15.2

Особенности динамики температурного отклика сегнетоэлектрической керамики при исследовании электрокалорического эффекта

© Г.Ю. Сотникова, Г.А. Гаврилов, А.А. Капралов, Р.С. Пассет, Е.П. Смирнова

Физико-технический институт им. А.Ф. Иоффе РАН, Санкт-Петербург, Россия E-mail: g.sotnikova@mail.ioffe.ru

Поступило в Редакцию 3 августа 2021 г. В окончательной редакции 3 августа 2021 г. Принято к публикации 14 сентября 2021 г.

Определение температурного отклика образца на внешнее электрическое поле является основным способом изучения электрокалорического эффекта в сегнетоэлектриках. На примере образца твердого раствора 0.65PbFe_{2/3}W_{1/3}O₃-0.35PbTiO₃ показано, что при увеличении напряженности электрического поля в образце может реализоваться эффект шнурования тока, приводящий к образованию локальных областей повышенной проводимости. В силу малого объема шнура связанные с ним тепловые эффекты обладают малыми характерными временами, сравнимыми с временами электрокалорического отклика образца, и могут приводить к значительным ошибкам при детектировании электрокалорического эффекта.

Ключевые слова: электрокалорический эффект, температурный отклик, сегнетоэлектрическая керамика, эффект шнурования тока.

DOI: 10.21883/PJTF.2021.24.51795.18982

Последние годы отмечены растущим интересом к изучению электрокалорического эффекта (ЕСЕ) в сегнетоэлектриках, который рассматривается как один из новых подходов для разработки эффективных накопителей энергии и твердотельных охлаждающих устройств [1-4]. Анализ динамики электрокалорического отклика образца в широком диапазоне изменения амплитуд, форм и длительностей воздействия электрического поля представляет значительный фундаментальный и прикладной интерес, так как позволяет получить новую информацию о поляризационных процессах в различных материалах и оценить перспективы их практического использования. Повышение метрологической достоверности измерения количественных характеристик ЕСЕ, а именно электрокалорических разности температур (δT) и коэффициента $e = \delta T / \Delta E$ (здесь ΔE — диапазон изменения электрического поля), остается актуальной экспериментальной задачей наряду с определением пробивной напряженности электрического поля Ebd. Величина реально достижимого значения ΔE , не приводящего к пробою, может стать основным фактором, ограничивающим возможность практического применения ЕСЕ в силу соотношения $\delta T \sim \Delta E \leqslant E_{bd}$. Однако в опубликованных работах по исследованию ЕСЕ вопросам изменения проводимости материалов при приложении сильного внешнего электрического поля и связанным с этим тепловым эффектам, ограничивающим реально достижимую величину δT , уделяется незаслуженно мало внимания. Эта проблема неразрывно связана с общей задачей исследования материалов при воздействии электрических полей, решение которой во многом определяет перспективы создания и развития электронной компонентной базы на

основе полупроводниковых и диэлектрических материалов [5-10]. Помимо развития теории необратимого "объемного" теплового пробоя, вызванного потребностью предсказывать поведение изоляционных материалов в сильных электрических полях [5], большой интерес вызывает изучение "локальных" явлений, связанных с наличием различного вида дефектов на поверхности и в объеме полупроводников, приводящих к локальному увеличению плотности тока при приложении поля и соответственно локальному разогреву образцов: микроплазменный пробой [6], эффект "шнурования тока" [7,8]. Эти исследования, пик которых пришелся на 60-80-е годы прошлого столетия и был связан с бурным развитием полупроводниковой элементной базы, не потеряли своей актуальности. В настоящее время возросший интерес к этим исследованиям связан с активным поиском новых эффективных материалов для солнечной энергетики [9], для электромеханических преобразователей на основе сегнетоэлектрических полимеров, монокристаллов и керамики различного состава, преимуществами которой являются легкость изготовления, прочность, стабильность, возможность получения сложных конфигураций [10].

