Влияние электронного (зарядового) состояния *E*-ловушек на эффективность их накопления в *n*-GaAs при облучении

© В.Н. Брудный[¶], В.В. Пешев*

Сибирский физико-технический институт им. В.Д. Кузнецова, 634050 Томск, Россия * Томский политехнический университет, 634050 Томск, Россия

(Получена 14 марта 2002 г. Принята к печати 24 апреля 2002 г.)

При высокоэнергетическом радиационном воздействии в интервале 77–580 К выявлена сложная температурная зависимость эффективности накопления *E*-ловушек в нейтральной области и области пространственного заряда диодов Шоттки на основе *n*-GaAs при энергиях атомов отдачи, близких к пороговым энергиям образования радиационных дефектов. Количественно экспериментальные данные описаны в рамках модели метастабильной пары Френкеля, в которой учтены процессы аннигиляции, перезарядки и стабилизации пары Френкеля в материале в зависимости от электронного (зарядового) состояния ее компонент, определяемого положением уровня (квазиуровня) Ферми и температурой образца.

1. Введение

Влияние электронного (зарядового) состояния радиационных дефектов (РД) на процессы их образования и последующего отжига в полупроводниках давно привлекают внимание исследователей. Это обусловлено тем, что эффективности аннигиляции и миграции РД в кристаллической решетке полупроводника могут в сильной степени зависеть от зарядового состояния дефектов, что в свою очередь может определять как скорости их накопления в материале, так и типы доминирующих при данных условиях облучения РД. Изменение уровня легирования или типа проводимости материала, наличие нейтральных областей (НО) или областей пространственного заряда (ОПЗ) в материале изменяют положение уровня (квазиуровня) Ферми относительно уровней радиационных дефектов, что может кардинальным образом отразиться не только на эффективности накопления дефектов, но и определять спектр радиационных нарушений материала. Первоначально для исследований этих эффектов использовали измерения интегральных характеристик, таких как электропроводность, скорости удаления свободных носителей в материалах с различным уровнем исходного легирования или типа проводимости. При этом исследования были выполнены главным образом на элементарных полупроводниках: Si, Ge, а для этих материалов характерна высокая подвижность собственных дефектов решетки вблизи 300 К. Поэтому основными РД для них являются комплексы собственных дефектов с химическими примесями, формирование которых обусловлено вторичными процессами дефектообразования [1]. Развитие метода спектроскопии глубоких уровней (deep level transient spectroscopy — DLTS) открыло новые возможности для изучения эффективности накопления и отжига РД на одном и том же материале путем изменения зарядового состояния дефекта с помощью вариации положения квазиуровня Ферми за счет подачи обратного смещения как в процессе облучения структуры, так и при последующем отжиге образца. В отличие от выполненных ранее измерений электропроводности, эффекта Холла такие исследования позволяют следить за судьбой конкретных РД.

2. Экспериментальная часть

Настоящая работа посвящена исследованию влияния электронного (зарядового) состояния так называемых *E*-ловушек [2] на эффективность их накопления в *n*-GaAs при облучении в широком температурном интервале. В настоящее время имеется обширный экспериментальный материал относительно параметров данных дефектов, но все измерения выполнены только для НО полупроводниковых структур. В представленной работе проводится сравнительное исследование эффективности накопления *E*-ловушек в НО и ОПЗ диодов Шоттки на основе *n*-GaAs при различных видах облучения.

Можно отметить, что еще в работе [3] было отмечено влияние положения уровня Ферми на характеристики отжига РД вблизи 500 К в облученном электронами n-GaAs по измерениям электропроводности. Впоследствии данные авторы в образцах n-GaAs, облученных быстрыми нейтронами, для данной стадии отжига выделили два типа РД, а именно: (1) дефекты, отжиг которых чувствителен к положению уровня Ферми в материале, и (2) дефекты, нечувствительные к этому фактору, что было приписано особенностям нейтронного облучения, в частности образованию скоплений РД [4]. Впоследствии методами DLTS было показано, что данная стадия соответствует отжигу Е-ловушек, более того, на примере ЕЗ-ловушки были выявлены различия в термической стабильности данного дефекта вблизи 500 К в НО и ОПЗ диодов на основе n-GaAs [5]. Экспериментальные исследования авторов настоящей работы впервые показали, что электронное состояние Е-ловушек влияет не только на эффективность их последующего отжига, но и на

[¶] E-mail: brudnyi@ic.tsu.ru

Fax: (382)2423493

Рис. 1. Низкотемпературная (*a*) и высокотемпературная (*b*) области спектров DLTS диодов Шоттки на основе *n*-GaAs, облученных гамма-квантами ⁶⁰Со (T = 300 K, $D = 6.5 \cdot 10^{16}$ см⁻²) с приложением напряжения обратного смещения 9 В (I, I') и без него (2, 2'). *EL2* — ростовая ловушка.

