ($Ti_x \bullet_{1-x}O_z \Box_{1-z}$, где y = z/x, \Box и • структурные вакансии неметаллической (кислородной) и металлической (титановой) подрешеток) со структурой типа *B*1 принадлежит к группе сильно нестехиометрических соединений внедрения MX_y (M = Ti, Zr, Hf, V, Nb, Ta X = C, N, O) [1] и обладает широкой областью гомогенности от TiO_{0.80} до TiO_{1.25}. В неупорядоченном состоянии атомы и структурные вакансии распределены по узлам соответствующих подрешеток случайным образом. Кубический монооксид титана с двойной дефектностью и его оксигидриды — перспективные материалы для водородной техники, фотокатализа, очистки воды от примесей, особенно в нанокристаллическом состоянии [2].

Нестехиометрические соединения MX_y (X = C, N, O) со структурой типа B1 могут поглощать водород из газовой фазы, образуя тройные гидридные фазы $MX_y H_p$. Как правило, атомы водорода размещаются в вакантных октаэдрических позициях 4(b) неметаллической подрешетки. Например, в кубических карбидах титана и циркония атомы водорода занимают вакантные узлы углеродной подрешетки, т. е. октаэдрические междоузлия подрешетки металла [3–7]. Эксперименты по нейтронной дифракции [5,8] показали, что гидрирование облегчает упорядочение углеродных вакансий в некоторых карбидах титана.

Нейтронография карбогидридов ниобия [9,10] обнаружила, что в вакантных октаэдрических позициях атомы Н несколько смещены от центра в направлении $[100]_{B1}$. Смещение атомов Н относительно центра вакансии обусловлено большим объемом вакансии, с одной стороны, и малым объемом атома водорода, с другой стороны.

Благодаря малому размеру атомы Н помимо вакантных октаэдрических позиций неметаллической подрешетки карбидов могут занимать тетраэдрические междоузлия. Возможное размещение атомов водорода в тетраэдрических междоузлиях следует из данных [11], согласно которым в некоторых кубических карбогидридах титана и ниобия MC_yH_p (TiC_{0.64}H_{0.38}, NbC_{0.77}H_{0.32}-NbC_{1.00}H_{0.25}) относительное содержание водорода, *p*, может превышать концентрацию структурных вакансий (1-*y*) подрешетки углерода.

В литературе до последнего времени не было сведений о положении атомов H в кубических оксигидридах титана $\text{TiO}_{y}\text{H}_{p}$. Обычно предполагается, что в оксигидридах $\text{TiO}_{y}\text{H}_{p}$ водород занимает вакантные узлы 4(b) кислородной подрешетки [12]. Однако размеры атома водорода таковы, что он может внедряться не только в октаэдрические, но и в тетраэдрические междоузлия гранецентрированной кубической (ГЦК) металлической решетки. Поэтому нельзя исключить, что хотя бы часть атомов водорода может размещаться в тетраэдрическихе междоузлиях гцк решетки титана. Действительно, в ку-

бическом гидриде титана TiH_y с содержанием водорода $y \le 1.8$ и структурой типа C1 (CaF₂) все атомы H размещаются в тетраэдрических позициях 8(c) [13]. Таким образом, вопрос о том, в каких позициях кристаллической структуры оксигидрида титана размещаются атомы H, до сих пор не ясен.

В связи с этим, цель настоящей работы — моделирование структуры кубических оксигидридов титана TiO_yH_p и определение положения атомов H в них дифракционными методами.

2. Результаты и обсуждение

Модель структуры кубического (пр.гр. $Fm\bar{3}m$) оксигидрида титана TiO_yH_p (Ti_xO_zH_{px}) с положением позиций 4(a), 4(b) и 8(c) показана на рис. 1. С учетом возможного внедрения водорода в окта- и тетрамеждоузлия кубической решетки, для кубического монооксида титана Ti_xO_z можно предложить два варианта модельного размещения атомов Н. В первой модели, соответствующей кубической структуре типа B1, водород может занимать только вакантные позиции 4(b) кислородной подрешетки. Во второй модели водород

Рис. 1. Модель структуры кубического (пр. гр. $Fm\bar{3}m$) оксигидрида титана TiO_yH_p ($Ti_xO_zH_{px}$): (•) позиции 4(a) узлы металлической подрешетки, статистически занятые атомами Ti; (•) позиции 4(b) — узлы неметаллической подрешетки, статистически занятые атомами O; (×) позиции 8(c) центры тетраэдрических междоузлий. Тетрамеждоузлия, образованные четырьмя узлами металлической подрешетки (или четырьмя узлами кислородной подрешетки), показаны коротким пунктиром. Если в оксигидриде TiO_yH_p ($Ti_xO_zH_{px}$) атомы водорода размещаются только в вакантных позициях 4(b) кислородной подрешетки, то сохраняется структура типа B1. Если в оксигидриде TiO_yH_p часть атомов Н занимает вакантные позиции 4(b) кислородной подрешетки, а остальные атомы Н статистически размещаются в тетраэдрических позициях 8(c), то оксигидрид имеет структуру типа $D0_3$. может занимать как вакантные позиции 4(b) кислородной подрешетки, так и часть тетрамеждоузлий, т.е. позиции 8(c). Эта модель соответствует кубической (пр. гр. $Fm\bar{3}m$) структуре типа $D0_3$. В этом случае формулу оксигидрида титана с учетом его структуры следует записывать как $TiO_yH_p \equiv Ti_xO_zH_{px} \equiv Ti_xO_zH_{(p-q)x}^{4(b)}$ $H_{qx}^{8(c)} \equiv Ti_x \bullet_{1-x}O_zH_{(p-q)x}^{4(b)} \Box_{1-z-(p-q)x}H_{qx}^{8(c)}$.

