05,11 Магнитоструктурные особенности фазовых переходов в системе Mn_{1-x}Co_xNiGe Часть 1. Экспериментальные результаты

© В.И. Митюк¹, Г.С. Римский¹, К.И. Янушкевич¹, В.В. Коледов², А.В. Маширов², В.И. Вальков³, А.В. Головчан³, О.Е. Ковалев³

 ¹ НПЦ НАН Беларуси по материаловедению, Минск, Беларусь
² Институт радиотехники и электроники им. В.А. Котельникова РАН, Москва, Россия
³ Донецкий физико-технический институт им. А.А. Галкина, Донецк, Украина
E-mail: valkov09@gmail.com

Поступила в Редакцию 23 июня 2021 г. В окончательной редакции 2 августа 2021 г. Принята к публикации 11 августа 2021 г.

Экспериментальные исследования магнитных и структурных свойств твердых растворов системы $Mn_{1-x}Co_xNiGe$ в широком диапазоне концентраций Co $(0.05 \le x \le 0.8)$, температур $(5 K \le x \le 600 \text{ K})$ и магнитных полей $(0.016 \text{ T} \le x \le 13.5 \text{ T})$ позволили обнаружить ряд нетривиальных магнитных и магнитокалорических особенностей данной системы. К последним можно отнести: 1) изменение характера магнитных фазовых переходов от магнитоструктурных переходов 1-го рода парамагнетизм-антиферромагнетизм $(0.05 \le x \le 0.15)$ до изоструктурных переходов 2-го рода парамагнетизм-ферромагнетизм $(0.15 \le x \le 0.8)$ при изменении концентрации Co; 2) аномальное поведение низкотемпературных участков намагниченности в слабых магнитных полях; 3) изменение намагниченности насыщения и возникновение необратимых индуцированных магнитным полем переходов при гелиевых температурах в сильных магнитных полях.

Ключевые слова: необратимый магнитоструктурный переход 1-го рода, гелимагнетизм, прямой и обратный магнитокалорические эффекты.

DOI: 10.21883/FTT.2021.12.51668.153-1

1. Введение

Практический интерес к прямому (ПМКЭ) и обратному (ОМКЭ) магнитокалорическим эффектам [1-4], как правило, сопутствующим магнитным фазовым переходам порядок-беспорядок и порядок-порядок, соответственно, определяет актуальность исследования четырехкомпонентных сплавов типа $Mn_{1-x}Cr_xNiGe$ [5], $MnNiGe_{1-x}Al_x$ [6], $MnNi_{1-x}Fe_xGe$ [7–9], $Mn_{1.9-x}Ni_xGe$ [10], $Mn_{1-x}Fe_xNiGe [11-12],$ MnNi_{1-x}Co_xGe [13,14], $MnCo_{1-x}Cu_xGe$ [15]. В данных системах наблюдается фазовый структурный переход типа смешения $P6_3/mmc$ (hex) $\leftrightarrow P_{nma}$ (orth) [16,17] и ряд магнитных фазовых переходов. "Высокотемпературная" гексагональная фаза обладает кристаллической структурой типа Ni₂In (группа симметрии *P*6₃/*mmc*). "Низкотемпературная" ромбическая фаза обладает кристаллической структурой типа TiNiSi (группа симметрии P_{nma}). В исходном соединении MnNiGe в ромбической фазе возникает антиферромагнитное состояние, соответствующее "мягкой" гелимагнитной моде с волновым вектором $\mathbf{q} = (0, 0, q_a)$ [18]. При легировании зачастую возникает ферромагнитная фаза и формируются магнитные фазовые переходы беспорядок-порядок (ПМ-ФМ)

и порядок-порядок (ФМ-АФ), обладающие разным магнитокалорическим эффектом.

Структурный фазовый переход $P6_3/mmc \leftrightarrow P_{nma}$ в вышеуказанных германидах является переходом 1-го рода и может, при совмещении с магнитным фазовым переходом, вносить дополнительный вклад в магнитокалорический эффект[9].

Настоящая работа посвящена экспериментальным исследованиям магнитных и кристаллических свойств поликристаллических порошков твердых растворов системы $Mn_{1-x}Co_xNiGe$ при использовании статического магнитного поля с индукцией до 14 Т в широком диапазоне температур (T = 5-600 K).