скорость их накопления при гамма- и электронном облучении [6].

В представленной работе на основе обобщения результатов исследований авторов по эффективности накопления ловушек E3, E4 и E5 в HO и ОПЗ диодов Шоттки на основе *n*-GaAs при радиационном воздействии в интервале температур 77—580 К показано, что наблюдаемые особенности накопления РД могут быть численно описаны в рамках метастабильной пары Френкеля.

2.1. Методика эксперимента

Для исследований использованы диодные структуры Au/Ti/*n*-GaAs $(3 \cdot 10^{15} \text{ cm}^{-3})/n^+$ -GaAs $(2 \cdot 10^{18} \text{ cm}^{-3})$, akтивная область которых была получена методом газотранспортной эпитаксии в системе AsCl₃. Облучение диодов проводилось гамма-квантами на установке ⁶⁰Со, электронами с энергиями 0.6–6.0 МэВ, протонами 5, 10, 63 МэВ, дейтронами 12.4 МэВ, альфа-частицами 22 МэВ и быстрыми нейтронами импульсного реактора $(E \approx 1 \text{ M} \Rightarrow B)$ при нулевом обратном смещении (U = 0) и при подаче на облучаемый диод обратного смещения величиной до 40 В. При прекращении облучения обратное смещение снималось и далее диоды поступали на измерение. При этом эксперименты выявили различие в эффективности накопления Е-ловушек в НО и ОПЗ диодов Шоттки в условиях изодозового облучения (рис. 1). Поскольку имелись данные по электродиффузии некоторых ростовых дефектов в обратно смещенных поверхностнобарьерных структурах на основе n-GaAs [7], были измерены профили Е-ловушек в диодах, облученных с обратным смещением различной величины. Кроме того, исследовано влияние приложенного внешнего смещения к облученным структурам на время, равное времени их облучения. Эти измерения показали, что наблюдаемая разность скоростей введения дефектов в НО и ОПЗ не может быть обусловлена электродиффузией *Е*-ловушек в условиях проведенного эксперимента [8].

2.2. Модельные оценки

Для описания экспериментальных зависимостей эффективности накопления Е-ловушек в НО и ОПЗ диодов использована модель метастабильной пары Френкеля (ФП) (вакансия — V и межузельный атом — I), в которой предполагалось, что при облучении полупроводника формируются ФП, вероятность аннигиляции или разделения которых определяется соотношением между соответствующими энергетическими барьерами и величиной kT. Следует отметить, что такие модели были предложены на заре исследований радиационных эффектов для объяснения экспериментальных данных, полученных в различных условиях облучения материала (температура образца, плотность потока облучения, степень легирования материала) [9,10]. Подробный обзор этих моделей и их применимости в различных полупроводниках дан в книге [11]. Многочисленные эксперименты показали, что из-за высокой подвижности собственных дефектов в элементарных полупроводниках большое значение приобретают вторичные процессы дефектообразования, а именно формирование комплексов РД с химическими примесями, а также кластеризации собственных дефектов, например формирование дивакансии в Si. Поэтому модели метастабильных ФП использовались главным образом в случае низкотемпературных экспериментов.

Возможность использования данных моделей применительно к GaAs, в том числе и при температурах облучения вблизи 300 К, основывается на следующих факторах: 1) эффективности накопления *E*-ловушек

Рис. 2. Зависимости отношения концентраций центров *E*3 в ОПЗ и НО от средней энергии атомов отдачи (*a*) и от среднего расстояния между компонентами ΦП, приведенного к параметру решетки GaAs (*b*). Виды облучения: (*a*, *b*, *c*, *d*, *e*) — электроны с $E(M_{3}B) - 0.33, 0.56, 1, 1.4, 6.$ (*f*, *g*, *j*) — протоны с $E(M_{3}B) - 5, 10, 63.$ (*h*, *k*) — *α*-частицы с $E(M_{3}B) - 5.1, 22.$ (*i*) — дейтроны 12.4 МэВ. (*l*, *m*) — нейтроны с $E(M_{3}B) - 1, 7.$