Обсудим, в каких кристаллографических позициях могут размещаться атомы водорода в оксигидридах титана и какие изменения могут наблюдаться на рентгенограммах и нейтронограммах оксигидридов титана при размещении атомов водорода только в позициях 4(b) или в позициях 4(b) и 8(c). Для этого найдем структурные амплитуды F и структурные факторы F^2 монооксида титана $\text{Ti}_x \text{O}_z \equiv \text{TiO}_y$ (y = z/x) со структурой B1, оксигидрида титана $\text{Ti}_x \text{O}_z \text{H}_{px} \equiv \text{TiO}_y \text{H}_p$ со структурой B1и оксигидрида $\text{Ti}_x \text{O}_z \text{H}_{px} \equiv \text{Ti}_x \text{O}_z \text{H}_{qx}^{4(b)}$ со структурой B1ос структурная амплитуда

$$F_{hkl} = \sum_{j} f_{j} \exp[-i2\pi(x_{j}h + y_{j}k + z_{j}l)]$$

 $(f_j$ — атомный фактор рассеяния; x_j, y_j, z_j — координаты *j*-го атома) определяет интенсивность дифракционных отражений. В общем случае структурная амплитуда является комплексной величиной, поэтому при анализе интенсивностей дифракционных отражений используется структурный фактор F^2 , равный квадрату модуля структурной амплитуды (или произведению структурной амплитуды на комплексно-сопряженную величину F_{hkl}^*), т.е.

$$F_{hkl}^2 = |F_{hkl}|^2 = F_{hkl}F_{hkl}^*.$$
 (1)

В кубической (пр. гр. $Fm\bar{3}m$) решетке со структурой *B*1 позиции 4(*a*) имеют координаты (0 0 0), (1/2 1/2 0), (1/2 0 1/2), (0 1/2 1/2), а позиции 4(*b*) имеют координаты (1/2 1/2 1/2), (0 0 1/2), (0 1/2 0) и (1/2 0 0). С учетом координат позиций 4(*a*) и 4(*b*), с вероятностями *x* и *z* статистически занятых атомами титана Ti и кислорода O, соответственно, структурная амплитуда *F* кубического (пр. гр. $Fm\bar{3}m$) монооксида титана Ti_xO_z = TiO_y (y = z/x) со структурой *B*1 равна

$$F = x f_{\rm Ti} \{1 + \exp[-i\pi(h+k)] + \exp[-i\pi(h+l)] + \exp[-i\pi(k+l)] \} + z f_{\rm O} \{\exp[-i\pi(h+k+l)] + \exp(-i\pi h) + \exp(-i\pi k) + \exp(-i\pi l)] \},$$
(2)

где f_{Ti} и f_{O} — факторы рассеяния излучения атомами Ti и O соответственно. В соответствии с (1, 2) структурный фактор F^2 для монооксида титана Ti_xO_z со структурой *B*1 имеет вид

$$F_{B1}^{2}(hkl) = \{xf_{Ti}[1 + \cos \pi (h+k) + \cos \pi (h+l) + \cos \pi (k+l)] + zf_{O}[\cos \pi (h+k+l) + \cos \pi h + \cos \pi k + \cos \pi l]\}^{2}.$$
 (3)

В оксигидриде титана $Ti_x O_z H_{px}$ со структурой *B*1 позиции 4(*a*) статистически с вероятностью *x* заняты атомами Ti, а позиции 4(*b*) с вероятностями *z* и *px* статистически заняты атомами O и H, соответственно. С учетом этого структурная амплитуда *F* кубического (пр. гр. *Fm*3*m*) оксигидрида титана $Ti_x O_z H_{px} \equiv TiO_y H_p$ со структурой B1 имеет вид

$$F = x f_{\rm Ti} \{1 + \exp[-i\pi(h+k)] + \exp[-i\pi(h+l)] + \exp[-i\pi(k+l)] \} + (z f_{\rm O} + px f_{\rm H}) \{\exp[-i\pi(h+k+l)] + \exp(-i\pi h) + \exp(-i\pi k) + \exp(-i\pi l)] \},$$
(4)

где $f_{\rm H}$ — фактор рассеяния излучения атомами водорода Н. Структурный фактор F^2 равен

$$F_{B1}^{2}(hkl) = \{xf_{Ti}[1 + \cos \pi (h+k) + \cos \pi (h+l) + \cos \pi (k+l)] + (zf_{O} + pxf_{H})[\cos \pi (h+k+l) + \cos \pi h + \cos \pi k + \cos \pi l]\}^{2}.$$
 (5)

