02

Фотолюминесценция политетрафторэтилена в ближней инфракрасной области спектра

© В.М. Киселев¹, И.В. Багров¹, А.М. Стародубцев¹, Н.Г. Гоголева²

¹ Государственный оптический институт им. С.И. Вавилова,

199034 Санкт-Петербург, Россия

² Санкт-Петербургский государственный электротехнический университет "ЛЭТИ" имени В.И. Ульянова (Ленина),

197376 Санкт-Петербург, Россия

e-mail: kiselevvm21@gmail.com

Поступила в редакцию 16.08.2021 г. В окончательной редакции 31.08.2021 г. Принята к публикации 31.08.2021 г.

Исследована фотолюминесценция политетрафторэтилена (фторопласта-4, также известного под торговой маркой тефлон) в ближней инфракрасной области спектра при его возбуждении ультрафиолетовым и видимым излучением. Показано, что в спектре фотолюминесценции, наблюдаемой с поверхности фторопласта при его возбуждении, отчетливо присутствует характерный профиль люминесценции, совпадающий по своему положению со спектром фосфоресценции синглетного кислорода.

Ключевые слова: фотолюминесценция, фосфоресценция, политетрафторэтилен, тефлон, фторопласт, синглетный кислород, оптическое возбуждение, светодиодные матрицы.

DOI: 10.21883/OS.2021.12.51741.2648-21

Введение

В последние годы наблюдается активный рост интереса к перфторированным материалам. Благодаря своим уникальным физическим и химическим свойствам перфторированные материалы постоянно находят все новые области применения. Высокая растворимость кислорода, азота, углекислого газа и ряда других газов в перфторуглеродах и отличные токсикологические их свойства способствовали широким медицинским применениям перфторированных материалов в качестве кровезаменителей, при исцелении ран, в глазной хирургии, жидкостной вентиляции легких, кожной реабилитации, а также в качестве элемента для доставки сенсибилизирующего лекарственного средства к пораженной ткани в фотодинамической терапии [1–4].

Большой интерес при этом наблюдается и к исследованиям фотолюминесценции политетрафторэтилена (ПТФЭ) [5–9] при возбуждении образцов излучением в ультрафиолетовом и видимом спектральных диапазонах. Исследуемые образцы при возбуждении, как правило, демонстрируют широкий спектр излучения фотолюминесценции, простирающийся от фиолетовой до красной области спектра. Было также показано, что концентрация молекулярного кислорода в образце ПТФЭ играет ключевую роль в формировании оптического излучения фотолюминесценции [6,7]. Содержание кислорода в образце ПТФЭ, как показано в работе [10], может достигать до 6 wet.%, многократно увеличиваясь при различных активных воздействиях на образец в виде уоблучения [7] или потока электронов [10]. Параметры высокой сорбции и растворимости легких газов, в частности O_2 , N_2 , CO_2 и др., в перфторуглеродах авторами работы [11], которые провели измерения сорбции для двух образцов тефлона AF1600 и AF2400, связываются с исключительно высоким свободным объемом этих материалов, определяющим высокую объемную сорбцию различных видов газов.

В то же время надо отметить, что при достаточно активном исследовании фотолюминесценции ПТФЭ в ряде работ [5–9] все эти исследования были проведены только для видимой области спектра. Фотолюминесценция в инфракрасном (ИК) диапазоне и, в частности, в ближнем ИК диапазоне оказалась вне интересов этих исследований. В данной работе авторы попытались частично восполнить этот пробел, выполнив измерения фотолюминесценции ПТФЭ в оптическом диапазоне от 0.9 до $1.7 \mu m$.

Материалы и методика эксперимента

При проведении исследований фотолюминесценции ПТФЭ в качестве исследуемых образцов использовались пленки фтороплата-4 толщиной 0.05 и 0.2 mm и пластины толщиной от 1 до 6 mm производства России, образец ПТФЭ производства Јарап, а также порошковый образец фторопласта с размерами частиц $1-3 \mu m$ (China).