в НО диодов на основе n-GaAs близки к расчетным, а их энергетический спектр практически не зависит от температуры (4-300 К), при которой проводится облучение, от примесного состава материала и способа его выращивания [2]; 2) оцененная из эксперимента величина энергии, выделяемой при отжиге одного РД при температурах вблизи 500 K ≈ 8 эВ [12], близка к теоретическим оценкам величины запасенной энергии на одну ФП [13,14] и величине пороговой энергии образования *E*-ловушек ≈ 10 эВ [2]. Все это позволяет предположить, что наблюдаемые в n-GaAs E-ловушки могут быть отнесены к простейшим собственным дефектам решетки. Более того, исследование ориентационных эффектов при энергиях бомбардирующих электронов 0.2-0.5 МэВ [2] и независимость появления Е-ловушек от состава твердого раствора Ga_{1-x}Al_xAs [15] позволили связать их с $\Phi\Pi$ типа $V_{\rm As}-I_{\rm As}$ с различным расстоянием между компонентами пары [2].

При численных оценках учитывалось, что образование ФП проходит в несколько этапов: (1) формирование протопары в зарядовом состоянии (V^-, I^+) за времена, близкие времени взаимодействия высокоэнергетической частицы с атомом решетки (порядка 10⁻¹⁴ с) [16]; (2) протопара может рекомбинировать либо перейти в стационарное зарядовое состояние за времена $au \approx \left[e_n^{V,I} + k_p^{V,I}
ight]^{-1} + \left[e_p^{V,I} + k_n^{V,I}
ight]^{-1}$, определяемые условиями облучения: положением уровня (квазиуровня) Ферми относительно уровней дефектов, температурой образца (здесь $e_{np}^{V,I}$ и $k_{np}^{V,I}$ — постоянные эмиссии захвата электронов и дырок вакансией (V) или межузельным атомом (I) соответственно). Таким образом, концентрации ФП в различных зарядовых состояниях могут изменяться как за счет рекомбинации в процессе облучения, так и вследствие их перезарядки в стационарное зарядовое состояние путем захвата (или эмиссии) электронов (дырок) с возможностью последующей рекомбинации пары.

Поскольку данные процессы зависят от пространственного разделения компонент ФП, было исследовано распределение пар по среднему расстоянию между компонентами ($\langle r \rangle$) в зависимости от средней энергии атомов отдачи ($\langle E \rangle$). Для этого учтено, что для заряженных частиц величина $\langle E \rangle \approx E_m \ln(E_m/E_d)$, а для нейтронного облучения $\langle E \rangle \approx (E_m - E_d)/2$, здесь E_m — максимальная энергия атома отдачи, E_d — пороговая энергия смещения атома. Из выражения $r_f = (1/\pi r_0^2 N_0) \ln(E_0/E_f)$, где *E*₀ — начальная энергия выбитого атома, *r*₀ — радиус соударения, E_f — значение энергии выбитого атома после прохождения им пути r_f [17], можно получить соотношение для оценки среднего расстояния между компонентами $\Phi \Pi \langle r \rangle \approx (1/\pi r_0^2 N_0) \{ \ln[(\langle E \rangle - E_d + E_M)/E_M + 1] \}$ или $\langle r \rangle \approx 0.5a \{ \ln[(\langle E \rangle - E_d + E_M)/E_M + 1] \},$ где E_M величина барьера для миграции дефекта в решетке, а — постоянная решетки. Эти оценки применительно к ловушке E3 в GaAs ($E_d \approx 10$ эВ и $E_M \approx 1.5$ эВ, a = 0.564 нм) позволили построить экспериментальные зависимости отношения скоростей введения ловушек ЕЗ в ОПЗ и НО диодов Шоттки как функции от $\langle E \rangle$ и $\langle r \rangle / a$ (рис. 2). Из этих данных следует, что при $\langle E \rangle \approx (80-90)$ кэВ и для $\langle r \rangle / a > 2.5$ скорости введения ловушек ЕЗ в ОПЗ и НО полностью выравниваются. А при $\langle E \rangle < (80-90)$ кэВ ($\langle r \rangle / a < 2.5$) формируются пары, для которых характерно различие в скоростях введения в НО и ОПЗ диода, причем это различие тем больше, чем меньше $\langle r \rangle / a$. Такие пары в дальнейшем будем называть близкими парами. Поскольку при облучении гамма-квантами источника ⁶⁰Со величина $\langle E \rangle \approx E_d \ (\approx 10 \, \text{эB})$ близка к пороговой энергии образования *Е*-ловушек в GaAs, основное количество протопар при гамма-облучении формируются как близкие пары, которые могут рекомбинировать или перезаряжаться в стационарное зарядовое состояние в зависимости от условий облучения. По мере увеличения энергии атомов отдачи растет доля протопар с большим разделением, вероятность рекомбинации которых уменьшается. Таким образом, изменяя энергию атомов отдачи и положение уровня (квазиуровня) Ферми в НО и ОПЗ, мы тем самым имеем возможность изменить время жизни ФП в различных зарядовых состояниях в зависимости от температуры образца. В соответствии с данными рис. 2, *b* близкие ФП можно условно разделить на две группы: (1) пары с $\langle r \rangle / a < 1.25$ (≤ 0.6 нм), для которых эффективность накопления в НО и ОПЗ существенно различаются; (2) пары с $\langle r \rangle / a > 1.25$ (> 0.6 нм), для которых такое различие менее существенно. Изложенные выше соображения использованы при построении диаграмм соответствующих реакций для НО и ОПЗ и выбора параметров этих реакций.

