03.2;01.1

© Н.Ю. Быков^{1,2}, А.А. Хватов², А.В. Калюжная², А.В. Бухановский²

¹ Санкт-Петербургский политехнический университет Петра Великого, Санкт-Петербург, Россия ² Университет ИТМО, Санкт-Петербург, Россия E-mail: nbykov2006@yandex.ru

Поступило в Редакцию 20 июля 2021 г. В окончательной редакции 7 сентября 2021 г. Принято к публикации 11 сентября 2021 г.

Предложен алгоритм метода генеративного дизайна модели для решения задачи восстановления уравнения теплового процесса по имеющимся данным. Метод применен для генерации уравнения в частных производных, описывающего процесс прогрева и испарения металла, поверхность которого нагревается лазерным излучением. Продемонстрирована высокая эффективность метода для целей восстановления корректной структуры уравнения, индикации сопровождающих нагрев дополнительных процессов (в рассматриваемом случае — процесса испарения поверхности мишени), а также для определения значений температурозависимых коэффициентов при производных.

Ключевые слова: метод генеративного дизайна, управляемая данными модель, лазерный нагрев, уравнение теплопроводности.

DOI: 10.21883/PJTF.2021.24.51790.18967

С точки зрения развития технологий искусственного интеллекта (ИИ) особый интерес представляет разработка методов восстановления по имеющимся данным моделей процессов различной природы в виде дифференциальных уравнений в частных производных (ДУЧП) [1]. Данный подход (далее метод генеративного дизайна модели (ГДМ)) представляется крайне перспективным для решения широкого круга задач тепломассопереноса. Разработка алгоритма ГДМ применительно к задачам теплопереноса позволит по имеющимся данным уточнить структуру ДУЧП, описывающего тепловой процесс, выявить наличие "скрытых" сопутствующих процессов, таких как фазовые превращения и химические реакции, а в ряде случаев описать сложные явления с неизвестными свойствами рассматриваемых объектов более простыми моделями. С точки зрения уточнения структуры уравнений в качестве примера можно привести необходимость учета второй производной от температуры по времени в "классическом" уравнении теплопроводности для корректного описания высокоинтенсивных нестационарных процессов, тепловых процессов в объектах с сильной внутренней неоднородностью или в малоразмерных объектах [2]. В случае движущейся среды уравнение теплопроводности расширяется за счет добавления конвективного слагаемого. Таким образом, при наличии данных о тепловом процессе (например, распределения температур в среде в различные моменты времени) алгоритм искусственного интеллекта должен вначале правильно идентифицировать структуру уравнения (число и вид основных слагаемых), а затем определить необходимые коэффициенты при каждом структурном элементе.

Целями настоящей работы являются 1) разработка оригинального алгоритма восстановления по данным модели в виде ДУЧП применительно к решению тепловых задач; 2) демонстрация возможностей применения предлагаемого подхода.

Разработанный алгоритм метода ГДМ предусматривает реализацию нескольких этапов восстановления неизвестной структуры уравнения по имеющимся данным. Сначала записывается полный возможный шаблон искомого уравнения. В настоящей работе рассматривается общий шаблон уравнения теплопроводности, описывающего импульсный нагрев материала поверхностным источником тепла [3]:

$$-\frac{\partial T}{\partial t} + \frac{1}{c\rho}\frac{\partial}{\partial x}\lambda\frac{\partial T}{\partial x} + \omega\frac{\partial T}{\partial x} = 0.$$
(1)

Здесь t — время, x — координата. Система координат связана с движущейся (со скоростью ω при наличии испарения) поверхностью мишени. Коэффициент теплопроводности λ считается неизвестным. Для данного коэффициента предполагается полиномиальная зависимость от температуры с неизвестными коэффициентами β : $\lambda = \beta_0 + \beta_1 T + \beta_2 T^2 + \beta_3 T^3$. Также неизвестен вклад конвективного слагаемого, определяемого коэффициентом ω . Плотность ρ и теплоемкость материала c полагаются постоянными и заданными. Мощность поверхностного теплового источника q_s , определяющая граничное условие при x = 0, полагается известной.