Если в оксигидрида Ti_xO_zH_{px} атомы водорода могут размещаться как в незаполненных узлах кислородной подрешетки (позициях 4(b)), так и в тетрамеждоузлиях (позициях 8(c)), то оксигидрид титана имеет кубическую (пр. гр. $Fm\bar{3}m$) структуру типа $D0_3$ и его формулу можно записать как $\text{Ti}_x \text{O}_z \text{H}_{px} \equiv \text{Ti}_x \text{O}_z \text{H}_{(p-q)x}^{4(b)} \text{H}_{qx}^{8(c)}$. В таком оксигидриде титана позиции 4(*a*) статистически с вероятностью х заняты атомами Ті, позиции 4(b)статистически с вероятностями z и (p-q)x заняты атомами кислорода О и водорода Н, соответственно, и позиции 8(c) статистически с вероятностью qx/2 заняты атомами Н. Позиции 8(с) кубической (пр. гр. Fm3m) решетки имеют координаты: (1/4 1/4 1/4), (3/4 3/4 1/4), $(3/4 \ 1/4 \ 3/4), (1/4 \ 3/4 \ 3/4), (3/4 \ 3/4 \ 3/4), (1/4 \ 1/4 \ 3/4),$ (1/4 3/4 1/4) и (3/4 1/4 1/4). С учетом координат позиций 4(a), 4(b) и 8(c) и вероятностей их заполнения атомами Ті, О и Н структурная амплитуда F неупорядоченного кубического (пр. гр. $Fm\bar{3}m$) оксигидрида $Ti_x O_z H^{4(b)}_{(p-q)x} H^{8(c)}_{qx}$ со структурой $D0_3$ имеет следующий вид

$$F = x [f_{\rm TI} \{1 + \exp[-i\pi(h+k)] + \exp[-i\pi(h+l)] + \exp[-i\pi(k+l)] \} + (yf_{\rm O} + (p-q)f_{\rm H}) \\ \times \{\exp[-i\pi(k+l)]\} + (yf_{\rm O} + (p-q)f_{\rm H}) + \exp(-i\pi l) \} + (qf_{\rm H}/2) \{\exp[-i\pi(h+k+l)/2] + \exp[-i\pi(3h+3k+l)/2] + \exp[-i\pi(3h+3k+3l)/2] + \exp[-i\pi(h+3k+3l)/2] + \exp[-i\pi(h+3k+3l)/2] + \exp[-i\pi(h+k+3l)/2] + \exp[-i\pi(h+k+3l)/2] + \exp[-i\pi(h+k+3l)/2] + \exp[-i\pi(h+k+l)/2] \}.$$
(6)

3* Физика твердого тела, 2022, том 64, вып. 1

В соответствии с (6) структурный фактор F^2 неупорядоченного кубического (пр. гр. $Fm\bar{3}m$) оксигидрида титана $Ti_x O_z H^{4(b)}_{(p-q)x} H^{8(c)}_{qx}$ со структурой типа $D0_3$ равен

$$F_{DO_{3}}^{2}(hkl) = x^{2} \left\{ f_{Ti}[1 + \cos \pi(h+k) + \cos \pi(h+l) + \cos \pi(h+l)] + [yf_{O} + (p-q)f_{H}][\cos \pi(h+k+l)] + \cos \pi(h+l) + \sin \pi(h+l$$

Из формул (5) и (7) ясно, что заполнение позиций 8(c) атомами H не приводит к появлению новых дифракционных отражений, а лишь незначительно меняет величину структурных факторов (табл. 1). Поэтому неупорядоченные кубические оксигидриды $Ti_x O_z H_{px}$ со структурами B1 и $D0_3$ имеют одинаковый набор дифракционных отражений. Поскольку фактор рассеяния рентгеновского излучения атомами H очень мал по сравнению с факторами рассеяния атомами Ti и O, то внедрение водорода слабо сказывается на интенсивности рентгеновских отражений. Однако рентгеновская дифракция позволяет выявить упорядочение атомов Ti и O в монооксиде или оксигидриде титана.

В случае нейтронографических измерений ситуация совершенно иная. Амплитуды когерентного рассеяния нейтронов ядрами Ti, ¹⁶O и ¹H равны $-3.438 \cdot 10^{-15}$, $5.803 \cdot 10^{-15}$ и $-3.741 \cdot 10^{-15}$ m, соответственно [14,15]. Амплитуды рассеяния нейтронов f_{Ti} и f_O противоположны по знаку, поэтому даже в монооксиде титана структурные факторы четных отражений очень малы по сравнению со структурными факторами нечетных отражений. Благодаря отрицательной амплитуде рассеяния нейтронов ядрами ¹H внедрение водорода в монооксид титана приводит к еще большему относительному уменьшению структурных факторов F^2 четных отражений (200), (220), (222), (400), (420) и (422) по