2. Методы синтеза и исследования образцов

Поликристаллические порошки твердых растворов системы $Mn_{1-x}Co_xNi$ Ge синтезированы методом порошковой металлургии из исходных компонентов. Порошки, взятые в соответствующих пропорциях, спекались в вакуумированных кварцевых ампулах в однозонной печи сопротивления. Шихта с соответственным соотношением исходных компонентов медленно разогревалась

температура кюри I _C												
x	a, nm	c, nm	c/a	V, 10^{-2} m^3	$\rho_{x-ray},\ (g/cm^3)$	$\sigma_{80\mathrm{K}},\ \mathrm{A}\cdot\mathrm{m}^2\cdot\mathrm{kg}^{-1}$	$\mu_{80\mathrm{K}},\ \mu_{\mathrm{B}}$	<i>Т</i> _С , К				
0.05	0.4082	0.539 ₈	1.32	7.791	7.946	10.47	0.35	290*				
0.10	0.4081	0.5374	1.32	7.749	7.998	29.16	0.97	237				
0.15	0.4069	0.5343	1.31	7.664	8.096	38.68	1.29	193				
0.20	0.4073	0.5327	1.31	7.652	8.117	30.60	1.02	170				
0.30	0.4067	0.5289	1.30	7.577	8.216	12.60	0.42	134				
0.40	0.4054	0.5223	1.29	7.448	8.375	3.46	0.12	_				
0.50	0.4044	0.5191	1.28	7.352	8.503	1.72	0.06	_				
0.60	0.4027	0.5149	1.28	7.233	8.661	1.45	0.05	_				
0.70	0.4013	0.5114	1.27	7.134	8.800	1.41	0.05	_				
0.80	0.3998	0.508_{9}	1.27	7.045	8.930	1.35	0.05	_				

Таблица 1. Параметры *a* и *c*, объем элементарной ячейки *V*, ренттеновская плотность при 293 К — ρ_{x-ray} , удельная намагниченность $\sigma_{80 \text{ K}}$ и магнитный момент $\mu_{80 \text{ K}}$ на формульную единицу при 80 К твердых растворов Mn_{1-x}Co_xNiGe при 80 К, температура Кюри *T*_C

до температуры 1273 К, гомогенизировалась в течение 3 дней и закалялась в воду со льдом. Фазовый состав и параметры элементарной кристаллической ячейки синтезированных составов определены при комнатной температуре методом рентгеноструктурного анализа с использованием СиКα-излучения. Температурные зависимости удельной намагниченности изучены в диапазоне температур 80-600 К пондеромоторным методом в магнитном поле с индукцией B = 0.8 Т. Удельная намагниченность насыщения и параметры петли гистерезиса удельной намагниченности порошковых образцов измерялись по индукционной методике на вибрационном магнитометре в магнитом поле до 14 Т при температурах 5 К, 77 К. Температурные зависимости удельной намагниченности получены при охлаждении и нагреве со скоростью 1.5 K/min в диапазоне температур 5-300 K при помощи магнетометра фирмы Cryogenics Lmtd. в

магнитных полях с индукцией B = 0.016; 0.1; 1; 5; 10; 13.5 Т. Для определения изотермического изменения энтропии в области фазового перехода были проведены измерения намагниченности в статических полях до 14 Т. Магнитокалорические характеристики рассчитывались косвенным методом на основе термодинамических соотношений Максвелла.

3. Результаты рентгеновских и магнитометрических измерений

Рентгенографические исследования твердых растворов системы $Mn_{1-x}Co_xNiGe$ при комнатных температурах показали гексагональную кристаллографическую структуру типа Ni₂In (пространственная группа $P6_3/mmc$) для всего исследуемого диапазона концентраций Со (x = 0, 0.5-0.80), рис. 1, *а*. Однако при охла-

Рис. 1. Дифрактограммы порошков $Mn_{1-x}Co_xNiGe$. a — комнатная температура (T = 296 K); b — $Mn_{0.95}Co_{0.05}NiGe$ при T = 296 K и при T = 88 K; на вставке показана температурная зависимость интенсивности долей орторомбической и гексагональной фаз при нагревании.

Рис. 2. Температурные зависимости намагниченности $Mn_{1-x}Co_xNiGe$ в магнитном поле напряженностью 0.86 Тл при нагреве.