Для применения методов статистического обучения [4] дискретизированный методом конечных разностей вариант выражения (1) может быть записан в виде

$$\mathbf{Y} = \alpha_0 \mathbf{E} + \sum_{p=2}^{P_t} \alpha_p \mathbf{V}_p, \qquad (2)$$

где $\mathbf{Y} = -\alpha_1 \mathbf{V}_1$, $\alpha_0 = 0$, $\alpha_1 = -1$, $\alpha_p = \beta_{p-2}/(c\rho)$ для $2 \leq p \leq 5$, $\alpha_6 = \omega$, \mathbf{E} — вектор, у которого все компоненты равны единице. Компоненты векторов \mathbf{V}_p содержат разностные шаблоны элементов уравнения (1), соответствующие внутренним узлам сетки и рассматриваемым моментам времени. Число компонентов равно n = (N-2)L (N — число сеточных узлов равномерной сетки, L — число моментов времени, для которых известны значения температуры в узлах). Число слагаемых P_t зависит от числа слагаемых исходного ДУЧП и степени полинома, описывающего зависимость $\lambda(T)$. Для рассматриваемого случая полинома третьей степени $P_t = 6$. Коэффициенты α_p (p > 1) неизвестны и подлежат определению.

Дальнейшая реализация алгоритма ГДМ предполагает два этапа.

1. По исходным синтетическим данным (распределениям температуры в сеточных узлах для различных моментов времени) вычисляются компоненты векторов V_n.

2. К (2) применяется процедура отбора оптимального подмножества переменных [4], позволяющая отсеять малозначимые слагаемые и определить необходимые коэффициенты. В нашем случае число переменных (предикторов) для внутренних узлов $P = P_t - 1 = 5$. Процедура предусматривает перебор 2*P* возможных компоновок (2) с одним, двумя, тремя и т.д. до *P* слагаемых (элементов). Для каждого фиксированного числа слагаемых *p* перебираются возможные варианты элементов и выбирается оптимальная модель на основе расчета наименьшей суммы квадрата остатков (RSS).

Рис. 1. Пространственно-временное распределение температуры для варианта 2.

Рис. 2. Изменение температуры поверхности (1, 3) и скорости фронта испарения (2) для вариантов 3 (3) и 4 (1, 2).

Далее выбирается единственная оптимальная модель с использованием критерия BIC [4], вычисляемого как

$$BIC = n \ln(RSS/n) + k \ln n, \ k = P + 2.$$

В настоящей работе статистический анализ выполнен с использованием пакета *R* [5].

Синтетические данные (пространственные распределения температур материала для разных моментов времени) получены путем численного решения (1) с использованием конечно-разностной схемы Кранка—Николсона [2] (табл. 1). Граничные и начальные условия имеют вид [3]:

$$T(x, 0) = T_0,$$

$$\lambda \frac{\partial T}{\partial x}\Big|_{x=0} = q_s - L\rho\omega, \qquad T(\infty, t) = T_0, \qquad (3)$$

где L — скрытая теплота испарения, $q_s = (1 - R_f)I_0$, $R_f = 0.77$ [6] — коэффициент отражения, I_0 — интенсивность излучения на поверхности мишени, $T_0 = 300$ K. Скорость движения поверхности ω соответствует закону Герца [3,6]. Продолжительность лазерного импульса $(I_0 \neq 0) - 100$ ns, интенсивность излучения предполагается постоянной во времени, материал мишени ниобий. В вариантах 1 и 2 материал нагревается ниже температуры плавления. Для этого случая учитывается зависимость коэффициента теплопроводности от температуры согласно [7]. В вариантах 3 и 4 температура поверхности материла приближается к температуре кипения или превышает ее. С учетом отсутствия надежных данных для этого диапазона теплопроводность материала считается постоянной и равной теплопроводности жидкого металла [7]. Следует отметить, что с целью упрощения постановки фазовый переход твердое тело-жидкость в работе не рассматривается. Примеры синтетических данных представлены на рис. 1, 2.