Явление, аналогичное микроплазменному пробою в полупроводниках, описано нами в работе [11], где на примере исследования партии образцов многослойных структур сегнетоэлектрической керамики (релаксора) 0.55Pb-Mg_{1/3}Nb_{2/3}O₃-0.45PbSc_{1/2}Nb_{1/2}O₃ было показано, что при значениях $E \sim (1/2)E_{bd}$ (E_{bd} — ожидаемое значение пробойного поля) на фоне электрокалорического отклика образцов возникают явления, проявляющиеся в виде резких выбросов температуры. Получен-

Рис. 1. Экспериментальные эпюры синхронного мониторинга температурного отклика T_s (кривая *I*) и напряжения *U* (кривая *2*) на образце сегнетоэлектрической керамики твердого раствора 0.65PbFe_{2/3}W_{1/3}O₃-0.35PbTiO₃ (диаметр 10 mm, толщина 0.92 mm) при приложении к нему последовательности прямоугольных импульсов напряжения амплитудой U = 1000 V. В нижней части рисунка приведены участки эпюр, отражающие разный характер тепловых эффектов в образце, вызванных объемной проводимостью образца и эффектом шнурования тока.

ный эффект хорошо описывается в рамках модели частичного разряда в диэлектриках [12], искажает динамику температурного отклика образца и может приводить к завышению экспериментальных значений δT .

В настоящей работе нами представлены результаты исследования модельного объекта — сегнетоэлектрического твердого раствора $0.65PbFe_{2/3}W_{1/3}O_3-0.35PbTiO_3$ (PFW-PT), расположенного вблизи морфотропной фазовой границы (МФГ) [13]. Наличие МФГ у твердых растворов является характерной особенностью, а также существенным требованием для получения высоких электромеханических и диэлектрических характеристик и, как показывают экспериментальные данные, перспективных электрокалорических свойств [14].

В экспериментах использовались образцы сегнетоэлектрической керамики PFW–PT в виде таблеток толщиной $d \sim 0.3-1$ mm, диаметром $D \sim 10$ mm с возженными серебряными электродами. Исследование температурного отклика образца на приложение электрического поля (прямой метод измерения δT при изучении ECE) проводилось с использованием многоканальной экспериментальной установки, методик и алгоритмов прямых измерений пиро- и электрокалорического эффектов, опубликованных в [15].

На рис. 1 приведены результаты мониторинга температурного отклика образца толщиной d = 0.92 mm при приложении к нему последовательности прямоугольных импульсов напряжения с периодом 400 ms и длительностью 100-200 ms при амплитуде U = 1000 V $(E \sim 10 \, \text{kV/cm})$, устанавливаемой на выходе высоковольтного источника напряжения TREK609E-6. Значение $E \ll E_{bd} \approx 30 \, \text{kV/cm}$, где E_{bd} — ожидаемая величина пробивной напряженности для данного образца (диэлектрическая проницаемость $\varepsilon \sim 10\,000$ в области комнатной температуры [13]), рассчитанная в соответствии с [16]. Одновременно с бесконтактным контролем температуры поверхности образца (кривая 1 на рис. 1) осуществлялся контроль напряжения (кривая 2 на рис. 1) непосредственно на образце с временным разрешением 2 ms. Из рис. 1 видно, что в течение первых импульсов поля (до 9 s) наблюдается линейный разогрев образца, характерный для джоулевого нагрева "объемным" током проводимости, присущим данному образцу с известными значениями плотности (р), теплоемкости (c) и удельной проводимости ($\sigma(T)$). Заметим, что в диапазоне температур 20–110°С зависимость $\sigma(T)$ носит экспоненциальный характер [17]. После 9-й секунды эксперимента наблюдается изменение характера температурного отклика, сопровождаемое падением напряжения на образце, обусловленным предельной величиной тока используемого источника. Участок температурного отклика после выключения импульсов поля (после 15-й секунды эксперимента, рис. 1) позволяет определить постоянную времени тепловой релаксации образца $au_0 = 2H/
ho c d \approx 30 \, {
m s}$ с учетом реальных условий теплообмена, определяемых коэффициентом теплообмена (H) в условиях конкретного эксперимента (см. методику в [15]). При последующей подаче импульсов высокого напряжения (t > 1530 s, рис. 1) температурный отклик образца имеет вид обратимых тепловых эффектов с временами релаксации τ_{on} (включение), τ_{off} (выключение) $\ll \tau_0$, при этом амплитуда импульсов напряжения не соответствует установленному значению $U = 1000 \, \text{V}$ (рис. 1), а ограничивается уровнем U = 200 V. Такая динамика температурного отклика образца PFW-PT хорошо согласуется с моделью обратимого электроннотеплового пробоя, разработанной ранее для полупроводниковых материалов и вызванной эффектом шнурования тока [7,8]. Как следует из [8], характерные времена таких тепловых процессов составляют $au_{on} \sim 10^{-6} - 10^{-10}\,{
m s}$ для полупроводниковых структур толщиной *d* ~ 1 µm связаны с малым объемом шнура, а небольшое затягивание $\tau_{off} > \tau_{on}$ обусловлено наложением двух тепловых процессов: быстрое выключение шнура тока и медленное остывание нагретого объема образца в целом.