(hkl)	Р	F^2						
(1111)		$\mathrm{Ti}_{x}\mathrm{O}_{z} \equiv \mathrm{Ti}\mathrm{O}_{y} \ (y = z/x), B1$	$\mathrm{Ti}_{x}\mathrm{O}_{z}\mathrm{H}_{px} \equiv \mathrm{Ti}_{x}\mathrm{O}_{z}\mathrm{H}^{(4(b))}_{(p-q)x}\mathrm{H}^{8(c)}_{qx}, D0_{3}$	$\mathrm{Ti}_{x}\mathrm{O}_{z}\mathrm{H}_{px}\equiv\mathrm{Ti}\mathrm{O}_{y}\mathrm{H}_{p}\ (y=z/x),B1$				
111	8	$16x^2(f_{\rm Ti}-yf_{\rm O})^2$	$16x^{2} \{ f_{\text{Ti}} - [yf_{\text{O}} + (p-q)f_{\text{H}}] \}^{2}$	$16x^2[f_{\rm Ti} - (yf_{\rm O} + pf_{\rm H})]^2$				
200	6	$16x^2(f_{\rm Ti} + yf_{\rm O})^2$	$16x^{2}[f_{\mathrm{Ti}} + yf_{\mathrm{O}} + (p - 2q)f_{\mathrm{H}}]^{2}$	$16x^2(f_{\rm Ti} + yf_{\rm O} + pf_{\rm H})^2$				
220	12	$16x^2(f_{\rm Ti} + yf_{\rm O})^2$	$16x^2(f_{\rm Ti} + yf_{\rm O} + pf_{\rm H})^2$	$16x^2(f_{\rm Ti} + yf_{\rm O} + pf_{\rm H})^2$				
311	24	$16x^2(f_{\rm Ti} - yf_{\rm O})^2$	$16x^{2} \{ f_{\mathrm{Ti}} - [yf_{\mathrm{O}} + (p-q)f_{\mathrm{H}}] \}^{2}$	$16x^2[f_{\rm Ti} - (yf_{\rm O} + pf_{\rm H})]^2$				
222	8	$16x^2(f_{\rm Ti} + yf_{\rm O})^2$	$16x^{2}[f_{\mathrm{Ti}} + yf_{\mathrm{O}} + (p - 2q)f_{\mathrm{H}}]^{2}$	$16x^2(f_{\rm Ti} + yf_{\rm O} + pf_{\rm H})^2$				
400	6	$16x^2(f_{\rm Ti} + yf_{\rm O})^2$	$16x^2(f_{\rm Ti} + yf_{\rm O} + pf_{\rm H})^2$	$16x^2(f_{\rm Ti} + yf_{\rm O} + pf_{\rm H})^2$				
331	24	$16x^2(f_{\rm Ti} - yf_{\rm O})^2$	$16x^2 f_{\rm Ti} - [yf_{\rm O} + (p-q)f_{\rm H}]^2$	$16x^2[f_{\rm Ti} - (yf_{\rm O} + pf_{\rm H})]^2$				
420	24	$16x^2(f_{\rm Ti} + yf_{\rm O})^2$	$16x^{2}[f_{\mathrm{Ti}} + yf_{\mathrm{O}} + (p - 2q)f_{\mathrm{H}}]^{2}$	$16x^2(f_{\rm Ti} + yf_{\rm O} + pf_{\rm H})^2$				
422	24	$16x^2(f_{\rm Ti} + yf_{\rm O})^2$	$16x^2(f_{\rm Ti} + yf_{\rm O} + pf_{\rm H})^2$	$16x^2(f_{\rm Ti} + yf_{\rm O} + pf_{\rm H})^2$				
333	8	$16x^2(f_{\rm Ti} - yf_{\rm O})^2$	$16x^{2} \{ f_{\mathrm{Ti}} - [yf_{\mathrm{O}} + (p-q)f_{\mathrm{H}})] \}^{2}$	$16x^2[f_{\rm Ti} - (yf_{\rm O} + pf_{\rm H})]^2$				
511	24	$16x^2(f_{\rm Ti} - yf_{\rm O})^2$	$16x^{2} \{ f_{\mathrm{Ti}} - [yf_{\mathrm{O}} + (p-q)f_{\mathrm{H}})] \}^{2}$	$16x^2[f_{\rm Ti} - (yf_{\rm O} + pf_{\rm H})]^2$				

Таблица 1. Структурные факторы F^2 кубических (пр. гр. $Fm\bar{3}m$) монооксида титана $Ti_xO_z \equiv TiO_y$ (структура B1) и оксигидридов титана $Ti_xO_zH_{px} \equiv TiO_yH_p$ (структуры $D0_3$ и B1) (P — фактор повторяемости)

сравнению с факторами F^2 нечетных отражений (111), (311), (331) и (511). При внедрении водорода только в вакантные позиции 4(b), т.е. в оксигидриде TiO_vH_p $(Ti_x O_z H_{Dx})$ структурные факторы F^2 (без учета углового ослабления интенсивности) всех четных отражений равны $16x^2(f_{\text{Ti}} + yf_{\text{O}} + pf_{\text{H}})^2$ (табл. 1). Если водород размещается также в позициях 8(c) и оксигидрид $\mathrm{Ti}_x \mathrm{O}_x \mathrm{H}^{4(b)}_{(p-q)x} \mathrm{H}^{8(c)}_{qx}$ имеет структуру типа $D0_3$, то структурные факторы $F^2 = 16x^2(f_{\rm Ti} + yf_{\rm O} + pf_{\rm H})^2$ четных отражений (hkl) с (h+k+l) = 4n (где n — целое число), оказываются меньше структурных факторов $F^2 = 16x^2 [f_{\rm Ti} + yf_{\rm O} + (p - 2q)f_{\rm H}]^2$ остальных четных отражений. Поэтому уточнение структуры путем анализа соотношения интенсивностей нейтронографических дифракционных отражений позволяет определить, какие позиции занимает водород в оксигидриде титана.

Для выяснения того, какие позиции занимают атомы водорода в оксигидридах титана, были получены закаленные образцы неупорядоченного монооксида титана TiO_{0.72} (Ti_{0.95} $\blacksquare_{0.05}O_{0.69}\square_{0.31}$) и TiO_{0.96} (Ti_{0.89}∎_{0.11}O_{0.85}□_{0.15}) со структурными вакансиями как в подрешетке титана, так и в подрешетке кислорода. Подробно условия синтеза монооксида титана в неупорядоченном и упорядоченном состояниях описаны ранее [16,17]. Оба закаленных образца содержали только неупорядоченную кубическую (пр. гр. $Fm\bar{3}m$) фазу TiO_v со структурой типа В1, период а_{В1} кристаллической решетки неупорядоченных монооксидов TiO_{0.72} и TiO_{0.96} равен 0.41934 и 0.41827 nm соответственно. По составу образец ТіО_{0.96} близок к эквиатомному монооксиду ТіО_{1 00}, в котором при температуре ниже 1250–1300 К образуется моноклинная (пр. гр. C2/m) упорядоченная фаза Ті₅О₅ (Ті₅∎О₅□) [18].