Вариант	Временно́й срез, µs	$I_0(t), { m W/m^2}$	ρ , kg/m ³	$C, J/(kg \cdot K)$	$\lambda, W/(m \cdot K)$	N _d
1	0.01	$\begin{array}{c} 3 \cdot 10^{11} \\ 3 \cdot 10^{11} \\ 7 \cdot 10^{11} \\ 12 \cdot 10^{11} \\ 3 \cdot 10^{11} \end{array}$	8570	263	Var	998
2	1		8570	263	Var	11704
3	0.0975		7580	449.9	65	3224
4	0.0975		7580	449.9	65	3355
5	1		8570	263	Var	580

Таблица 1. Варианты синтетических данных о процессе прогрева мишени

Примечание. N_d — число степеней свободы, Var — переменная.

Таблица 2. Результаты применения процедуры отбора оптимального подмножества для варианта 1

	α_2	α_3	$lpha_4$	α_5	$lpha_6$	BIC
Теория	*	*	*	*		
(1)	*					-3628.851
(2)	*				*	-10980.495
(3)	*	*			*	-12940.783
(4)	*	*	*	*		-29934.639
(5)	*	*	*	*	*	-29928.260

	$lpha_0$	α_1	α_2	α_3	$lpha_4$	α_5	$lpha_6$
Теория	0	-1	$2.2845 \cdot 10^{-5}$	$2.9668 \cdot 10^{-9}$	$2.9513 \cdot 10^{-12}$	$-1.0009 \cdot 10^{-15}$	0
Вариант 1	$2.2415 \cdot 10^{-5}$	-1	$2.2845 \cdot 10^{-5}$	$2.9669 \cdot 10^{-9}$	$2.9513 \cdot 10^{-12}$	$-1.0009 \cdot 10^{-15}$	0
Вариант 2	$1.2132 \cdot 10^{-7}$	-1	$2.2845 \cdot 10^{-5}$	$2.9668 \cdot 10^{-9}$	$2.9513 \cdot 10^{-12}$	$-1.0009 \cdot 10^{-15}$	0
Вариант 5	$-2.5967 \cdot 10^{-7}$	-1	$2.2845 \cdot 10^{-5}$	$2.9668 \cdot 10^{-9}$	$2.9513 \cdot 10^{-12}$	$-1.0009 \cdot 10^{-15}$	0
Теория	0	-1	$1.9060 \cdot 10^{-5}$	0	0	0	_
Вариант 3	$7.3003 \cdot 10^{-6}$	-1	$1.9060 \cdot 10^{-5}$	0	0	0	0
Вариант 4	$1.4656 \cdot 10^{-5}$	-1	$1.9060 \cdot 10^{-5}$	0	0	0	0.283

Таблица 3. Результаты применения ГДМ

В настоящей работе для генерации модели используются данные, соответствующие одному временному срезу (табл. 1), содержащему три близлежащих временных слоя (шаг времени между слоями $\Delta t = 10^{-11}$ s для вариантов 1–4, $\Delta t = 10^{-10}$ s для варианта 5). Число степеней свободы (узлов пространственной сетки с известным значением температуры), используемых для генерации модели, составляет 580–16 000 в зависимости от варианта (табл. 1).