В качестве источников оптического возбуждения ПТФЭ использовались светодиодные матрицы ($26 \times 26 \text{ mm}$) серии HPR40E с длинами волн излучения $\lambda_m = 370, 405, 465, 525$ и 625 nm и с $\Delta\lambda_{0.5} = 20 \text{ nm}$. Подводимая электрическая мощность для светодиодных матриц равна 100 W. Параметры излучения светодиодных матриц представлены в таблице. Измерение мощности

Рис. 1. Спектр фотолюминесценции ПТФЭ в ближнем ИК диапазоне для образца в виде пластины (*a*) и для порошкообразного образца (*b*).

излучения светодиодных источников осуществлялось измерителем мощности излучения Coherent-Molectron PS-10.

Регистрация излучения фотолюминесценции с поверхности исследуемых образцов ПТФЭ выполнялась с применением ИК спектрометра SDH-IV с приемной InGaAs-линейкой фирмы Hamamatsu (Япония), выпускаемого фирмой "Солар Лазерные Системы" (Беларусь). Спектральный диапазон прибора от 868 до 1700 nm. Применявшаяся схема эксперимента со светодиодной оптической накачкой для исследуемых образцов представлена в [12].

Результаты эксперимента и их обсуждение

Прежде чем переходить к анализу результатов исследования фотолюминесценции ПТФЭ, следует отметить спектральные свойства данного материала и прежде всего спектр поглощения оптического возбуждения. Характерные для образцов ПТФЭ спектры поглощения, пропускания и отражения довольно детально исследованы в работах [13-15], в которых показано, что ПТФЭ имеет низкие свойства поглощения в применяемом в настоящей работе диапазоне оптического возбуждения. Большая часть света диффузно отражается (от 90 до 95%), и лишь небольшая часть проходит через материал (от 7 до 2%). На поглощение приходится от 2 до 4% в зависимости от толщины образца. При этом данная величина поглощения несущественно меняется в пределах указанного диапазона длин волн от 300 до 500 nm.

Спектральные профили фотолюминесценции ПТФЭ для образца в виде пластины фторопласта-4 толщиной 3 mm (a) и для образца в виде порошка (b)при возбуждении излучением на длине волны 370 nm представлены на рис. 1. Время экспозиции 12 s. Как видно на представленном рисунке, наряду с широким

Параметры излучения светодиодных матриц

λ_m , nm	370	405	480	525	625
P, W/cm ²	0.35	1.0	1.8	0.60	1.0

спектром фотолюминесценции с максимумом в районе 1.035 μ m на общем спектральном профиле присутствует и характерный максимум люминесценции, совпадающий по своему положению со спектром фосфоресценции синглетного кислорода на длине волны 1270 nm (переход ${}^{1}\Delta_{g}(\nu'=0)^{-3}\Sigma_{g}(\nu''=0)$). Этот максимум достаточно отчетливо представлен для пластины и весьма слабо для порошкообразного образца.

Надо заметить, что спектральный профиль люминесценции для порошкообразного образца ПТФЭ очень сильно напоминает аналогичные результаты, которые ранее наблюдались для порошкообразных образцов оксидов металлов [16-18]. Как известно [16], эти результаты были связаны с прямым возбуждением кислорода, сорбированного на поверхности порошкообразных образцов. Наработка ¹О₂ возрастала с уменьшением размеров частиц оксида металла вследствие увеличения их общей эффективной поверхности и соответствующего повышения за счет этого поверхностной сорбции газов. Таким образом, для порошкообразного образца ПТФЭ в данном случае, как и для оксидов металлов, наблюдается наработка синглетного кислорода в основном только за счет поверхностной сорбции газа. Тогда как для плотно упакованного образца ПТФЭ в виде пластины или пленки имеет место уже отмеченная ранее [11] высокая объемная сорбция газов с содержанием кислорода в объеме образца до 6 wet.% [10]. По-видимому, именно поэтому интенсивность максимума люминесценции синглетного кислорода для пластины, как видно на рис. 1, а, много выше.