Для НО процессы накопления, перезарядки и отжига РД выглядят следующим образом:

N ₁₀	N ₁	N ₂	ат е ^N 20	
захва	ат <i>е</i> генер	рация захв		
$V; I^{0} \Leftarrow k_{n}^{\prime} \Leftarrow V; I^{+} \Leftarrow \varphi_{1} \varphi_{2} \Rightarrow V; I^{+} \Rightarrow k_{n}^{\prime} \Rightarrow V; I^{0}$				
↓			↓	
отжиг (R ₁₀)	отжиг (<i>R</i> ₁)	отжиѓ (<i>R</i> ₂)	отжиг (R ₂₀)	

Здесь N₁ и N₂ — концентрации протопар типа (1) и (2) соответственно, φ_1 и φ_2 — скорости их генерации, N₁₀ и N₂₀ — соответствующие концентрации данных пар в стационарных зарядовых состояниях (1) и (2), $k_n^1 = n \langle v \rangle \sigma_1$ — скорость захвата электрона на межузельный атом, n — концентрация электронов в зоне проводимости и $\langle v \rangle$ – их тепловая скорость, σ_1 — сечение захвата электронов межузельным атомом. В соответствии с теорией отжига коррелированных пар учитывалось, что для близких пар в случае более высокой подвижности одного из компонентов, предположительно межузельного атома, выполняются соотношения $R_i(T) = v_i \exp(-E_i/kT)$, где $R_i(T)$ постоянная отжига, v_i — частотный фактор, E_i — барьер для рекомбинации. При этом учитывалось, что величина барьера зависит от электростатического взаимодействия между V и I.

Аналогично для ОПЗ схема соответствующих реакций представлена диаграммой:

N ₁₀		N ₂	N ₂₀	
эми		рация эмис	ссия е	
$V^{0}, I^{+} \Leftarrow \boldsymbol{\theta}_{n} \Leftarrow V^{*}, I^{+} \Leftrightarrow \boldsymbol{\phi}_{1} \boldsymbol{\phi}_{2} \Rightarrow V^{*}, I^{+} \Rightarrow \boldsymbol{\theta}_{n} \Rightarrow V^{0}, I^{+}$				
отжиг (<i>R</i> * ₁₀)	отжиг (<i>R</i> ₁)	отжиг (<i>R</i> ₂)	отжиг (R ₂₀)	

Здесь N_{10}^* и N_{20}^* — концентрации пар (1) и (2) в стационарном зарядовом состоянии, $e_n^V = b \cdot \sigma_V \cdot T^2 \times \exp(-E_V/kT)$ — скорость эмиссии электронов с уровня ловушки E_V в зону проводимости, σ_V — сечение эмиссии, $b = 2.28 \cdot 10^{20}$ см⁻²с⁻¹K⁻² для GaAs.

На основе рассмотренных моделей были численно обработаны температурные зависимости эффективности

накопления ловушек *E*3, *E*4 и *E*5 в HO и OПЗ в диодах Шоттки на основе *n*-GaAs при радиационном воздействии.