Результаты, представленные на рис. 2, позволяют рассчитать количественные параметры регистрируемого теплового эффекта в исследуемом образце: постоянные времени $\tau_{on} = 15$ ms, $\tau_{off} = 40$ ms и амплитуду $dT = 10^{\circ}$ C при температуре образца вблизи комнатной. Значение $\tau_{on} = 15$ ms хорошо согласуется с характерными временами электрокалорического отклика образцов аналогичного размера сегнетоэлектрической керамики различного состава, полученными экспериментально в [15]. В то же время регистрируемая амплитуда

Рис. 2. Температурный отклик образца сегнетоэлектрической керамики твердого раствора 0.65PbFe_{2/3}W_{1/3}O₃-0.35PbTiO₃, демонстрирующий обратимый электронно-тепловой эффект в режиме шнурования тока.

температурного отклика $dT = 10^{\circ}$ С значительно превосходит типичные значения электрокалорической разности температур $\delta T \sim 1-2^{\circ}$ С, достигнутой на данный момент в объемных керамических образцах различного состава [1–4].

В настоящей работе впервые экспериментально зарегистрирован обратимый тепловой эффект, наблюдаемый для сегнетоэлектрического твердого раствора 0.65PbFe_{2/3}W_{1/3}O₃ $-0.35PbTiO_3$, расположенного на МФГ, который может быть объяснен в рамках модели обратимого электронно-теплового пробоя, связанного с эффектом шнурования тока. Полученные значения постоянных времени нагрева и охлаждения сопоставимы с характерными временами электрокалорического отклика керамических материалов.

Выявленные особенности динамики температурного отклика материала во внешних электрических полях имеют особое значение при исследованиях ЕСЕ, требующих приложения переменного электрического поля с максимально возможной амплитудой, не приводящей к пробоям образца. Неконтролируемое возникновение "аномалий" температурного отклика образца сегнетоэлектрической керамики на воздействие внешнего электрического поля, связанных с локальными изменениями его проводимости, может привести к значительным ошибкам при регистрации ЕСЕ в новых материалах и завышению δT при численном моделировании ЕСЕ без учета реальной величины допустимого изменения рабочего напряжения. Избежать таких ошибок можно только при одновременном контроле динамики изменения температуры и напряжения на исследуемом образце с высоким временным разрешением, а также условий теплообмена, определяющих истинную величину постоянной времени тепловой релаксации образца в целом.