ждении до азотных температур гексагональная структура сохраняет устойчивость только для образцов с x = 0.15 - 0.80. В образцах с x = 0.05 - 0.1 понижение температуры приводит к стабилизации новой кристаллической структуры типа TiNiSi (пространственная группа P_{nma}), рис. 1, b. Процесс температурного изменения интенсивностей характерных рефлексов в этом случае позволяет констатировать наличие структурного фазового перехода 1-го рода типа смещения $hex(P6_3/mmc) \leftrightarrow orth(P_{nma})$ [5,19] результатом которого и является возникновение ромбической фазы с кристаллической структурой типа TiNiSi, рис. 1, b. Этот переход сопровождается относительно большими анизотропными изменениями параметров решетки и удельного объема и соответствует размытому фазовому переходу 1-го рода hex($P6_3/mmc$) \leftrightarrow orth(P_{nma}) характерному для ряда твердых растворов на основе соединения MnNiGe.

Рис. 3. Полевые зависимости намагниченности сплавов системы $Mn_{1-x}Co_xNiGe$ при T = 5 K. $a - (0 \le B \le 10 \text{ T})$, b -необратимые индуцированные магнитным полем магнитные фазовые переходы порядок – порядок в образцах с пониженной намагниченностью насыщения; c — совмещение зависимостей $\sigma(B)$ и $d\sigma(B)/dB$; B_{k1} — индукция 1-го критического поля необратимого индуцированного перехода порядок – порядок; d — полевые зависимости намагниченности при T = 77 K ($0 \le B \le 10 \text{ T}$); e — полевые зависимости намагниченности при T = 77 K ($0 \le B \le 10 \text{ T}$); e — полевые зависимости намагниченности при T = 77 K ($0 \le B \le 10 \text{ T}$); e — полевые зависимости намагниченности при T = 77 K ($0 \le B \le 0.5 \text{ T}$).

Рис. 3 (продолжение).

Рис. 4. Температурные зависимости намагниченности поликристаллических сплавов системы $Mn_{1-x}Co_xNiGe$ в слабых магнитных полях.

Рис. 5. Совмещенные температурные зависимости обратной магнитной восприимчивости $\chi^{-1}(T)$ в поле с индукцией B = 0.86 Т и намагниченности в поле с индукцией B = 1 Т в некоторых образцах системы $Mn_{1-x}Co_xNiGe$.

Таблица 2. Удельная остаточная намагниченность (σ_r) и коэрцитивная сила (H_c) образцов $Mn_{1-x}Co_xNiGe$ при температурах 5 и 77 К

	T = 5	K	$T = 77 \mathrm{K}$		
x	$\sigma_r, \\ \mathbf{A} \cdot \mathbf{m}^2 \cdot \mathbf{kg}^{-1}$	<i>Н</i> с, Т	$\sigma_r, \\ \mathbf{A} \cdot \mathbf{m}^2 \cdot \mathbf{kg}^{-1}$	<i>Н</i> с, Т	
0.05	0.051	0.005	0.04	0.00175	
0.10	0.32	0.00575	0.19	0.0038	
0.15	6	0.0165	5.5	0.0175	
0.20	5	0.0188	1.45	0.005	
0.30	8.6	0.085	_	_	
0.40	0.65	0.008	_	_	
0.50	0.5	0.0165	_	_	
0.60	0.11	0.0086	_	_	
0.70	0.174	0.174	_	_	
0.80	—	—	—	—	

Низкотемпературные дифрактограммы получены в Си $K\alpha$ -излучении при использовании низкотемпературной рентгеновской камеры на аппарате ДРОН-1.5. Согласно полученным данным, в образце с x = 0.15 в диапазоне температур T = 88-296 К сохраняется гексагональная фаза, тогда как в образце с x = 0.05 ниже

290 К наблюдается возникновение орторомбической фазы (вставка на рис. 1, *b*).

Концентрационные зависимости параметров a, c и объема элементарной ячейки V твердых растворов $Mn_{1-x}Co_xNiGe$ в которых катионное замещение марганца на кобальт достигает до 80 ат.% представлены в табл. 1.

Результаты измерений удельной намагниченности исследуемых составов представлены на рис. 2. Катионное замещение в системе $Mn_{1-x}Co_xNiGe$ уже при 10% замещения марганца на кобальт приводит к нарушению антиферромагнитного упорядочения. При $x \ge 0.10$ твердые растворы проявляют ферромагнитные свойства.