Интенсивность этого максимума для пластины зависит как от длины волны возбуждающего излучения, так

Рис. 2. Зависимость интенсивности фосфоресценции синглетного кислорода от длины волны излучения оптического возбуждения (*a*) и от толщины образца (*b*).

и от толщины облучаемого образца. Соответствующие зависимости представлены на рис. 2.

На рис. 2, *а* показаны значения интенсивностей в максимуме спектрального профиля люминесценции, отнесенные к плотности мощности светового потока на выходе конкретной светодиодной матрицы. Эти приведенные относительные интенсивности демонстрируют определенную закономерность зависимости эффективности генерации синглетного кислорода от длины волны возбуждающего излучения. На рис. 2, *b* показаны значения интенсивностей в максимуме спектрального профиля люминесценции синглетного кислорода в зависимости от толщины образца ПТФЭ.

Представленные на рис. 2 зависимости нуждаются в дополнительных пояснениях относительно механизма активной генерации синглетного кислорода при облучении образца ПТФЭ в виде пластины или пленки излучением оптического возбуждения. Экспоненциальный спад интенсивности наработки синглетного кислорода при увеличении длины волны оптического возбуждения, с одной стороны, совершенно не коррелирует с кривой поглощения ПТФЭ, отмеченной выше, а с другой стороны, неплохо совпадает со спектральной зависимостью эффективности наработки синглетного кислорода при его прямом возбуждении, например, в растворе тетрахлорметана, приведенной в работах [19,20]. А как утверждается в ряде работ [6,10], кислород может быть эффективно растворен в объеме ПТФЭ, и, следовательно, можно предположить, что в данном случае также возможно прямое возбуждение этого растворенного кислорода по аналогии с другими растворами, учитывая низкие свойства поглощения самого ПТФЭ в данном спектральном диапазоне излучения оптического возбуждения [15].

Зависимость интенсивности фосфоресценции синглетного кислорода от толщины образца, представленная на рис. 2, *b*, опять же свидетельствует об объемном

Рис. 3. Спектр фотолюминесценции синглетного кислорода из объема образца ПТФЭ (пластина толщиной 3 mm) при комнатной температуре 25° C (1) и при охлаждении образца до -20° C (2).

механизме наработки синглетного кислорода, подтверждая в определенной степени предположение о прямом возбуждении кислорода, растворенного в объеме полимера. При этом надо отметить и очень низкие значения поглощения и диффузного рассеяния излучения в ИК диапазоне в районе 1200–1600 nm, измеренные нами с применением спектрофотометра Shimadzu-3600, которые позволяют излучению синглетного кислорода выходить из объема образца ПТФЭ без больших потерь в интенсивности.

Аналогичным подтверждением достоверности предположения относительно объемного механизма наработки синглетного кислорода при облучении образца ПТФЭ излучением оптического возбуждения может служить и температурная зависимость эффективности наработки синглетного кислорода, представленная на рис. 3.

Рис. 4. Спектральный профиль фотолюминесценции синглетного кислорода из объема образца ПТФЭ в линейном (*a*) и логарифмическом (*b*) масштабах.

В соответствии с известной зависимостью растворимости газа в используемом растворителе от температуры, которая подчиняется закону Генри [21,22]

$$k_H/k_H^{\theta} = \exp\left(\left(-\Delta H_{\rm soln}/R\right)\left(1/T - 1/T^{\theta}\right)\right)$$

(где ΔH_{soln} — энтальпия раствора, R — универсальная газовая постоянная, $T^{\theta} = 298 \, \mathrm{K}$ — комнатная температура, k_{H}^{θ} — концентрация растворенного газа при комнатной температуре, k_H — концентрация растворенного газа при температуре Т), при понижении температуры растворителя растворимость газа (в том числе и кислорода) в данном случае в ПТФЭ повышается. Повышение содержания кислорода в объеме ПТФЭ должно приводить к росту эффективности наработки синглетного кислорода, что и наблюдается на рис. 3. Понижение температуры растворителя, как известно [23], приводит к увеличению времени жизни возбужденного состояния кислорода в растворе, что также должно способствовать росту сигнала фосфоресценции синглетного кислорода из объема ПТФЭ. Для широкого спектра фотолюминесценции ПТФЭ с максимумом в районе $1.035 \mu m$ влияние понижения температуры образца выражено очень слабо.