2.3. Температурные исследования

Ловушка $E3 (E_c - 0.38 \, \text{эB})$

Ловушка ЕЗ — глубокий акцептор, предположительно V_{As}, которая формируется при облучении в результате одного акта смещения атома в подрешетке As [18]. Параметры этого дефекта в НО хорошо изучены [2]. Показано, что после электронного облучения ($E = 1 \text{ M} \Rightarrow B$) отжиг ЕЗ-ловушки вблизи 500 К протекает более эффективно в НО по сравнению с ОПЗ диодов [5]. Авторами настоящего сообщения впервые было обнаружено, что эффективности накопления данной ловушки в НО и ОПЗ диодов Шоттки на основе n-GaAs при гамма-облучении источником ⁶⁰Со существенно различаются [6]. При этом увеличение энергии атомов отдачи (облучение электронами с E > 6 МэВ, протонами, альфа-частицами, дейтронами, быстрыми нейтронами) приводит к выравниванию скоростей введения ловушек ЕЗ в НО и ОПЗ диодов Шоттки [19], что предположительно обусловлено более сильным разделением между V и I при данных условиях облучения. Детальные исследования данного явления в широком температурном интервале были выполнены для диодов, облученных гамма-квантами ⁶⁰Со [20]. Из результатов экспериментальных измерений и модельных расчетов, представленных на рис. 3 для случая гамма-облучения, следует, что эффективность накопления ловушки ЕЗ (и ловушки Е2 для сравнения) в НО не зависит от температуры, при которой проводилось облучение, для интервала 70-470 К. При более высоких температурах эффективность накопления данных дефектов уменьшается, что связано с их отжигом вблизи 500 К. Как следует из рис. 3, в ОПЗ температурная зависимость эффективности накопления ловушки ЕЗ имеет сложный вид.

Для количественного описания полученных данных использована модель, в которой учтено, что наблюдаемая из DLTS-измерений ловушка *E*3 принадлежит V_{As} , возмущенной присутствием I_{As} [2]. В HO исследуемого диода уровень Ферми лежит выше E_c – 0.38 эВ, так что стационарное зарядовое состояние акцепторного уровня данной ловушки соответствует *E*3⁻, а в ОПЗ ниже, что соответствует состоянию *E*3⁰. Относительно положения уровня I_{As} в GaAs надежных данных нет. Для нашей модели необходимо, чтобы это был глубокий донор в нижней половине запрещенной зоны.

Тогда на основе схемы реакций для НО можно легко записать соответствующие кинетические уравнения, решения которых для центров *E*3 для НО при условии $R_{10} = R_{20}$ имеют следующий вид:

$$N_1(T,t) = \varphi_1 \{ 1 - \exp[-(k_n^I + R_1)t] \} / (k_n^I + R_1), \quad (1)$$

$$N_2(T,t) = \varphi_2 \{ 1 - \exp[-(k_n^I + R_2)t] \} / (k_n^I + R_2), \quad (2)$$

Рис. 3. Температурные зависимости концентрации центров *E*3 (*1*, *2*) и *E*2 (*3*, *4*) в HO (*1*, *3*) и ОПЗ (*2*, *4*) при изодозном облучении гамма-квантами ⁶⁰Co ($D = 1.4 \cdot 10^{17}$ см⁻², $t_{irr} = 1.5 \cdot 10^5$ с), символы — эксперимент, сплошные линии — расчет согласно уравнениям (1)–(8).

$$N_{10}(T,t) = \varphi_1 k_n^I \Big\{ [1 - \exp(-R_{10}t)] / R_{10} + \big\{ \exp[-(k_n^I + R_1)t] \Big\}$$

$$-\exp[-R_{10}t]\}/(k_n^I+R_1-R_{10})\}/(k_n^I+R_1), \qquad (3)$$

$$N_{20}(T,t) = \varphi_2 k_n^I \Big\{ [1 - \exp(-R_{10}t)] / R_{10} + \big\{ \exp[-(k_n^I + R_2)t] \Big\}$$

$$-\exp[-R_{10}t] \big\} / (k_n^I + R_2 - R_{10}) \Big\} / (k_n^I + R_2).$$
(4)

Аналогично для ОПЗ могут быть записаны кинетические уравнения, которые при условии $R_{10}^* = R_{20}^* \approx R_2^* = R_2$ имеют следующие решения:

$$N_1(T,t) = \varphi_1 \{ 1 - \exp[-(e_n^V + R_1)t] \} / (e_n^V + R_1), \quad (5)$$

$$N_2(T,t) = \varphi_2 \{ 1 - \exp[-(e_n^V + R_2)t] \} / (e_n^V + R_2), \quad (6)$$

$$N_{10}^*(T,t) = \varphi_1 e_n^V \Big\{ [1 - \exp(-R_2 t)] / R_2 + \big\{ \exp[-(e_n^V + R_1)t] \Big\}$$

$$-\exp[-R_{2}t]\}/(e_{n}^{V}+R_{1}-R_{2})\}/(k_{n}^{I}+R_{1}), \qquad (7)$$

$$N_{20}^{*}(T,t) = \varphi_{2}e_{n}^{V} \Big\{ [1 - \exp(-R_{2}t)]/R_{2} \\ + \Big\{ \exp[-(e_{n}^{V} + R_{2})t] - \exp[-R_{2}t] \Big\}/e_{n}^{V} \Big\} \Big/ (e_{n}^{V} + R_{2}).$$
(8)