На рис. З приведены полевые зависимости намагниченности $\sigma(H)$ при температурах 5 и 77 К соответственно. Из этих измерений определены удельная остаточная намагниченность (σ_r) и коэрцитивная сила (H_c). Намагниченность насыщения (m_s), выраженная в магнетонах Бора на одну формульную единицу может быть рассчитана по формуле

$$m_s=rac{\sigma_s\cdot M}{5585},$$

где M — молярная масса; 5585 — величина, равная произведению магнетона Бора (μ_B) на число Авогадро. Полученные значения для системы $Mn_{1-x}Co_xNiGe$ при 5 и 77 К приведены в табл. 2.

Рис. 6. Температурные зависимости намагниченности $\sigma(B)$ с различной величиной индукции магнитного поля в некоторых сплавах системы $Mn_{1-x}Co_xNiGe$.

Отдельно рассмотрим результаты низкотемпературных (рис. 4) и высокотемпературных (рис. 5) измерений в магнитных полях с индукцией порядка 0.1–1 Т.

Результаты высокотемпературных измерений намагниченности в поле с индукцией B = 0.86 Т дают представления об особенностях температурной зависимости обратной парамагнитной восприимчивости $\chi^{-1}(T)$. На рис. 5 зависимости $\chi^{-1}(T)$ совмещены с температурными зависимостями намагниченности $\sigma(T)$, измеренными в полях с индукцией до 14 Т.

Измерения температурных зависимостей намагниченности в сильных магнитных полях (рис. 6) дают представления о смещении магнитных фазовых переходов полем.

4. Магнитокалорические свойства

Магнитокалорические характеристики исследуемых сплавов определялись косвенно путем расчета на основе термодинамических соотношений Максвелла из кривых намагничивания (рис. 7,8).

5. Основные выводы из экспериментальных результатов

Исходя из рентгеновских и магнитных измерений, литературных данных [20] можно заключить, что при x = 0.05 - 0.15 в системе Mn_{1-x}Co_xNiGe при понижении температуры наблюдаются магнитоструктурные фазовые переходы 1-го рода парамагнетизм-антиферромагнетизм (PM-AF). Высокотемпературной парамагнитной (РМ) фазе соответствует гексагональная кристаллическая структура (hex) с группой симметрии P6₃/mmc. Низкотемпературная антиферромагнитная (AF) фаза с ромбической решеткой (orth, группа симметрии P_{nma}) предположительно соответствует мягкой моде геликоидальной структуры HM (orth). Поэтому достаточно легко деформируется в магнитном поле и приобретает вдоль его направления значительную намагниченность. Температуры магнитного упорядочения — Т₁ (разупорядочения — T₂) совпадают с температурами магнитоструктурных переходов $PM(hex) \leftrightarrow HM(orth)$.

Магнитоструктурные переходы первого рода $PM(hex) \leftrightarrow HM(orth)$ сопровождаются температурным

Рис. 7. Изотермические изменения намагниченности и магнитной энтропии в твердом растворе Mn_{0.90}Co_{0.10}NiGe при изменении индукции магнитного поля.

Рис. 8. Изотермические изменения намагниченности и магнитной энтропии в твердом растворе Mn_{0.95}Co_{0.05}NiGe.

гистерезисом, аномальным поведением обратной *РМ* восприимчивости $\chi^{-1}(T)$, характерным для магнитоструктурных переходов (рис. 5, *a*, *b*) [5] и смещаются в магнитном поле в область более высоких температур, рис. 6, *a*, *b*.

Полевые зависимости $\sigma(B)$, измеренные в окрестности температуры $T_{\rm m} = 282 \,{\rm K} \leq T_{\rm C}$ на рис. 8 (штрихпунктирная линия на ряде зависимостей $\sigma(T)$ для x = 0.05) показывают аномальное поведение, которое представляет собой последовательность двух процессов. Безгистерезисное намагничивание при возрастании индукции поля *B* происходит вплоть до $B_i \approx 4 \,{\rm T}$. При дальнейшем возрастании и последующем снижении индукции зависимость $\sigma(B)$ проявляет гистерезисные свойства, характерные для обратимых индуцированных магнитным полем переходов первого рода PM \leftrightarrow FM, которые наблюдаются в закаленном образце родственной системы Mn_{1-x}Cr_xNiGe при x = 0.11 [19]. По мере понижения температуры зависимость $\sigma(B)$ в полях ниже B_i становится более крутой, гистерезисные свойства в полях выше B_i ослабевают и вовсе исчезают ниже 266 К.