Гидрирование закаленных неупорядоченных образцов кубического монооксида титана TiO_y проводили в вакуумной системе типа Сивертса в водороде H_2 при атмосферном давлении и температуре 973 К.

Кристаллическую структуру образцов монооксида титана $TiO_v \equiv Ti_xO_z$ и гидрированных образцов $TiO_{y}H_{p} \equiv Ti_{x}O_{z}H_{px}$ изучали рентгеновском на автодифрактометре Shimadzu XRD-7000 методом Брегга-Брентано в CuKa_{1,2}-излучении в интервале углов 2θ от 10 до 157° с шагом $\Delta(2\theta) = 0.02^{\circ}$ и экспозицией 10 s в каждой точке. Распределение атомов водорода Н в кристаллической решетке оксигидридов титана ТіО_уН_р исследовали методом структурной нейтронографии на порошковом дифрактометре высокого разрешения BT1 [19] в центре нейтронных исследований NIST (Gaithersburg, MD, USA). Длина волны нейтронов составляла 0.15401 nm, нейтронограммы записывали в интервале углов $5 < 2\theta < 162^{\circ}$ с шагом $\Delta(2\theta) = 0.05^{\circ}$.

Определение фазового состава образцов и параметров кристаллической решетки фаз, а также окончательное уточнение структуры образцов проводили с помощью программного пакета X'Pert Plus [20]. Профиль дифракционных отражений моделировали функцией псевдо-Фойгта, фон описывали полиномом Чебышева 5-го порядка.

В результате гидрирования неупорядоченного монооксида титана $TiO_{0.72}$ образовался кубический (пр. гр. $Fm\bar{3}m$) оксигидрид $TiO_{0.72}H_{0.30}$ с периодом кристаллической решетки 0.42076 nm (рис. 2) [21]. Увеличение периода решетки от 0.41934 до 0.42076 nm — следствие внедрения большого количества водорода в кристаллическую решетку монооксида TiO_y .

Уточнение структуры однофазного оксигидрида ТіО_{0.72}H_{0.30} с помощью программы X'Pert Plus [20] и с учетом структурных факторов F^2 (см. табл. 1) дало следующие результаты. При описании нейтронограммы (рис. 2, *b*) в модели со структурой *B*1 факторы сходимости Ритвелда равны $R_{\rm exp} = 0.067$, $R_p = 0.055$, $R_{\rm wp} = 0.072$ и $R_{\rm I}(R_{\rm Bragg}) = 0.015$. Использование модели структуры типа $D0_3$ с размещением четверти всех атомов водорода в тетраэдрических позициях (в этом случае степень заполнения тетрапозиций 8(c)атомами Н равна 0.036) привело к ухудшению сходимости: $R_{\rm exp} = 0.069$, $R_{\rm p} = 0.056$, $R_{\rm wp} = 0.073$ и $R_{\rm I}(R_{\rm Bragg}) = 0.018$. Увеличение степени заполнения позиций 8(c) атомами H от 0.036 до 0.144, т.е. размещение всех атомов водорода в тетраэдрических позициях 8(c) еще больше ухудшило сходимость экспериментальных рассчитанных дифрактограмм. Таким образом, И оксигидрида структуры TiO_{0.72}H_{0.30} уточнение с использованием рентгеновских и нейтронографических данных показало, что этот оксигидрид имеет кубическую (пр. гр. $Fm\bar{3}m$) структуру типа *B*1, в которой все атомы водорода находятся в позициях 4(b). С учетом степеней заполнения позиций 4(a) атомами Ті и позиций 4(b) атомами О и Н оксигидрид имеет состав Ti_{0.96}O_{0.69}H_{0.29}.

Рис. 2. Рентгенограммы (*a*) исходного неупорядоченного кубического монооксида титана $\text{TiO}_{0.72}$ ($\text{Ti}_{0.96}O_{0.69}$) и оксигидрида титана $\text{TiO}_{0.72}H_{0.30}$ ($\text{Ti}_{0.96}O_{0.69}H_{0.29}$) и нейтронограмма (*b*) оксигидрида титана $\text{TiO}_{0.72}H_{0.30}$ ($\text{Ti}_{0.96}O_{0.69}H_{0.29}$) (× — эксперимент, сплошная линия — расчет). Длинные штрихи соответствуют дифракционным отражениям неупорядоченного кубического (пр. гр. $Fm\bar{3}m$) оксигидрида титана $\text{TiO}_{0.72}H_{0.30}$ со структурой *B*1. В нижней части рисунков (*a*) и (*b*) показаны разности ($I_{obs}-I_{calc}$) между экспериментальной и расчетной дифрактограммами оксигидрида титана $\text{TiO}_{0.72}H_{0.30}$.