Подставив в полученные решения время облучения $t = t_{irr} = 1.5 \cdot 10^5$ с, можно получить расчетные зависимости рис. З для *E*3-ловушки для случая бомбардировки гамма-квантами ⁶⁰Co при следующих параметрах реакций: $E_V = 0.38$ эВ, $\sigma_V = 6.2 \cdot 10^{-15}$ см⁻², $\sigma_I = 1.9 \cdot 10^{-12}$ см⁻², $E_2 = 1.75$ эВ, $v_2 = 10^{11}$ с⁻¹, $E_{10} = E_{20} = 1.55$ эВ, $v_2 = 10^{11}$ с⁻¹, $v_{10} = v_{20} = 10^{13.5}$ с⁻¹, $\varphi = 9.4 \cdot 10^8$ см⁻³ с⁻¹ и $\varphi_1/\varphi_2 \approx 1$. Большинство приведенных значений (E_V , σ_V , E_2 , $E_{10} = E_{20}$, φ) соответствуют известным литературным данным [2] и экспериментальным величинам, а другие подгоночные параметры имеют разумные величины. Вид температурных кривых

эффктивности накопления ловушки E3 в HO и OП3 в общем случае зависит от интенсивности облучения (при одинаковой концентрации введенных дефектов). С уменьшением времени изодозового облучения расчетные кривые смещаются в область более высоких температур.

Качественно полученная зависимость эффективности накопления центра ЕЗ в ОПЗ объясняется следующим образом. В низкотемпературной области T < 80 K пары типа (1) "заморожены", так как время рекомбинации $\tau_R(1/R_1) > t_{irr} = 1.5 \cdot 10^5$ с. В области температур $80 < T < 200 \,\mathrm{K}$ пары N_1 интенсивно рекомбинируют, что проявляется в уменьшении эффективности введения центров *E*3. Область температур 200 < T < 490 K определяется эмиссией электронов с уровня V_{As} в зону проводимости, что ведет к уменьшению плотности заряженных пар N_1 и росту концентрации нейтральных, более стабильных пар N₁₀. Вследствие этого эффективность накопления центра ЕЗ растет. Действительно, поскольку с увеличением температуры облучения образца $N_1 \rightarrow 0$, большая часть ФП должна исчезать с постоянными отжига $R_{10}^* = R_{20}^* \approx R_2^* = R_2$, что способствует "выживанию" ЕЗ-ловушки в данной области температур. И наконец, для T > 500 К центры E3 начинают эффективно отжигаться.

Аналогичный анализ может быть выполнен для описания температурной зависимости эффективности накопления ловушки ЕЗ в НО. Высокая скорость введения ловушки ЕЗ и НО для области температур 77-500 К обусловлена тем, что время захвата электрона из зоны проводимости на центр ЕЗ (время, необходимое для его перехода в стационарное зарядовое состояние) меньше, чем постоянная времени рекомбинации пары через барьер Е1. Из данных анализа также следует, что для известной стадии отжига вблизи 500 К в ОРЗ доля дефектов E3 с энергией активации отжига 1.75 эВ возрастает по сравнению с ловушками, отжигающимися с энергией активации отжига 1.55 эВ, что проявляется в соответствующем сдвиге кривых эффективности накопления ловушки ЕЗ в высокотемпературную область (рис. 3).

Ловушка *E*4 (*E*_c-0.76 эВ)

Данную ловушку также связывают с дефектом в подрешетке As, хотя она имеет ряд особенностей, а именно, характеристики ее отжига отличны от отжига других E-ловушек, пороговая энергия его образования точно не определена, центр E4 не подвержен рекомбинационному отжига [21]. Предполагается, что данный дефект имеет более сложную структуру по сравнению с другими E-ловушками и относится к ассоциированным дефектам. Показано также, что увеличение энергии бомбардирующих электронов приводит к более эффективному накоплению ловушек E4 в НО диодов по сравнению с ловушками E3 и E5, что указывает на более высокую пороговую энергию образования дефекта E4 [22], Кроме того, обнаружено увеличение эффективности накопле-