В работе продемонстрирована актуальность комплексного изучения закономерностей и механизмов объемного и локального изменения проводимости сегнетоэлектрических материалов, которое представляет значительный фундаментальный и практический интерес, что стимулирует дальнейшие исследования.

Благодарности

Авторы выражают благодарность М.Е. Левинштейну за плодотворные дискуссии об электронно-тепловых механизмах пробоя в полупроводниках.

Финансирование работы

Работа выполнена в рамках госзадания (научные темы 0040-2019-0019, 0040-2019-0031).

Конфликт интересов

Авторы заявляют, что у них нет конфликта интересов.

Список литературы

- Y. Liu, J.F. Scott, B. Dkhil, Appl. Phys. Rev., 3, 031102 (2016). DOI: 10.1063/1.4958327
- S. Pandya, J. Wilbur, J. Kim, R. Gao, A. Dasgupta, C. Dames, L.W. Martin., Nature Mater., 17, 432 (2018).
 DOI: 10.1038/s41563-018-0059-8
- [3] T. Zhang, X.-S. Qian, H. Gu, Y. Hou, Q.M. Zhang, Appl. Phys. Lett., 110, 243503 (2017). DOI: 10.1063/1.4986508
- [4] Electrocaloric materials: new generation of cooler, ed. by T. Correia, Q. Zhang (Springer, 2013).
 DOI: 10.1007/978-3-642-40264-7
- [5] Г.А. Воробьев, Ю.П. Похолков, Ю.Д. Королев, В.И. Меркулов, Физика диэлектриков (область сильных полей) (Изд-во ТПУ, Томск, 2003).
- [6] И.В. Грехов, Ю.Н. Сережкин, Лавинный пробой *p*-*n*переходов в полупроводниках (Энергия, Л., 1980).
- [7] В.В. Пасынков, Л.С. Чиркин, Полупроводниковые приборы (Высш. шк., М., 1987).
- [8] Электронные явления в халькогенидных стеклообразных полупроводниках, под ред. К.Д. Цэндина (Наука, СПб., 1996), с. 224–299.
- [9] K.A.K. Niazi, W. Akhtar, H.A. Khan, Y. Yang, S. Athar, Solar Energy, 190, 34 (2019). DOI: 10.1016/j.solener.2019.07.063
- [10] М. Лайнс, А. Гласс, Сегнетоэлектрики и родственные им материалы (Мир, М., 1981).
- [11] Г.Ю. Сотникова, Г.А. Гаврилов, А.А. Капралов, Р.С. Пассет, Е.П. Смирнова, ФТТ, 62 (10), 1631 (2020). DOI: 10.21883/FTT.2020.10.49911.099
- [12] M. Refaey, A.A. Hossam-Eldin, T. Negm, in 18th IEEE Int. Middle East Power Systems Conf. (MEPCON) (Helwan, Egypt, 2016). DOI: 10.1109/MEPCON.2016.7836959
- [13] E. Smirnova, A. Sotnikov, M. Shevelko, N. Zaitseva, H. Schmidt, J. Mater. Sci., 56, 4753 (2021).
 DOI: 10.1007/s10853-020-05613-3
- [14] Y. Bai, D. Wei, L.-J. Qiao, Appl. Phys. Lett., 107, 192904 (2015). DOI: 10.1063/1.4935424
- [15] G.Yu. Sotnikova, G.A. Gavrilov, A.A. Kapralov,
 K.L. Muratikov, E.P. Smirnova, Rev. Sci. Instrum., 91, 015119 (2020). DOI: 10.1063/1.5108639
- [16] C. Neusel, G.A. Schneider, J. Mech. Phys. Solids, 63, 201 (2014). DOI: 10.1016/j.jmps.2013.09.009

[17] Г.Ю. Сотникова, Г.А. Гаврилов, К.Л. Муратиков, Р.С. Пассет, Е.П. Смирнова, ФТТ, 63 (6), 730 (2021). DOI: 10.21883/FTT.2021.06.50930.024