В условиях внешнего окружения молекул кислорода (с молекулами газа, растворителя или адсорбента) на интенсивность фосфоресценции синглетного кислорода преимущественное влияние оказывает спин-орбитальное взаимодействие молекулы кислорода с ее внешним окружением. При этом величина поглощения кислорода или, точнее, комплексов кислорода с внешним окружением заметно возрастает, как и интенсивность фотолюминесценции этих комплексов. Изучению влияния внешнего молекулярного окружения кислорода в газе или в конденсированной среде на параметры и свойства переходов из синглетных состояний кислорода в основное состояние посвящено большое количество как теоретических, так и экспериментальных работ [24–32]. При этом выполненные теоретические оценки [16–18] о возможности повышения излучательной вероятности переходов из синглетных состояний молекулы кислорода в основное под воздействием внешнего окружения получили убедительное экспериментальное подтверждение [27–32]. Образование этих комплексов влияет и на формирование спектрального профиля поглощения, индуцированного столкновениями с внешним окружением [33]. По-видимому, и в данном случае на достаточно интенсивную генерацию синглетного кислорода в объеме ПТФЭ оказывает внешнее окружение молекулы кислорода молекулярной структурой этого полимера.

Интересно отметить отдельные детали наблюдаемого спектрального профиля фотолюминесценции синглетного кислорода из объема образца ПТФЭ, которые характерны и для других условий генерации синглетного кислорода в растворах [12,20,34] или, например, для жидкого кислорода [35]. Соответствующий профиль в линейном и логарифмическом масштабах для интенсивности излучения представлен на рис. 4 для образца ПТ-ФЭ, изготовленного в Японии. Данный образец входит в качестве комплектующей детали в набор элементов ЭПР-спектрометра JES-ME-3X (Japan).

Наряду с основным максимумом фотолюминесценции на длине волны 1270.6 nm (переход ${}^{1}\Delta_{g}(\nu'=0)^{-3}\Sigma_{g}(\nu''=0))$ в представленном спектре присутствует и максимум на длине волны 1583.6 nm (отмечен стрелкой), соответствующий переходу ${}^{1}\Delta_{g}(\nu'=0)^{-3}\Sigma_{g}(\nu''=1)$, как это обычно наблюдалось при возбуждении кислорода в тетрахлорметане, или толуоле [12,20,34], или в условиях жидкого кислорода [35]. Более отчетливо второй максимум виден на рис. 4, b с логарифмическим масштабом интенсивности излучения. Данный максимум можно заметить и на рис. 3 только с меньшей интенсивностью. По сравнению с тетрахлорметаном оба максимума смещены в коротковолновую область. Максимум на длине волны 1490 nm, который наблюдался в

Рис. 5. Вид спектральных профилей фосфоресценции синглетного кислорода из объема ПТФЭ (1) и из объема тетрахлорметана (2) при возбуждении на $\lambda = 370$ nm.

Рис. 6. Спектр фотолюминесценции синглетного кислорода из объема исходного растворителя CCl_4 (1) и из суспензии порошка ПТФЭ в CCl_4 после 7 (2) и после 8 дней (3).

работе [34] и был идентифицирован со стоксовой компонентой, индуцированной колебаниями C–F-связи растворителя $C_{10}F_{18}$ с частотой 1100 сm⁻¹, в данном случае достаточно отчетливо не виден.