ния ловушки Е4 в ОПЗ по сравнению с НО при облучении электронами (1 МэВ, 300 К) (рис. 4), что отличается от соответствующих данных для ловушки ЕЗ (рис. 3). Температурные зависимости эффективности накопления дефекта Е4 в области 77-500К также отличны от таковых для дефекта ЕЗ. А именно, скорость накопления ловушек Е4 в НО при облучении растет с увеличением температуры, что указывает на активационный характер формирования данного дефекта (рис. 4). Эти эксперименты показывают, что для образования дефекта Е4 требуются более высокие энергии атомов отдачи и температуры, при которых проводится облучение. Можно предположить, что для образования данного дефекта необходимо смещение двух соседних атомов в одном акте соударения с последующим формированием ассоциированного центра. Вероятная модель образования данного дефекта состоит в следующем. В результате одного акта смещения образуются две соседние ФП с последующим формированием ассоциированного дефекта (комплекса). Таким возможным комплексом может быть дивакансия V_{Ga}-V_{As} либо V_{As}-V_{As}. Однако тот факт, что для формирования дефекта Е4 в НО требуется преодоление энергетического барьера, делает предпочтительнее модель антиструктурного дефекта, в частности дефекта As_{Ga}-V_{As}, который зафиксирован измерениями ЭПР в облученном GaAs [23]. При этом в ОПЗ образование дефекта Е4 происходит почти атермически, что, возможно, обусловлено понижением барьера для формирования этого дефекта за счет кулоновского взаимодействия между заряженными V_{Ga}^- и I_{As}^+ , тогда как в НО требуется преодоление энергетического барьера величиной 0.02-0.03 эВ (рис. 4).

Ловушка $E5 (E_c - 0.90)$

Характеристики эффективности накопления данной ловушки во многом подобны соответствующим для ловушки *E*3, а именно, их параметры отжига при

Рис. 4. Экспериментальные температурные зависимости концентрации центров *E*4 в ОПЗ (*1*) и HO (*2*) при изодозном облучении электронами (E = 1 МэВ, $D = 1.2 \cdot 10^{15}$ см⁻², $t_{irr} = 180$ с).

Физика и техника полупроводников, 2003, том 37, вып. 1

Рис. 5. Экспериментальные температурные зависимости концентрации центров *E*5 (*1*, *2*) и *E*3 (*3*, *4*) в HO (*1*, *3*) и ОПЗ (*2*, *4*) при изодозном облучении электронами (E = 1 МэВ, $D = 1.2 \cdot 10^{15}$ см⁻², $t_{irr} = 180$ с).

T = 500 К в НО диодов совпадают, скорости отжига в ОПЗ ниже, чем в НО, эффективности накопления вблизи 300 К в НО приблизительно в 2 раза выше, чем в ОПЗ при гамма-облучении. Температурные зависимости эффективности накопления данных ловушек в НО и ОПЗ диодов Шоттки на основе n-GaAs при облучении электронами (E = 1 МэВ) показаны на рис. 5. Отмечается практически полная идентичность представленных данных для ловушек ЕЗ и Е5 и качественное подобие данным рис. 3 для ЕЗ-ловушки в случае гаммаоблучения, что соответствует модельным представлениям, развитым для ловушки ЕЗ. Основное отличие данных рис. 5 от данных рис. 3 — менее четко выраженные температурные зависимости эффективности накопления Е-ловушек в ОПЗ при электронном облучении. Эти результаты легко понять из данных рис. 2, согласно которым при облучении электронами с E = 1 МэВ по сравнению с облучением гамма-квантами 60 Со ($E \approx 0.56$ МэВ) увеличивается величина $\langle E \rangle$, что приводит к некоторому выравниванию скоростей введения ловушек в НО и ОПЗ, а при дальнейшем увеличении $\langle E \rangle$ к равенству их скоростей введения в НО и ОПЗ диода.

3. Заключение

Выполненные исследования показали, что эффективности накопления *E*-ловушек в НО и ОПЗ диодов Шоттки на основе *n*-GaAs при энергиях бомбардирующих частиц, близких к пороговым энергиям образования РД, существенно различаются в широкой температурной области. Наблюдается сложная температурная зависимость эффективности накопления ловушек *E*3 и *E*5 в ОПЗ и дефекта *E*4 в НО диодов. Экспериментальные данные хорошо описываются в рамках модели метастабильной ФП. Увеличение энергии атомов отдачи (повышение энергии бомбардирующих электронов, облучение

протонами, альфа-частицами, быстрыми нейтронами) приводит к выравниванию эффективности накопления Е-ловушек в НО и ОПЗ диодов на основе n-GaAs, что обусловлено более сильным разделением компонент ФП при данных условиях облучения. Таким образом, в условиях радиационного воздействия при энергиях облучения, близких к пороговым энергиям смещения атомов решетки, эффективности накопления Е-ловушек в n-GaAs в сильной степени зависит от положения уровня (квазиуровня) Ферми относительно уровней радиационных дефектов. Это следует учитывать при изучении воздействия высокоэнергетической радиации на полупроводниковые структуры, которые содержат области различного уровня легирования и типа проводимости, НО и ОПЗ. Более того, выполненные эксперименты показывают, что при исследовании дозовых зависимостей электрофизических параметров GaAs следует иметь в виду, что скорости накопления Е-ловушек могут меняться по мере изменения положения уровня Ферми при его смещении к его предельному положению вблизи $E_V + 0.6$ эВ в данном материале при облучении [24].