При гелиевых температурах (рис. 3) зависимости $\sigma(B)$ для образцов с $x \le 0.1$ демонстрируют плавное безгистерезисное нарастание намагниченности до 80 emu/g с тенденцией выхода к насыщению в полях с индукцией свыше 10 Т. Подобное поведение зависимостей $\sigma(B)$ совершенно не типично для образцов с x = 0.15-0.8.

Для образцов с концентрацией Со в диапазоне x = 0.15 - 0.8 низкотемпературные зависимости $\sigma(B)$ на рис. 3 и в полях с индукцией более 4 T с одной стороны демонстрируют явную тенденцию к насыщению, характерную для ферромагнетизма. С другой стороны, при гелиевых температурах зависимости $\sigma(B)$ в полях до 4 T можно интерпретировать как необратимые индуцированные магнитным полем магнитные фазовые переходы 1-го

рода порядок-порядок. Это отчетливо видно на примере совмещенных зависимостей $\sigma(B)$ и $d\sigma(B)/dB = \sigma'_B(B)$ для образца с x = 0.15, рис. 3, с. Существование первого критического поля $B_{k1} = 2T$, в области относительно резкого возрастания намагниченности и соответствующего максимуму зависимости $\sigma'_B(B)$ при $B_{k1} \approx 2T$ при возрастании индукции и сохранение индуцированного состояния после обратного понижения индукции (отсутствие B_{k2}) поясняет сказанное. При этом, намагниченности насыщения индуцированных FM состояний для образцов с x = 0.15 - 0.8 более чем в 1.5 раза меньше намагниченности деформированного гелимагнитного состояния в образцах с x = 0.05 - 0.10. Другой отличительной особенностью образцов с x = 0.15 - 0.8является отсутствие гистерезисных явлений и скачкообразных изменений на температурных зависимостях $\sigma(B)$, рис. 6. Это может быть связано с изоструктурным характером магнитного упорядочения, которое реализуется в образцах с x = 0.15 - 0.8 как изоструктурные переходы второго рода $PM(hex) \leftrightarrow FM(hex)$. Кроме прямых рентгеновских измерений об этом свидетельствуют отсутствие характерных аномалий на температурных зависимостях обратной восприимчивости, рис. 5 и литературные данные[20].

6. Заключение

Комплексный подход, включающий рентгеновские, магнитометрические измерения в общирной области напряженностей магнитного поля и температур, позволил установить ряд магнитоструктурных и магнитокалорических особенностей поликристаллических образцов системы $Mn_{1-x}Co_xNiGe$. К основным особенностям можно отнести два сценария возникновения магнитного порядка при высоких температурах с различными намагниченностями насыщения в низкотемпературном состоянии и присутствие индуцированных магнитным полем необратимых переходов, сопровождающихся относительно резким увеличением намагниченности насыщения.

Первый реализуется в образцах x < 0.15, с которых структурный переход 1-го в рода $P6_3/mmc$ (hex) $\leftrightarrow P_{nma}$ (orth) совмещается в слабых магнитных полях с возникновением (исчезновением) гелимагнетизма $HM(orth) \leftrightarrow PM(hex)$. В сильных магнитных полях магнитоструктурное упорядочение $HM(orth) \leftrightarrow PM(hex)$ трансформируется в магнитоструктурный переход $FM(orth) \leftrightarrow PM(hex)$, сопровождающийся скачкообразным изменением намагниченности. В температурной области реализации этого перехода достигается максимальный МКЭ.

Второй сценарий реализуется в образцах с $x \ge 0.15$, в которых магнитное разупорядочение в пределах гексагональной структуры соответствует изоструктурному переходу второго рода ферромагнетизм—парамагнетизм FM(hex) \leftrightarrow PM(hex). При этом в области азотных температур аномальная чувствительность намагниченности к режимам ZFC, FC в слабых полях может свидетельствовать о присутствии магнитоструктурных переходов порядок—порядок предположительно FM(hex) \leftrightarrow HM(orth). В сильном магнитном поле этот переход подавляется, но возможность его существования может являться причиной необратимых индуцированных магнитным полем скачкообразных увеличений намагниченности соответствующих предположительно необратимому магнитоструктурному переходу HM(orth) \leftrightarrow FM(hex), возникающему в процессе намагничивания образца при низких температурах. Этот индуцированный полем низкотемпературный переход может являться основным стимулятором относительно сильного обратного магнитокалорического эффекта при гелиевых температурах.