Как видно на рис. 5, максимум спектрального профиля фосфоресценции синглетного кислорода, наблюдаемого из объема ПТФЭ, не только смещен в коротковолновую область по сравнению с фосфоресценцией из объема тетрахлорметана, но и имеет более узкий профиль. Для удобства сравнения максимумы приведены к одинаковой интенсивности. Отмеченные закономерности, кстати, характерны для фторированных растворителей [12,36,37], включая сдвиг максимума в коротковолновую область и более узкий профиль фосфоресценции синглетного кислорода, особенно заметный, например, для C₁₀F₁₈ [36]. В условиях ПТФЭ для кислорода, который находится в его объеме, по-видимому, образуются комплексы кислорода с внешним окружением, подобные тем, которые наблюдаются во фторированных растворителях. И этим могут объясняться наблюдающиеся аналогичные закономерности проявления фосфоресценции синглетного кислорода из объема ПТФЭ.

На рис. 6 на примере суспензии порошка ПТФЭ с размерами частиц 1-3 µm (China) в химически чистом (XЧ) тетрахлорметане (CCl₄) в дополнение к спектральным свойствам ПТФЭ продемонстрирована высокая сорбционная способность ПТФЭ, которая приводит к весьма заметной очистке исходного растворителя от присутствующих в нем загрязнений, понижая, таким образом, эффективность процессов тушения возбужденного состояния кислорода, что проявляется в существенном увеличении интенсивности генерации синглетного кислорода. В этом качестве известный сорбент SiO₂ в аналогичных условиях показал заметно меньшую эффективность по очистке того же самого растворителя. Данное свойство высокой сорбционной способности суспензии наночастиц ПТФЭ (в том числе и в других средах, например в водной среде) может быть эффективно использовано в качестве элемента для доставки сенсибилизирующих лекарственных средств и синглетного кислорода к пораженной ткани в фотодинамической терапии, что уже активно исследуется [1–4].

Заключение

В работе проведено исследование фотолюминесценции в ближней ИК области спектра для нескольких произвольно выбранных образцов ПТФЭ (фторопласта) при их возбуждении ультрафиолетовым и видимым излучением. По своей конфигурации ПТФЭ представляет собой полукристаллический полимер, степень кристаллизации которого влияет на проницаемость и растворимость в нем газов. С увеличением степени кристаллизации (увеличение плотности с увеличением кристаллических доменов) проницаемость и растворимость газов уменьшаются [38], и, наоборот, с уменьшением степени кристаллизации увеличивается его пористость, а следовательно, растут проницаемость и растворимость газов. Поэтому проведенные исследования носят в определенной степени частный характер и не претендуют на широкое обобщение полученных результатов применительно ко всем конфигурациям структуры ΠΤΦЭ.

В результате выполненного исследования фотолюминесценции образцов ПТФЭ в ближней ИК области спектра при его возбуждении ультрафиолетовым и видимым излучением показано, что в спектре фотолюминесценции, наблюдаемой с поверхности фторопласта при его возбуждении, наряду с широким спектром с максимумом в районе 1.035 µm на общем спектральном профиле отчетливо присутствует характерный профиль люминесценции, совпадающий по своему положению со спектром фосфоресценции синглетного кислорода на длине волны 1270.6 nm (переход ${}^{1}\Delta_{g}(\nu'=0)^{-3}\Sigma_{g}(\nu''=0)$). В спектре присутствует и более слабый максимум на длине 1583.6 nm, соответствующий переходу ${}^{1}\Delta_{g}(\nu'=0)^{-3}\Sigma_{g}(\nu''=1)$, который обычно наблюдается при возбуждении кислорода в тетрахлорметане или толуоле, а также в жидком кислороде.

На основе полученных результатов в работе сделано предположение, что фосфоресценция синглетного кислорода наблюдается из объема ПТФЭ при прямом оптическом возбуждении кислорода, сорбированного или растворенного в структуре ПТФЭ, по аналогии с прямым оптическим возбуждением кислорода в объеме различных растворителей. Более низкая по сравнению с растворителями интенсивность сигнала фосфоресценции синглетного кислорода из объема ПТФЭ (примерно втрое) объясняется более высокой прозрачностью растворителей и, очевидно, более высоким временем жизни синглетного кислорода в растворителях.