Список литературы

- [1] Л.С. Смирнов. Физические процессы в облученных полупроводниках (Новосибирск, Наука, 1977).
- [2] D. Pons, J.C. Bourgoin. J. Phys. C: Sol. St. Phys., 18 (20), 3839 (1985).
- [3] L.W. Aukerman, R.D. Graft. Phys. Rev., 127, 1576 (1962).
- [4] L.W. Aukerman. Semiconductor and semimetals, ed. by R.K. Willardson, A.C. Bear. 4, 343, Academic Press, N. Y. (1968).
- [5] D. Pons. Def. Rad. Effects Semicond. 1980 (Inst. Phys. Conf. N 59, Bristol–London), 269 (1981).
- [6] А.П. Мамонтов, В.В. Пешев, И.П. Чернов. ФТП, 16 (12), 2126 (1982).
- [7] S.L. Pearton, A.J. Tavendale. Phys. St. Sol. (a), 73, K75 (1982).
- [8] А.П. Мамонтов, В.В. Пешев. ФТП, 19 (1), 147 (1985).
- [9] G.K. Wertheim. Phys. Rev., **115** (3), 568 (1959).
- [10] J.W. Mackay, E.E. Klontz. In: *Rad. Effects Semicond.* N.Y. Plenym Press. 175 (1968).
- [11] В.В. Емцев, Т.В. Машовец. Примеси и точечные дефекты в полупроводниках (М., Радио и связь, 1981).
- [12] L.H. Lim, Y.J. von Bardeleben, J.C. Bourgoin. Phys. Rev. Lett., 58, 2315 (1987).
- [13] G.A. Baraff, M. Schluter. Phys. Rev. Lett., 55, 1327 (1985).
- [14] P. Pons, J.C. Bourgoin. J. Phys. C, 38, 7839 (1985).
- [15] S. Loualiche, G. Guiillot, A. Nouilhat, J.C. Bourgoin. Phys. Rev. B, 26 (12), 7090 (1982).
- [16] J.W. Corbett, J.C. Bourgoin, W.C. Weigel. Inst. Phys. Conf. Ser. N 16, 1 (1973).
- [17] В.Л. Винецкий, Г.А. Холодарь. Радиационная физика полупроводников (Киев, Наук. думка, 1979).
- [18] D. Pons, J.C. Bruemer. Phys. Rev. Lett., 47, 1293 (1981).
- [19] А.П. Мамонтов, В.В. Пешев. ФТП, 17 (10), 1771 (1983).
- [20] V.N. Brudnyi, V.V. Peshev. Phys. St. Sol. (b), 118 (1), 219 (1990).
- [21] D. Stievenard, J.C. Bourgoin. Phys. Rev. B., <u>3</u>3, 8410 (1986).
- [22] V.N. Brudnyi, V.V. Peshev. Phys. St. Sol. (a), **105**, K57 (1988).

- [23] H.J. von Bardeleben, J.C. Bourgoin. Phys. Rev. B, 38, 2800 (1980).
- [24] V.N. Brudnyi, S.N. Grinyaev, V.E. Stepanov. Physica B (Amsterdam), 202, 429 (1995).

Редактор Л.В. Беляков

Influence of an electronic (charging) state of *E*-traps on efficiency of their accumulation in *n*-GaAs upon irradiation

V.N. Brudnyi, V.V. Peshev*

V.D. Kuznetsov Siberian Physical Technical Institute, 634050 Tomsk, Russia * Tomsk Polytechnical University, 634050 Tomsk, Russia

Abstract Upon the high energy irradiation in an interval of 77-580 K the composite temperature dependence of *E*-traps efficiency of accumultion in neutral region and in space charge region of the *n*-GaAs Schottky diodes upon the recoil energies close to the threshold energies of radiation defect formation is obtained. Quantitatively, experimental data are circumscribed within the framework of the model of a metastable Frenkel pair, in which the processes of an annihilation, recharge and stabilization of the Frenkel pair in a material depend on their electronic (charging) state which is determined by position of a Fermi level (quasi-level) and by the temperature of a sample.