Рис. 3. Рентгенограммы исходного неупорядоченного кубического монооксида титана $TiO_{0.96}$ ($Ti_{0.89}O_{0.85}$) и оксигидрида титана $TiO_{0.96}H_{0.14}$ ($Ti_{0.89}O_{0.85}H_{0.12}$) (× — эксперимент, сплошная линия — расчет). Исходный монооксид $TiO_{0.96}$ содержит только неупорядоченную кубическую (пр. гр. $Fm\bar{3}m$) фазу со структурой B1. Оксигидрида титана $TiO_{0.962}H_{0.14}$ является двухфазным и содержит ~ 86 ± 2 wt.% неупорядоченной кубической (пр. гр. $Fm\bar{3}m$) фазы со структурой B1 и ~ 14 ± 2 wt.% упорядоченной моноклинной (пр. гр. C2/m) фазы типа Ti_5O_5 . Длинные и короткие штрихи — положения дифракционных отражений неупорядоченного кубического оксигидрида титана $TiO_{0.96}H_{0.14}$ со структурой B1 и упорядоченной моноклинной ($I_{0.96}H_{0.14}$ со структурой B1 и упорядоченной моноклинной ($I_{0.96}-I_{calc}$) — разность между экспериментальной и расчетной рентгенограммами оксигидрида титана $TiO_{0.96}H_{0.14}$.

После гидрирования образца ТіО_{0.96} произошло не только образование оксигидрида ТіО_{0.96}Н_{0.14}, но и наряду с кубической фазой появилась вторая фаза. Анализ дифракционных данных (рис. 3) показал, что оксигидрид TiO_{0.96}H_{0.14} содержит неупорядоченную кубическую фазу $Ti_{0.89}O_{0.85}H_{0.12}$ в количестве $\sim 86 \pm 2$ wt.% и упорядоченную моноклинную (пр. гр. C2/m) фазу типа Ti₅O₅ в количестве $\sim 14 \pm 2$ wt.%. Период решетки кубической оксигидридной фазы равен $a_{B1} = 0.41828$ nm, т.е. незначительно (в пределах ошибки измерения) увеличился вследствие внедрения водорода в вакантные позиции кислородной подрешетки. Появление моноклинной упорядоченной фазы типа Ti₅O₅ стало следствием низкотемпературного отжига образца ТіО_{0.96}, так как состав монооксида и температура гидрирования ~ 970 К соответствуют области равновесного существования сверхструктуры типа Ті₅О₅.

При описании рентгенограммы (рис. 3) оксигидрида TiO_{0.96}H_{0.14} наилучшая сходимость эксперимента и расчета достигнута при статистическом размещении всех атомов водорода в вакантных октаэдрических позициях кислородной подрешетки: в случае неупорядоченной

Атом	Позиция и кратность	Атомные координаты в упорядоченной фазе		Атомные координаты в базисной структуре <i>B</i> 1			Значения функций распределения $p_{x_1}(x_1, y_2, z_3) = p_{x_1}(x_2, y_3, z_3)$	
		x/a_m	y/b_m	z/c_m	x _I	УI	z_{I}	$n_{\rm H}(x_1y_1, z_1), n_{\rm O}(x_1, y_1, z_1) \le n_{\rm H}(x_1, y_1, z_1)$
Ті 1 (вакансия)	2(a)	0	0	0	0	0	0	$n_{1(\text{Ti})} = x - \eta_{10}^{\text{Ti}}/6 - \eta_{4}^{\text{Ti}}/3 - \eta_{1}^{\text{Ti}}/3 \approx 0.328$
Ti 2	2(d)	1/2	1/2	1/2	1	1/2	1/2	$n_{2(\text{Ti})} = x + \eta_{10}^{\text{Ti}}/6 - \eta_4^{\text{Ti}}/3 + \eta_1^{\text{Ti}}/3 \approx 1$
Ti 3	4(i)	0.1654	0	0.3425	0.5079	0	0.5196	$n_{3(\text{Ti})} = x + \eta_{10}^{\text{Ti}}/6 + \eta_4^{\text{Ti}}/6 - \eta_1^{\text{Ti}}/6 \approx 1$
Ti 4	4(<i>i</i>)	0.3218	0	0.6652	0.9870	0	1.0086	$n_{4({ m Ti})}=x-\eta_{10}^{{ m Ti}}/6+\eta_4^{{ m Ti}}/6+\eta_1^{{ m Ti}}/6pprox 1$
О 1 (вакансия)	2(c)	1/2	0	1/2	1	0	1/2	$n_{1(O)} = z - \eta_{10}^{O}/6 - \eta_{4}^{O}/3 - \eta_{1}^{O}/3 \approx 0.124$
O 2	2(b)	0	1/2	0	0	1/2	0	$n_{2({ m O})} = z + \eta_{10}^{ m O}/6 - \eta_{4}^{ m O}/3 + \eta_{1}^{ m O}/3 pprox 1$
O 3	4(i)	0.3364	0	0.1681	0.5045	0	0.0002	$n_{3({ m O})} = z + \eta_{10}^{{ m O}}/6 + \eta_{4}^{{ m O}}/6 - \eta_{1}^{{ m O}}/6 pprox 1$
O 4	4(<i>i</i>)	0.1668	0	0.8322	0.0010	0	0.4976	$n_{4({ m O})} = z - \eta_{10}^{{ m O}}/6 + \eta_{4}^{{ m O}}/6 + \eta_{1}^{{ m O}}/6 pprox 1$
Н 1 (вакансия)	2(c)	1/2	0	1/2	1	0	1/2	$n_{1(\mathrm{H})} = px + \eta_{10}^{\mathrm{H}}/6 + \eta_{4}^{\mathrm{H}}/3 + \eta_{1}^{\mathrm{H}}/3 \approx 0.744$
H 2	2(b)	0	1/2	0	0	1/2	0	$n_{2(\mathrm{H})} = px - \eta_{10}^{\mathrm{H}}/6 + \eta_{4}^{\mathrm{H}}/3 - \eta_{1}^{\mathrm{H}}/3 \approx 0$
Н 3	4(i)	0.3364	0	0.1681	0.5045	0	0.0002	$n_{3(\mathrm{H})} = px - \eta_{10}^{\mathrm{H}}/6 - \eta_{4}^{\mathrm{H}}/6 + \eta_{1}^{\mathrm{H}}/6 pprox 0$
H 4	4(<i>i</i>)	0.1668	0	0.8322	0.0010	0	0.4976	$n_{4(\mathrm{H})} = px + \eta_{10}^{\mathrm{H}}/6 - \eta_{4}^{\mathrm{H}}/6 - \eta_{1}^{\mathrm{H}}/6 \approx 0$