Конфликт интересов

Авторы заявляют, что у них нет конфликта интересов.

Список литературы

- Wilson S.R., Yurchenko M.E., Schuster D.I., Yurchenko E.N., Sokolova O., Braslavsky S.E., Gudrun Klihm. // J. Am. Chem. Sos. 2002. V. 124. N 9. P. 1977.
- [2] Ghosh G., Minnis M., Ghogare A.A. // J. Phys. Chem. B. 2015.
 V. 119 (10). P. 4155.
- [3] Cardoso V.F., Correia D.M., Ribeiro C., Fernandes M.M., Lanceros-Méndez S. // Polymers. 2018. V. 10 (2). P. 161.
- [4] Jia Lv, Yiyun Cheng. // Chem. Soc. Rev. 2021. V. 50. P. 5435.
 [5] Scanni A., Valentini A., Perna G., Capozzi V., Convertino A. //
- J. Lumin. 2000. V. 91 (1–2). P. 87.
- [6] Хатипов С.А., Нурмухаметов Р.Н., Селиверстов Д.И., Сергеев А.М. // Высокомолекулярные соединения. Серия А. 2006. Т. 48. № 2. С. 263.
- [7] Khatipov S.A., Nurmukhametov R.N., Sakhno Yu.E., Klimenko V.G., Seliverstov D.I., Sychkova S.T., Sakhno T.V. // Nuclear Instruments and Methods in Physics Research B. 2011. V. 269. Iss. 21. P. 2600.
- [8] Valenta J. // AIP Advances. 2018. V. 8. Iss. 10. P. 105123.
- [9] Araujoa G.R., Pollmannb T., Ulrich A. // Eur. Phys. J. C. 2019.
 V. 79 (8). P. 653.
- [10] Gao J., Ni Z., Liu Ya. // e-Polymers. 2016. V. 16 (2). P. 111.
- [11] Alentiev A.Yu., Shantarovich V.P., Merkel T.C., Bondar V.I., Freeman B.D., Yampolskii Yu.P. // Macromolecules. 2002.
 V. 35. P. 9513.
- [12] Киселев В.М., Багров И.В. // Опт. и спектр. 2017. Т. 123.
 № 4. С. 543; Kiselev V.M., Bagrov I.V. // Opt. Spectrosc. 2017.
 V. 123. N 4. Р. 559.
- [13] Yang M.K., French R.H., Tokarsky E.W. // J. Micro. Nanolith. MEMS MOEMS. 2008. V. 7(3). P. 033010.
- [14] Tsai B.K., Allen D.W., Hanssen L.M., Wilthan B., Zeng Ji. // Proc. SPIE. 2008. V. 7065. P. 70650Y.