Финансирование работы

Работа выполнена при финансовой поддержке БРФФИ и РФФИ в рамках научного проекта № Т20Р-204 и № 20-58-00059 соответственно.

Конфликт интересов

Авторы заявляют, что у них нет конфликта интересов.

Список литературы

- S. Taskaev, V. Khovaylo, M. Ulyanov, D. Bataev, E. Danilova, D. Plakhotskiy. Key. Eng. Mater. 833, 176 (2020).
- [2] T. Numazawa, K, Kamiya, T. Utaki, K. Matsumoto. Supercond. Cryogenics 15, 1 (2013).
- [3] H. Zhang, R. Gimaev, B. Kovalev, K. Kamilov, V. Zverev, A. Tishin. Physica B 558, 65 (2019).
- [4] Э.З. Валиев. Физика металлов и металловедение 104, *I*, 12 (2007).
- [5] В.И. Вальков, А.В. Головчан, В.В. Коледов, Б.М. Тодрис, В.И. Митюк. ФТТ 62, 5, 710 (2020).
- [6] T. Samanta, I. Dubenko, A. Quetz, S. Temple, S. Stadler, N. Ali. Appl. Phys. Lett. 100, 5, 052404 (2012).
- [7] К.А. Королев, А.П. Сиваченко, И.Ф. Грибанов, А.В. Головчан, В.И. Каменев, Т.С. Сиваченко, А.В. Маширов, В.И. Митюк, Е.П. Андрейченко, С.В. Таскаев. Челябинский физ.-мат. журн. 5, 5, 569 (2020).
- [8] Z. Cheng-Liang, W. Dun-Hui, C. Jian, W. Ting-Zhi, X. Guang-Xi, Z. Chun. Chin. Phys. B 20, 097501 (2011).
- [9] E. Liu, W. Wang, L. Feng, W. Zhu, G. Li, J. Chen, H. Zhang, G. Wu, C. Jiang, H. Xu, F. Boer. Nature Commun. 3, 873 (2012).
- [10] C.L. Zhang, D.H. Wang, Q.Q. Cao, Z.D. Han, H.C. Xuan, Y.W. Du. Appl. Phys. Lett. 93, 122505 (2008).
- [11] Г.С. Римский, К.И. Янушкевич, Н.М. Белозерова, Д.П. Козленко, А.В. Руткаускас. ФТТ 63, 3, 393 (2021).
- [12] K. Xu, Z. Li, E. Liu, H. Zhou, Y. Zhang, C. Jing. Sci. Rep. 7, 41675 (2017).
- [13] C. Zhang, D. Wang, Q. Cao, S. Ma, H. Xuan, Y. Du. J. Phys. D 43, 205003 (2010).
- [14] C.L. Zhang, J. Chen, T.Z. Wang, G.X. Xie, C. Zhu, D.H. Wang. Solid State Commun. 151, 1359 (2011).

2081

- [15] H. Zhang, Y. Li, E. Liu, K. Tao, M. Wu, Y. Wang, H. Zhou, Y. Xue, C. Cheng, T. Yan, K. Long, Y. Long. Mater. Design 114, 531 (2017).
- [16] J.-T. Wang, D.-S. Wang, C. Chen, O. Nashima, T. Kanomata, H. Mizuseki, Y. Kawazoe. Appl. Phys. Lett. 89, 262504 (2006).
- [17] V. Johnson. Inorg. Chem. 14, 1117 (1975).
- [18] B. Penc, A. Hoser, S. Baran, A. Szytuła. Phase Transit. 91, 118 (2018).
- [19] В.И. Вальков, В.И. Каменев, А.В. Головчан, И.Ф. Грибанов, В.В. Коледов, В.Г. Шавров, В.И. Митюк, П. Дуда. ФТТ 63, 5, 628 (2021).
- [20] E.K. Liu, H.G. Zhang, G.Z. Xu, X.M. Zhang, R.S. Ma, W.H. Wang, J.L. Chen, H.W. Zhang, G.H. Wu, L. Feng, X.X. Zhangl. Appl. Phys. Lett. **102**, *12*, 122405 (2013).

Редактор Т.Н. Василевская