Таблица 2. Моноклинная (пр. гр. C2/m) оксигидридная фаза Ti_{5.33}O_{5.12}H_{0.74} со структурой типа Ti₅O₅ ($a_m = 0.58488$ nm, $b_m = 0.41473$ nm, $c_m = 0.94562$ nm, $\beta = 108.26^\circ$), содержащаяся в двухфазном оксигидриде TiO_{0.96}H_{0.14} в количестве ~ 14 ± 2 wt.%

кубической фазы это позиции 4(b), а в моноклинной фазе это позиции 2(c).

Проведенный количественный анализ структурных рентгеновских данных показал, что присутствующая в оксигидриде $TiO_{0.96}H_{0.14}$ вторая фаза (упорядоченный моноклинный оксигидрид типа Ti_5O_5) имеет состав $Ti_{5.33}$ — $0.67O_{5.12}H_{0.74}\square_{0.14}$ ($Ti_{0.89}O_{0.85}H_{0.12}$) (табл. 2). Согласно [17] и выполненному анализу, упорядоченный моноклинный оксигидрид типа Ti_5O_5 образуется по каналу фазового перехода, включающему один луч лифшицевских звезд $\{k_4\}$ и $\{k_1\}$ (нумерация звезд $\{k_s\}$ волновых векторов дана в соответствии с [1,22]).

Выполненный расчет показал, что функции распределения атомов титана, кислорода и водорода в наблюдаемой моноклинной сверхструктуре типа Ti_5O_5 оксигидрида $Ti_{0.89}O_{0.85}H_{0.12}$ с x = 0.89, z = 0.85 и px = 0.12 имеют вид

$$n_{\text{Ti}}(x_{\text{I}}, y_{\text{I}}, z_{\text{I}}) = x - (\eta_{10}^{\text{Ti}}/6) \cos 2\pi z_{\text{I}}$$

- $(\eta_{4}^{\text{Ti}}/3) \cos[4\pi (x_{1}+z_{1})/3] - (\eta_{1}^{\text{Ti}}/3) \cos[2\pi (2x_{\text{I}}-z_{\text{I}})/3],$
(8)
 $n_{\text{O}}(x_{\text{I}}, y_{\text{I}}, z_{\text{I}}) = z + (\eta_{10}^{\text{O}}/6) \cos 2\pi z_{\text{I}}$

$$-(\eta_4^{\rm O}/3)\cos[4\pi(x_{\rm I}+z_{\rm I})/3] + (\eta_1^{\rm O}/3)\cos[2\pi(2x_{\rm I}-z_{\rm I})/3],$$
(9)

$$n_{\rm H}(x_{\rm I}, y_{\rm I}, z_{\rm I}) = px - (\eta_{10}^{\rm H}/6) \cos 2\pi z_{\rm I}$$

+
$$(\eta_1^2/3) \cos[4\pi(x_1+z_1)/3] - (\eta_1^2/3) \cos[2\pi(2x_1-z_1)/3].$$
 (10)

В функциях (8), (9) и (10) $n(x_1, y_1, z_1)$ — вероятность нахождения соответствующего атома в узле **r** упорядочивающейся подрешетки с базисными кубическими координатами $x_1, y_1, z_1; \eta_s (\eta_{10}, \eta_4, \eta_1)$ — параметры дальнего порядка, соответствующие звездам {**k**₁₀}, {**k**₄} и {**k**₁}.

Рис. 4. Функция распределения $n_{\rm H}(x_1, y_1, z_1)$ (10) атомов водорода в плоскости $(1 - 1 1)_{B1}$ мононоклинного (пр. гр. C2/m) оксигидрида титана $Ti_{5,33}O_{5,12}H_{0,74}$. Положение узлов водородной подрешетки, с вероятностью ~ 0.74 занятых атомами H, показано вертикальными линиями.

В [17] показано, что в сверхструктуре типа Ti₅O₅ параметры η_s , описывающие конкретную подрешетку, равны, но каждой из подрешеток соответствует своя величина η_s . Для перехода от моноклинных координат к кубическим используются соотношения $x_1 = x_m + z_m$, $y_1 = y_m$ и $z_1 = -x_m + 2z_m$, Согласно расчету, в приближении равных параметров дальнего порядка для подрешеток титана, кислорода и водорода $\eta_{10}^{Ti} = \eta_4^{Ti} = \eta_1^{Ti} \approx 0.674$, $\eta_{10}^{O} = \eta_4^O = \eta_1^O \approx 0.871$ и $\eta_{10}^H = \eta_4^H = \eta_1^H \approx 0.749$. На рис. 4 как пример показана функция распре-

На рис. 4 как пример показана функция распределения $n_{\rm H}(x_{\rm I}, y_{\rm I}, z_{\rm I})$ (10) атомов водорода в плоскости (1 –1 1) моноклинного (пр. гр. C2/m) оксигидридеа титана Ti_{5.33}O_{5.12}H_{0.74} и положение узлов водородной подрешетки, с вероятностью ~ 0.74 занятых атомами Н.