Сначала метод ГДМ применен к восстановлению уравнения по данным, предполагающим прогрев мишени до температур менее 2300 К (варианты 1 и 2) и температурную зависимость коэффициента теплопроводности. В табл. 2 в качестве примера применения процедуры выбора оптимального подмножества элементов представлены результаты для варианта 1, соответствующего стадии облучения. В первом столбце цифра в скобках означает число элементов p, входящих под знак суммы в правой части выражения (2). Для данного варианта процедура правильно воспроизводит структуру уравнения, включающего четыре слагаемых (без учета члена, соответствующего α_1). Такому набору элементов урав-

Письма в ЖТФ, 2021, том 47, вып. 24

нения отвечает минимальное значение критерия BIC. Вариант 2 соответствует тем же условиям, но большему времени процесса $t = 10^{-6}$ s. Температура материала уменьшается из-за процесса диффузии тепла в глубь мишени. К моменту времени 1 µs диапазон изменения температуры материала составляет 300–800 K, при этом число степеней свободы увеличивается до 12 000. Конвективное слагаемое для данного варианта также не воспроизводится.

Результаты применения метода ГДМ для вариантов 1 и 2 сведены в табл. 3. В первой строке таблицы (графа "Теория") приведены нормированные коэффициенты $\alpha_2 - \alpha_5$, соответствующие используемой при численном решении уравнения (1) аппроксимации коэффициента теплопроводности. В следующих строках содержатся восстановленные коэффициенты для рассмотренных вариантов. Как следует из представленных результатов, значения коэффициентов в полиномиальной зависимости теплопроводности воспроизводятся достаточно точно. Погрешность восстановления полного коэффициента теплопроводности не превышает 0.002%. Увеличение шага по времени до 10^{-10} s и шага сетки в 50 раз до 10^{-7} m не повлияло на результаты восстановления модели (вариант 5, табл. 3).

Для демонстрации возможностей ГДМ для индикации протекания дополнительных физических процессов было выполнено восстановление модели для вариантов 3 и 4. В варианте 3 интенсивность лазерного излучения оказывалась недостаточной для испарения поверхности мишени. Температура поверхности достигает 4000 К (рис. 2). Для варианта 4 температура поверхности к моменту завершения импульса превышает 6000 К и скорость фронта испарения становится значимой (рис. 2).

Результаты применения ГДМ для вариантов 3 и 4 приведены в табл. 3. Видно, что ГДМ правильно восстанавливает структуру уравнения. Для варианта 4 воспроизводится коэффициент при конвективном слагаемом. Также правильно воспроизводится значение безразмерного коэффициента теплопроводности.

Проведенное исследование является первым этапом в изучении возможностей применения предлагаемого алгоритма ГДМ как для непосредственного построения математической модели сложного явления по имеющимся данным, так и для индикации сопутствующих процессов, таких, например, как фазовые превращения, а также для уточнения теплофизических параметров материалов. Следующим важным шагом в исследовании эффективности применения алгоритма генеративного дизайна для восстановления моделей тепловых процессов будет его апробация на зашумленных экспериментальных данных.

Финансирование работы

Исследование выполнено за счет гранта Российского научного фонда № 21-11-00296 (https://rscf.ru/project/21-11-00296/).

Конфликт интересов

Авторы заявляют, что у них нет конфликта интересов.

Список литературы

- M. Maslyaev, A. Hvatov, A.V. Kalyuzhnaya, J. Comp. Sci., 53, 101345 (2021). DOI: 10.1016/j.jocs.2021.101345
- [2] А.А. Самарский, П.Н. Вабищевич, *Вычислительная теп*лопередача (Едиториал УРСС, М., 2003).
- [3] С.И. Анисимов, Я.А. Имас, Г.С. Романов, Ю.В. Ходыко, Действие излучения большой мощности на металлы (Наука, М., 1979).
- [4] Г. Джеймс, Д. Уиттон, Т. Хасти, Р. Тибширани, Введение в статистическое обучение с примерами на языке R (ДМК Пресс, М., 2017).
- [5] R: A language and environment for statistical computing (R Foundation for Statistical Computing, Vienna, 2020) [Электронный ресурс]. URL: https://www.R-project.org/
- [6] N.Y. Bykov, N.M. Bulgakova, A.V. Bulgakov, G.A. Loukianov, Appl. Phys. A., 79, 1097 (2004).
- [7] В.Е. Зиновьев, Теплофизические свойства металлов при высоких температурах (Металлургия, М., 1989).