- [15] Quill T., Weiss S., Hirschler C., Pankadzh V., DiBattista G., Arthur M., Chen Ja. // https://www.porex.com/wpcontent/uploads/2020/04/Ultraviolet-Reflectance-of-Microporous-PTFE.pdf
- [16] Киселев В.М., Кисляков И.М., Бурчинов А.Н. // Опт. и спектр. 2016. Т. 120. № 4. С. 545; Kiselev V.M., Kislyakov I.M., Burchinov A.N. // Opt. Spectrosc. 2016. V. 120. N 4. P. 520.
- [17] Evstropiev S.K., Karavaeva A.V., Dukel'skii K.V., Kiselev V.M., Evstropyev K.S., Nikonorov N.V., Kolobkova E.V. // Ceramics International. 2017. V. 43. Iss. 16. P. 14504.
- [18] Evstropiev S.K., Karavaeva A.V., Petrova M.A. Nikonorov N.V., Vasilyev V.N., Lesnykh L.L., Dukelskii K.V. // Mater. Today Commun. 2019. V. 21. P. 100628.
- [19] Киселев В.М., Кисляков И.М., Багров И.В. // Опт. и спектр. 2016. Т. 120. № 6. С. 916; Kiselev V.M., Kislyakov I.M., Bagrov I.V. // Opt. Spectrosc. 2016. V. 120. N 6. P. 859.
- [20] Киселев В.М., Багров И.В., Гренишин А.С. // Опт. и спектр. 2021. Т. 129. № 4. С. 468; Kiselev V.M., Bagrov I.V., Grenishin A.S. // Opt. Spectrosc. 2021. V. 129. N 4. Р. 506.
- [21] Kretschmer C.B., Nowakowska J., Wiebe R. // Ind. Eng. Chem. 1946. V. 38 (5). P. 506.
- [22] Perry's Chemical Engineers' Handbook. 7-th Ed. N.Y.: McGraw_Hill, 1997.
- [23] Багров И.В., Белоусова И.М., Данилов О.Б., Киселев В.М., Муравьева Т.Д., Соснов Е.Н. // Опт. и спектр. 2007. Т. 102.
 № 1. С. 58; Bagrov I.V., Belousova I.M., Danilov O.B., Kiselev V.M., Murav'eva T.D., Sosnov E.N. // Opt. Spectrosc. 2007. V. 102. N 1. P. 52.
- [24] Минаев Б.Ф. // Изв. вузов. Сер. Физ. 1978. № 9. С. 115; Minaev B.F. // Izv. Vyssh. Uchebn. Zaved., Fiz. 1978. N 9. P. 115.
- [25] Минаев Б.Ф. // Опт. и спектр. 1985. Т. 58. № 6. С. 1238; Minaev B.F. // Орt. Spectrosc. 1985. V. 58. N 6. Р. 1238.
- [26] Klotz R., Peyerimhoff S.D. // Molecular Phys. 1986. V. 57. N 3. P. 573.
- [27] Ogilby P.R., Foote Ch.S. // J. Am. Chem. Soc. 1983. V. 105. N 11. P. 3423.
- [28] Scurlock R.D., Ogilby P.R. // J. Phys. Chem. 1987. V. 91. P. 4599.
- [29] Schmidt R., Afshari E. // J. Phys. Chem. 1990. V. 94. P. 4377.
- [30] Schweitzer C., Schmidt R. // Chem. Rev. 2003. V. 103. P. 1685.
- [31] Jensen R.L., Holmegaard L., Ogilby P.R. // Phys. Chem. B. 2013. V. 117. N 50. P. 16227.
- [32] Bregnhoj M., Ogilby P.R. // J. Phys. Chem. A. 2015. V. 119. N 35. P. 923.
- [33] Bregnhoj M., Westberg M., Minaev B.F., Ogilby P.R. // Acc. Chem. Res. 2017. V. 50. N 8. P. 1920.
- [34] Chou Pi-Tai, Khan A.U. // Chem. Phys. Lett. 1984. V. 103. N 4. P. 281.
- [35] Багров И.В., Гоголева Н.Г., Гренишин А.С., Киселев В.М. // Опт. и спектр. 2020. Т. 128. № 1. С. 58; Bagrov I.V., Gogoleva N.G., Grenishin F.S., Kiselev V.M. // Opt. Spectrosc. 2020. V. 128. N 1. P. 57.
- [36] Macpherson A.N., Truscott T.G., Turner P.H. // J. Chem. Soc. Faraday Trans. 1994. V. 90 (8). P. 1065.
- [37] Багров И.В., Киселев В.М., Кисляков И.М., Соснов Е.Н. // Опт. и спектр. 2014. Т. 116. № 4. С. 609; Bagrov I.V., Kiselev V.M., Kislyakov I.M., Sosnov E.N. // Opt. Spectrosc. 2014. V. 116. N 4. P. 567.
- [38] Graunke T., Schmitt K., Raible S., Wöllenstein Jü. // Sensors. 2016. V. 16 (10). P. 1605.