3. Заключение

Изучение структуры оксигидридов титана ТіО_у H_p показало, что оксигидриды сохраняют кристаллическую решетку типа *B*1 исходных кубических монооксидов и содержат структурные вакансии в металлической и кислородной подрешетках. В кубических (пр. гр. $Fm\bar{3}m$) оксигидридах внедренные атомы водорода занимают вакантные октаэдрические позиции 4(b) кислородной подрешетки, размещения водорода в тетраэдрических позициях 8(c) не наблюдается. При образовании моноклинной (пр. гр. C2/m) оксигидридной упорядоченной фазы типа Ti_5O_5 атомы Н размещаются только в вакантных октаэдрических позициях 2(c) кислородной подрешетки, т.е. в окружении шести узлов подрешетки титана.

Благодарности

Авторы благодарят А.В. Скрипова (ИФМ УрО РАН) за гидрирование монооксидов титана, Н. Wu и T.J. Udovic (NIST Center for Neutron Research, Gaithersburg, USA) за помощь в нейтронографических измерениях.

Финансирование работы

Работа выполнена по государственному заданию № 0397-2019-0001 в Институте химии твердого тела Уральского отделения Российской академии наук.

Конфликт интересов

Авторы заявляют об отсутствии конфликта интересов.

Список литературы

- A.I. Gusev, A.A. Rempel, A.J. Magerl. Disorder and Order in Strongly Nonstoichiometric Compounds: Transition Metal Carbides, Nitrides and Oxides, Springer: Heidelberg (2001). 608 p.
- [2] А.А. Валеева, А.А. Ремпель, С.В. Ремпель, С.И. Садовников, А.И. Гусев. Успехи химии **90**, *5*, 601 (2021).
- [3] H. Goretzki. Phys. Status Solidi 20, 2, K141 (1967).
- [4] K. Yvon, H. Nowotny, R. Kieffer. Monatsh. Chem. 98, 12, 2164 (1967).
- [5] В.Т. Эм, И. Каримов, В.Ф. Петрунин, И.С. Латергаус, М.М. Антонова, И.И. Тимофеева, В.Я. Науменко. ФММ 39, 6, 1286 (1975).
- [6] S. Rundqvist, R. Tellgren, Y. Andersson. J. Less-Common Met. 101, 145 (1984).
- [7] G. Renaudin, K. Yvon, S.K. Dolukhanyan, N.N. Aghajanyan, V.S. Shekhtman. J. Alloys Comp. 356–357, 120 (2003).
- [8] И.С. Латергаус, И. Каримов, В.С. Пресман, В.Т. Эм. Изв. АН СССР. Неорган. материалы 23, 9, 1471 (1987).
- [9] A.V. Skripov, H. Wu, T.J. Udovic, Q. Huang, R. Hempelmann, A.V. Soloninin, A.A. Rempel, A.I. Gusev. J. Alloys Comp. 478, 1–2, 68 (2009).
- [10] A.V. Skripov, T.J. Udovic, J.C. Cook, R. Hempelmann, A.A. Rempel, A.I. Gusev. J. Phys.: Condens. Matter 21, 17, 175410 (2009).
- [11] G.W. Samsonow, W.W. Morosow. Monatsh. Chem. 102, 6, 1667 (1971).

- [12] И.Е. Павлов, С.И. Алямовский, Ю.Г. Зайнулин, Г.П. Швейкин. Порошк. металлургия **10**, 34 (1975).
- [13] A. San-Martin, F.D. Manchester. Bull. Alloy Phase Diagrams 8, *1*, 30 (1987).
- [14] V.F. Sear. Neutron News 3, 3, 26 (1992).
- [15] Ю.З. Нозик, Р.П. Озеров, К. Хенниг. Структурная нейтронография, Атомиздат, М. (1979).
- [16] А.А. Валеева, А.А. Ремпель, А.И. Гусев. Неорган. материалы 37, 6, 716 (2001).
- [17] А.А. Валеева, А.А. Ремпель, А.И. Гусев. Письма в ЖЭТФ 71, 11, 675 (2000).
- [18] A.A. Rempel, W. van Renterghem, A.A. Valeeva, M. Verwerft, S. van den Berghe. Sci. Reports 7, 10769 (2017).
- [19] J.K. Stalick, E. Prince, A. Santoro, I.G. Schroder, J.J. Rush. In: Neutron Scattering in Materials Science II / Eds. D.A. Neumann, T.P. Russel, B.J. Wuensch. NIST, Materials Research Society: Pittsburgh, PA, USA (1995). P. 101–106.
- [20] X'Pert HighScore Plus. Version 2.2e (2.2.5). © 2009 PANalytical B.V. Almedo, the Netherlands.
- [21] A.V. Skripov, A.V. Soloninin, A.A. Valeeva, A.I. Gusev, A.A. Rempel, H. Wu, T.J. Udovic. J. Alloys Comp. 887, 161353 (2021).
- [22] О.В. Ковалев. Неприводимые и индуцированные представления и копредставления федоровских групп. Наука, М.(1986). 368 с.

Редактор Д.В. Жуманов